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Subspace Correction Methods for
Convex Optimization Problems

Xue-Cheng Tai," Jinchao Xu ?

Introduction

Domain decomposition and multigrid methods have been intensively studied for
linear partial differential equations. Recent research, see for example [Xu92], reveals
that domain decomposition and multigrid methods can be analysed using a same
framework, see also [BPWX91], [SBG96], [GO95]. The present work uses this
framework to analyse the convergence of two algorithms for convex optimization
problems. Our emphasis is on nonlinear problems instead of linear problems. The
algorithms reduce to the standard additive and multiplicative Schwarz methods when
used for linear partial differential equations.

Researches for domain decomposition and multigrid methods have been mostly
concentrating on linear elliptic and parabolic partial differential equations. Extension
to more difficult problems have been considered by some recent works. In this
work, a general nonlinear convex minimization problems is considered. The proposed
algorithms can be used for nonlinear partial differential equations, optimal control
problems related to partial differential equations and eigenvalue problems [CSar]
[Sha97]. The space decomposition can be a domain decomposition method, a multigrid
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method or some other decomposition techniques.

Domain decomposition methods and multigrid methods have been studied for
nonlinear partial differential equations by some earlier works, see [AL96], [Ban82],
[DHOT], [FG97], [HR89], [TE9S8], [Tai92], [Tai94], [Tai95a], [Taid5b], [Tai95c], [Xu94],
[Xu96], etc. In comparison with the existing works, our approach has several features.
For example, the proposed algorithms can be used for certain degenerated or singular
nonlinear diffusion problems, i.e the nonlinear diffusion coefficient can be zero or
infinity and our approach do not need extra assumption on the smoothness of
the solutions. The methods work for natural domain decomposition and multigrid
meshes. Moreover, only small size nonlinear problems need to be solved on the
decomposed subspaces. We also emphasis that our approach is valid for general
space decomposition techniques. So the applications is not restricted to domain
decomposition and multigrid methods. Other space decomposition techniques can also
be considered, see [SBG96], [XZ98].

The two algorithms given in this work were first proposed in [Tai92], see also [Tai94],
[Tai95a], [Tai95c] and [TE9S8], where the qualitative convergence of the algorithms was
proved, but the uniform rate of convergence was not given there.

Optimization problems and subspace correction methods

Consider the nonlinear optimization problem

f,réixr/l F(v) . (1)

Here V is a reflexive Banach space and F : V. — R is a convex functional. This
problem has different applications, see §1

We shall use a space decomposition method to solve (1). A space decomposition
method refers to a method that decomposes the space V' into a sum of subspaces, i.e.
there are subspaces Vi, i = 1,2,.--, m, such that

V=Vi+Vat+. .. +V,. (2)

Following the framework of [Xu92] for linear problems, we consider two types of
subspace correction methods based on (2), namely the parallel subspace correction
(PSC) method and the successive subspace correction (SSC) method.

Algorithm 1 [A parallel subspace correction method].

1. Choose initial value u® € V and relazation parameters a; > 0 such that

Z;n:l Qa; S 1.
2. Forn > 0, of v € V is defined, then find e} € V; in parallel for
i=1,2,---,m such that

Fu+el)<Fu"+v), YueV. (3)

3. Set u™*L as in (4) and go to the next iteration.

m
utt = w4 Zaie? , (4)
i=1
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Algorithm 2 [A successive subspace correction method].

1. Choose initial values ul = u® € V. _
2. Forn >0, if u® € V is defined, find uti/™ = y?+0=1)/m 4 el with
el € V; sequentially for i =1,2,--- m such that

F (u”+(i_1)/m + e?) <F (u”Hi_l)/m + vi) , YueVi. (D)
3. Go to the next iteration.

When p = ¢ = 2, some asynchronous algorithms are proposed in [TTed] and [TT98]
for nonlinear variational inequalities and corresponding rate of convergence was also
analysed in [TT98].

