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An Asynchronous Space
Decomposition Method

Xue-Cheng Tai, ' Paul Tseng *

Introduction

With the advent of multiprocessor computing systems, there has been much work
in the design and analysis of iterative methods that can take advantage of the
parallelism to solve large algebraic problems. In these methods, the computation
per iteration is distributed over the processors and each processor communicates the
result of its computation to the other processors, possibly subject to communication
or computation delays. By using a model of asynchronous computation proposed by
Chazan and Miranker [CM69], these methods have been analyzed quite extensively (see
[BT89]and references therein). However, aside from the easy case where the algorithmic
mapping is a contraction with respect to the L°°-norm, there has been few studies of
the convergence rate of these methods.

In this paper, we study the convergence rate of asynchronous block Jacobi and
block Gauss-Seidel methods for finite or infinite dimensional convex minimization of
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the form

RS (Z ) , o

i=1

where each K; is a nonempty closed convex set in a real reflexive Banach space V'
and F' is a real-valued lower semicontinuous Gateau-differentiable function that is
strongly convex on Z:n:l K;. Our interest in these methods stems from their close
connection to relaxation methods for nonlinear network flow (see [BCEZ95], [BT89],
[TBT90] and references therein) and to domain decomposition (DD) and multigrid
(MG) methods for solving elliptic partial differential equations (see [CM94], [DHI7],
[SBGY6], [TE98], [TX98], [Xu92] and references therein). For example, the additive and
the multiplicative Schwarz methods may be viewed as block Jacobi and block Gauss-
Seidel methods applied to linear elliptic partial differential equations reformulated as
(1). DD and MG methods are also useful as preconditioners and it can be shown that
such preconditioning improves the condition number of the discrete approximation
[BZar], [CM94], [SBGY96], [Xu92]. In addition, DD and MG methods are well suited
for parallel implementation, for which both synchronous and asynchronous versions
have been proposed. Of the work on asynchronous methods [BMPSar], [BMPS95],
[FSS97], [McC89], we especially mention the numerical tests by Frommer et al. [FSS97]
which showed that, through improved load balancing, asynchronous methods can
be advantageous in solving even simple linear equations. Although these tests did
not use the coarse mesh in its implementation of the DD method, it is plausible
that the asynchronous method would still be advantageous when the coarse mesh
is used. An important issue concerns the convergence and convergence rate of the
above methods. In the case where the equation is linear (corresponding to F' being
quadratic and Ky, ..., K, being suitable subspaces of V') or almost linear, this has
been much studied for synchronous methods such as block Jacobi and block Gauss-
Seidel methods (see [BZar], [CM94], [SBG96], [Xu92] and references therein) but little
studied for asynchronous methods [BMPSar], [BMPS95], [McC89]. In the case where
the equation is nonlinear (corresponding to K1, ..., Ky, being suitable subspaces of V),
there are some convergence studies for synchronous methods [CSar]|, [DH97], [Sha97],
[TE98], [TX98], and none for asynchronous methods. In the case where K1, ..., K, are
not all subspaces, there are some convergence studies for synchronous methods and,
in particular, block Jacobi and Gauss-Seidel methods (see [Kor97], [LT92], [LT93],
[Tai92], [Tai95], etc.) but none for asynchronous methods.

Our contributions are two-fold. First, we consider an asynchronous version of block
Jacobi and block Gauss-Seidel methods for solving (1), and we show that, under
a Lipschitzian assumption on the Gateau derivative F’ and a norm equivalence
assumption on the product of Ki,...,K,, and their sum (see (5) and (6)), this
asynchronous method attains global linear rate of convergence with a convergence
factor that can be explicitly estimated (see Theorem 1). This provides a unified
convergence and convergence rate analysis for such asynchronous methods. Second,
we apply the above convergence result to linearly constrained convex programs and,
in particular, nonlinear network flow problems. This yields convergence rate results
for some asynchronous network relaxation methods (see §38). We also apply the
above convergence result to certain nonlinear elliptic partial differential equations.
This yields convergence rate results for some parallel DD and MG methods applied to
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these equations and, in particular, the convergence factor is shown not to depend on
the mesh parameters (see §38). Although alternative approaches such as Newton-type
methods have been applied to develop synchronous DD and MG methods for nonlinear
partial differential equations [BR82], [Bra77], [HR89], [Xu96], these methods use the
traditional DD and MG approach or use a special two-grid treatment.