Global convergence of the algorithms

In the following, the notation (-,-) is used to denote the duality pairing between V
and V', here V' is the dual space of V. The functional F' is assumed to be Gateaux
differentiable (see [ET76]) and there are constants K, L > 0, p > q > 1 such that

(F'(w) = F'(v),w—v) >K
|Fw) - Po)llve <L

w—o|f, YwoveV,
w— 1)||(‘1,_1, Yw,v €V ,

(6)

and from which it is easy to deduce that

F(w)—F(U)2<F'(U)aw—v>+%||w—v||€/a YVo,weV, (7)
F(w) = F(v) < (F'(v),w —v) + gHw -y, Ye,weV. (8)

Under assumption (6), problem (1) and subproblems (3) and (5) have unique solutions,
see [ET76]. For some nonlinear problems, the constants K and L depend on v and
w. However, just under the condition that F' is strictly convex, it has been proved
in [Tai92] and [Tai95c] that the iterative solutions of Algorithm 1 and Algorithm 2
converge to the true solution. Thus, one can assume that the computed solutions are
in a neighbourhood of the true solution and so the constants K and L can be assumed
to be independent of v and w. In case that the functional F' is only locally convex
in a neighbourhood of the true solution, by choosing the initial value close enough to
the true solution, it can be proved that the computed solutions stay always inside the
neighbourhood that the functional F' is convex (the essential techniques of the proof
is contained in the proof of Lemma 4.2 and 4.3 of [KT97]), and so the results given in
this work are also applicable to this kind of problems.
For simplicity, we define

1T 1
o= L, o= L, which satisfy — 4+ — = 1.
p—q+1 qg—1 c o
Note that o < p. We shall use u to denote the unique solution of (1) which satisfies
(F'(u),v) =0, Vv eV .Itisan easy consequence of (7) and (8) that

K L
Sl —ully < F() = Fu) < v —ully, Voev. 9)
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Therefore, in the following, we shall use
d, = F(u") = F(u), Vn >0, (10)

as a measure of the error between u™ and the true solution u. For the decomposed
spaces, we assume that there exits a constant C7 > 0 such that for any v € V| we can
find v; € V; to satisfy:

v = Zvi , and (Z ||1)Z||“7/) < Chlv|lv - (11)
3 i=1

i=1
Moreover, assume that there is a C'y > 0 such that there holds
DO U (wig + ) = F'(wig), vj)

i=1 j=1

1

m g=1 m
p o
< 02(Z||ui||pv> (anne) Nwsj € Vyus € Vi and vy € Vj |
=1 j:l

The rate of convergence for Algorithm 1 can be estimated as in the following;:

Theorem 1 Assume that the space decomposition satisfies (11), (12) and the
functional F satisfies (6). Set

r

-1 (p=1)(q—1) _g=1 7-1 r
r = pi(p 1;, C* = [0102 <Olmaxp + amirllD >[{_1:| pl{_l (Lq_l) .
Then for Algorithm 1 and d,, given by (10), we have:

1. If r=1 (namely p = q),

*

ntl < ——
o1 < 7

do, Yn>1. (12)

2. If r > 1, then there exists an & = &o(do, C*,7) € [0, 1] such that

dpy1 < <r0—*1£0 +dn1_r> - < <TC_*1(n+ 1)&o +dé_r> N , Yn>1.
(13)

See [TX98] for the details of the proofs. The estimate implies that when r = 1,
the convergence is uniform. In case that r > 1, the convergence can be slow, i.e.
d, =0 ((rn)_ﬁ) Especially, when 7 is very big, ﬁ ~ 0 and the convergence can
be very slow. Using that fact that ¢ < p, we see that it is impossible to have r < 1. In
order to have r = 1, we must require p = ¢. The analysis given in [TE98] and [AT.96]
was done for p = ¢ = 2.

The convergence of Algorithm 2 is similar to Algorithm 1.
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Theorem 2 Let the space decomposition satisfies (11), (12} and the functional F
satisfies (6). Define

el RO B

1. Ifr =1, we have

14 C*
2. If r > 1, then there exists an & = &o(do, C*,7) € [0, 1] such that

dny1 < dy, Vn>1. (15)

r—1

C*

== 1 ==
&+ dnl—r> < (TC* (n+1)& + dé‘f> ., Yn>1.
(16)

dn+1 < <

Overlapping domain decomposition for W'?(Q)

Let {Q;}M, be a shape-regular finite element division, or a coarse mesh, of Q and Q;
has diameter of order H. For each ;, we further divide it into smaller simplices
with diameter of order h. In case that Q has a curved boundary, we shall also
fill the area between 9Q and 9Qp, here Qp = Uf‘ilﬂi, with finite elements with
diameters of order h. We assume that the resulting elements form a shape regular
finite element subdivision of €, see Ciarlet [Cia78]. We call this the fine mesh or the
h-level subdivision of  with mesh parameter h. We denote Q, = U{T € T} as the
fine mesh subdivision. Let Sgl C WS ’p(QH) and S{} C Wol’p(Qh) be the continuous,
piecewise r*? order polynomial finite element spaces, with zero trace on 0Qp and 99y,
over the H-level and h-level subdivisions of Q respectively. More specifically,

S(‘)q = {v € Wold”(QH)| vlq, € P,,(QZ.),W}’

St ={vewsm@)| vlr e P(NYT €T}

For each Q;, we consider an enlarged subdomain Q2 = {7 € 7, dist(T,Q;) < d}. The
union of Qf covers Qj, with overlaps of size §. Let us denote the piecewise rt? order
polynomial finite element space with zero traces on the boundaries 9Q¢ as SP(Q?).
Then one can show that

So =S +>_ 559 (17)
For the overlapping subdomains, assume that there exist m colors such that each
subdomain Q¢ can be marked with one color, and the subdomains with the same color
will not intersect with each other. For suitable overlaps, one can always choose m = 2
ifd=1;m<4ifd =2;m < 8if d = 3.Let Q! be the union of the subdomains with the
ith color, and V; = {v € SB| w(z) =0, =z ¢& Q!} . By denoting subspaces Vy = SI|
V = St we find that decomposition (17) means

V=Vo+ > Vi (18)

i=1
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and so the two-level method is a way to decompose the finite element space. Similar
as in [Wid92], let {0;}72, be a partition of unity with respect to {Q;}72,, i.e.
; € C§°(QUNQ), 0 >0,57",0; =1and |V8;| < C/5. Let I be an interpolation
operator which uses the function values at the h-level nodes. For any v € V| let vg € Vg
be the solution of (v, ¢r) = (v, ¢n),Véu € Vo, and v; = I (0;(v — vo)). They satisfy
v=> i, v, and

p—1

m : ) o
(||vo||i,p+2||w||i,p) sc<m+1)s(1+(7) )||v||1,p, va> 1 (19)
i=1

See [TX98] for the details of proofs. Using the Cauchy-Schwarz inequality, it is easy
to prove by using (6) that:

mm

2 Py ) = Ftwss) ) S 332 Ll il

i=1j=1
q—1

< Lm (in ) m? (Znuznv) (20)

Vu; € Vi, w; € Vandw; €V, Vs> 1.

Estimates (19) and (20) show that for the constants in (11) and (12) only depend on
the number of colors m and the ratio H/J, i.e.

p—1

Cy = C(m) (1 + (?) T) . Cy=C(m).

Multilevel decomposition for W'?(Q)

From the space decomposition point of view, a multigrid algorithm is built upon the
subspaces that are defined on a nested sequence of finite element partitions. We assume
that the finite element partition 7 is constructed by a successive refinement process.
More precisely, 7 = 7 for some J > 1, and 7; for j < J are a nested sequence of
quasi-uniform finite element partitions, i.e. 7; consist of finite elements 7; = {7} of
size h; such that Q = UZ'TJZ: for which the quasi-uniformity constants are independent
of j (cf. [Cia78]) and TJI-_] is a union of elements of {TJZ} We further assume that there
is a constant v < 1, independent of j, such that h; is proportional to ~2,

Corresponding to each finite element partition 7;, a finite element space M; can be
defined by

M; ={veW'P(Q):v|, €Pi(r), VreT;}

Each finite element space M; is associated with a nodal basis, denoted by {(]5;}::]1
satisfying (/);(m;‘"‘) = d;, where {.L‘;T}ZJ:] is the set of all nodes of the elements of 7;.
Associated with each such a nodal basis function, we define a one dimensional subspace
as follows

M; = span (¢%).