Problem Description and Space Decomposition

Let V be a real reflexive Banach space with norm || -|| and let V’ be its dual space, i.e.,
the space of all real-valued linear continuous functionals on V. The value of f € V' at
v € V will be denoted by (f,v), i.e., (-, ) is the duality pairing of V and V'. We wish
to solve the following minimization problem

mip (1) @)
where K is a nonempty closed (in the strong topology) convex set in V and F : V — R
is a lower semicontinuous convex Gateau-differentiable function. We assume F' is
strongly convex on K or, equivalently, its Gateau derivative limy_o(F (v + tw) —
F(v))/t, which is a well-defined linear continuous functional of w denoted by F’(v)
(so F': V +— V'), is strongly monotone on K, i.e.,

(F'(u) — F'(v),u —v) > o||u— 1)||2, Yu,v € K, (3)

where o > 0. It is known that, under the above assumptions, (2) has a unique solution
u [GT89].

We assume that the constraint set K can be decomposed as the Minkowski sum:

m
K= Z [\/Z’, (4)
i=1

for some nonempty closed convex sets K; in V, ¢ = 1,...,m. This means that, for
any v € K, we can find v; € K;, not necessarily unique, satisfying > ;- v; = v and,
conversely, for any v; € K;, i = 1,...,m, we have Y i~ , v; € K. Following Xu [Xu92],
we call (4) a space decomposition of K, with the term “space” used loosely here.
Then we may reformulate (2) as the minimization problem (1), with (@1, ..., ) being
a solution (not necessarily unique) of (1) if and only if #; € K; for ¢ = 1,...,m and
Soit, @; = @. As was noted earlier, the reformulated problem (1) is of interest because
methods such as DD and MG methods may be viewed as block Jacobi and block
Gauss-Seidel methods for its solution. The method we study will be an asynchronous
version of these methods. The above reformulation was proposed in [Xu92] (for the
case where F' is quadratic and K = V) to give a unified analysis of DD and MG
methods for linear elliptic partial differential equations. The general case was treated
in [Tai92], [Tai95] (also see [Tai94], [TE9S] for the case of K = V).

For the above space decomposition, we will assume that there is a constant C'y > 0
such that for any v; € K;,7 = 1, ..., m, there exists u; € K; satisfying

m m 3

= Zﬁi and <Z [|a; — vi||2> <Cy
i=1

i=1

m

U — E (%

i=1

: (5)
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See [CM94], [Tai95], [TE98], [Xu92] for similar assumptions. We will also assume F’
has a weak Lipschitzian property in the sense that there is a constant C > 0 such
that

Fl(wi; 4+ uis) — F'(wi;), v §C’2< _max ui-2> < v; 2> ,
;;( (wij + wij) = F'(wij), vi) ;zzl,...,mn ill ;ll |
Vwij € K, uij € K v € K, i,j=1,...,m,

(6)
where we define the set difference K = {u—v : u,v € K;} C V. The above assumption
generalizes those in [Tai95], [TE98], [TX98] for the case of K; being a subspace, for
which Kz-e = K;.

Furthermore, we will paint each of the sets K1, ..., K, one of ¢ colors, with the
colors numbered from 1 up to ¢, such that sets painted the same color k € {1, ..., ¢}
are orthogonal in the sense that, for all u € K and v; € K7, i € I(k),

= > Il (7)

ieT(k)

>

ieT(k)

<F’(u-|— > v) > vi> < >0 (P (ut vi),v), (8)

ieT(k) ieT(k) ieT(k)

where I(k) = {i € {1,...,m} : K; is painted color k}. See [CM94], [TX9§] for similar
orthogonal decompositions in the case K; is a subspace. Thus I(1), ..., I(¢) are disjoint
subsets of {1,...,m} whose union is {1,...,m} and I(k) comprises the indexes of the
sets painted the color k. Although ¢ = m is always a valid choice, in some of the
applications that we will consider, it is essential that ¢ be independent of m. In the
context of a network flow problem, each set K; may correspond to a node of the
network and sets are painted different colors if their corresponding nodes are joined
by an arc. In the context of a partial differential equation defined on a domain Q C R¢,
each set K; may correspond to a subdomain of Q and sets are painted different colors
if their corresponding subdomains intersect (see §38, §38).