J
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On each level, the nodes can be colored so that the neighboring nodes are always of
different colors. The number of colors needed for a regular mesh is always a bounded
constant; call it m.. Let ij, k=1,2, -+ m¢ be the sum of the subspaces M; associated
with nodes of the k** color on level j. Letting V = M, we have the following trivial
space decomposition:

3

c

J
v=> v (21)

7j=1 1

b
1l

Each subspace ij contains some orthogonal one dimensional subspaces M; and so
the minimization problems (3) and (5) for each Vf‘ can be done in parallel over the

one dimensional subspaces M; Under the assumption that

<Fl(w+ U) - FI( ) > < LH ||1p supp( )ﬂsupp || ”1717 3“1’1’( )ﬁsupp(v); (22)
it was proved in [TX98] that

Ch=J7 =|logh|l7, Cs=C.

1 Some Applications

The algorithms can be used for linear second order equation
—V~(aVu):finQCRd, u=0on 090,
and linear fourth order equation

A(aAu):finQCRd, u:O,g—_O on 00 .

If we use Algorithm 2 for a general symmetric positive define linear problem
a(u,v) = (f,v), Yv e V.
then the implementation can be divided into the following steps:
Algorithm 3 (Application to linear problems)

1. Choose initial values u® E V and compute the initial residual v° such

that (r°, v) = (f,v) — a(u®,v),Yv € V.

2. Fori=1,2,---,m, if r”‘*'( =2 s known, compute e} € V; such that
a(el, v;) = (r"+Lmll,vi) . Yy eV, (23)
3. Update the residual r*t% such that
(r”+#,v) = (r”"'Lmll,v)—a(e?,v), YveV . (24)
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4. Update the solution as in (25) and go to the next iteration.

g G=1)

nt el . (25)

3|~

u =1u

The implementation for Algorithm 1 is similar. If the subspaces V; are associated
with the overlapping domain decomposition, then equation (23) is the solving of the
subdomain problems. Equations (24) and (25) are just the simple updatings of the
residual and the solution in the subdomains. If the subspaces V; are associated with
the multigrid method, then equation (23) is to compute the correction value for the
nodal bases at different levels. Equations (24) and (25) are the updatings for the
residual and solution corresponding to the nodal bases.

For applications to nonlinear problems, consider

—V - ([Vul*?Vu) = fin QC R? (1 <5< 0), u=0on 0% . (26)

We assume f € W_l’sl(Q_), % + % = 1. By standard techniques, it can be shown, see

[ET76], that (26) possesses a unique solution which is the minimizer of

min [3 / IVvls—<f,v>]
vew* () LS Ja

For the functional F' associated with (26), it is true that conditions (6) and (22) are
valid with

p=s, q=2 if s > 2;
p=2, q=s fl<s<2.

See Ciarlet [Cia78], Glowinski and Marrocco [GMT75] and [TX98] for the details. The
full potential equation considered in [CGKT94] is of a similar type to equation (26).
For more general problem

min / _la(|Vv|2) + f(v) (27)
vew, ' (9) Ja 2 ‘

we assume that a is strictly convex and f is convex and both are differentiable. If we
use Algorithm 2 for (27), then we obtain

Algorithm 4 (Application to nonlinear problems)

1. Choose initial values u° € V_.1

. ) .
2. Fori=1,2,---,m, if u"t = is known, compute e € V; such that

/ [“’(lwuw%l + eV 4 el - Y
Q

+f (S ety |de =0 Vo €V (28)

3. Update the solution as in (29) and go to the next iteration.

utw = gt +ej . (29)
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If V; are the domain decomposition subspaces, then problem (28) is a nonlinear
problem in each subdomain, which has a smaller size than the original problem. For
some minimization methods, the convergence and the computing time depend on the
size of the problem. Thus by first reducing the problem into smaller size problems and
then minimize, we may gain efficiency. If V; are the multigrid nodal basis subspaces,
then (28) is equivalent to some one dimensional nonlinear problems and we can use
efficient minimization routines to solve the one dimensional problems.
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