Remark 1: It can be seen that condition (6) is implied by the following strengthened
Cauchy-Schwarz inequality (also see [SBG96], [Xu92] for the case of quadratic F and
subspace K;):

(F'(wij + uij) — F'(wij), vi) < eijllugll[oill,  Vwij € K uij € K v € KP,

with C'5 being the spectral radius of the symmetric matrix & = [e;5]77; 2.

Remark 2: For locally strongly convex problems, the constants o, C1, C's may depend
on u, v, v;, w;;, u;;. In this case, the subsequent convergence estimate should be viewed
as being local in nature, i.e., it is valid when the iterated solutions lie in a neighborhood
of the true solution (see §38).
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Since F' is lower semicontinuous and strongly convex, for each (u1, ..., um) € K1 x -+ X
K,, and each i € {1, ..., m}, there exists a unique w; € K; satisfying
i i

(see [GT89]). Let mi(u1, ..., um) denote this w;. Then (w1, ..., 7m) may be viewed as
the algorithmic mapping associated with the block Jacobi method for solving (1).
Consider an asynchronous version of the block Jacobi method, parameterized by a
stepsize v € (0, 1] which for simplicity we assume to be fixed, that generates a sequence
of iterates (uy(t), ..., um(t)),t = 0,1, ..., with (u1(0), ..., u(0)) € K1 x ---x Ky, given,
according to the updating formula:

wi(t+1) = wi(t) +vsi(t), i=1,..,m, (10)
where we define

si(t) = wi(t) —u;(t) if t€T and s;(t)=0 otherwise, (11)

with  wi(t) = m (ur(75()), ..o um (7, (1)) | (12)

and T? is some subset of {0,1,...} and each 7i(t) is some nonnegative integer not
exceeding ¢. Since each K; is convex and v € (0, 1], an induction argument shows that
(ur(t), ..., um(t)) € Ky x -+ - x Ky, forallt =0,1,...

We will assume that the iterates are updated in a partially asynchronous manner
[BT89], i.e., there exists an integer B > 1 such that

{t,t+1,. . t+B—1}NT £ 0 t=0,1,.., Vi, (13)

0<t—ri(t)<B—1 and ri(t)=t V€T’ Vij. (14)
Remark 3: The above asynchronous method models a situation in which computation
is distributed over m processors with the ith processor being responsible for updating
u; and communicating the updated value to the other processors. 1% is the set of
“times” at which wu; is updated by processor i (by applying m; to its current copy of
(u1,...,um)); ui(t) is the value of u; known to processor 7 at time ¢; and T;(t) is the
time at which the value of u; used by processor ¢ at time ¢ is generated by processor
j, sot— T; (t) is the communication delay from processor j to processor ¢ at time ¢.
Thus, the processors need not wait for each other when updating (u;)/2;, and the
values used in the computation may be out-of-date.

Convergence Rate of the Asynchronous Method

Below is our main convergence result, showing that the iterates (u1(t),..., um(t))

generated by the asynchronous method (10)-(14) attain linear rate of convergence,
with a factor that depends on o, Cy, Cs, ¢ and B, only. We refer the proof to [TT98].
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Theorem 1 Consider the minimization problem (2) and the space decomposition
(4) of §38 (see (3), (5)—(8)). Let (u1(t),...,um(t)), t = 0,1, ..., be generated by the
asynchronous space decomposition method of §38 (see (10)—(12) and (13), (14)).
Denote u(t) = Z;n:l u;(t). Then, there exist vo € (0,1) and o € (0,1), depending
on o,C1,C4,c and B only, such that when v < ~q, there holds

B-1

F(u(nB)) — F(a) < ¢"~* max{F(u(B)) — F(a), Z Z ||si(t)||2}, n=1,2,..,

t=0 i=1

where u denotes the unique solution of (2). Moreover, u(t) converges strongly to u and,
for each i € {1,...,m}, ui(t) converges strongly as t — oo.

Applications to Convex Programming

Primal Applications

Consider the case of the problem (2), where V.= V/ = R, F : " — RN is a
differentiable convex function, and K is a nonempty polyhedral set in ®". Then F
is continuous [Roc70] and continuously differentiable [Roc70]. We assume that the
gradient F' = ((.?TFJ_)?:l is strongly monotone and Lipschitz continuous on K and we
choose a space decomposition (4) such that each K; is a polyhedral set.

Since each Kj is a polyhedral set, a Lipschitzian property of the solution set of a
linear system (see [BT96]) implies that, for any v; € K;, i = 1,...,m, there exists
u; € K; satisfying (5), where Cy depends on m and certain condition numbers for
K;,i=1,...,m. In cases where each K; has a simple structure, C; may be estimated
explicitly. Also, an analysis similar to that used for (21) shows that (6) holds with
Cy = Lé, where L is the Lipschitz constant for F’ and ¢ is the maximum number of
sets K; that are not orthogonal to an arbitrary set K;. To color the sets such that
(7)—(8) hold, it suffices to paint K; and K; different colors whenever they are not
orthogonal, i.e., (v;)Tv; # 0 for some v; € K;,v; € K;.

Dual Applications

Consider the linearly constrained convex program
minimize G(z) subject to Az =, (15)

where G : #" +— R is a strictly convex differentiable function, b € ™, and A € ™*"
has nonzero rows. We assume there exists € R” satisfying AZ = b. By attaching
Lagrange multipliers A € ™ to the equations Az = b in (15), we obtain the
Lagrangian dual problem:
min G*(ATA) = b7 )\, (16)
AER™

where G* is the convex conjugate of G defined by (see [GT89], [Roc70])

G*(u) = sup {uTa: - G(w)} .

TER™
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The convex programs (15) and (16) are dual in the sense that one has a solution if and
only if the other does and these solutions satisfy G'(z) = AT X [Roc70]. Using b = Az,
we can rewrite the dual problem (16) in the form of (2) with

F(u) = G*(u) — &1 u, K={ue®R" :u= ATX for some X € R™}. (17)

We assume that (G*)’ is strongly monotone and Lipschitz continuous on 7, so that
F satisfies (3) for some o > 0.

Let @ denote the unique solution of (2) and let A; denote the ith row of A. We
decompose K in the form (4) with subspaces

K,={u; eR" : u; = AZ-T)\Z- for some A; € R}.

It was shown in [TT98] that, for any v; € K;, i = 1,...,m, there exists u; € K;
satisfying (5), where Cy depends on A only. It was also shown that (6) holds with
Cy = Lé, where L is the Lipschitz constant for (G*)" and ¢ is the maximum number
of rows A; that are not orthogonal to an arbitrary row A;. Since two subspaces K;
and K; are orthogonal if and only if AZ-AJT = 0, we can color Ky, ..., Ky as discussed

in §38 so that (7)—(8) hold.

Applications to Partial Differential Equations
The first partial differential equation corresponds to the minimization problem (2)
with V = K = H}(Q) and

d

(F'(u), v) = /ﬂ (Z ai(, u, V) + ao(a, u, Vu)o — fv) da, (18)

i=1

where Q is a suitable domain of R¢, f € L%(Q), and the nonlinear coefficient
a;, 1t =0,1,---d are such that (3) is satisfied for some o > 0 (see [TT98]).
The second partial differential equation corresponds to the minimization problem

(2) with V = K = H}(Q) and

F(v) = /ﬂ (%|Vu|2 + %1)4 — fv) de, (19)

with Q, f as above and with d € {2,3}. The corresponding equation is the simplified
Ginzburg-Landau equation for superconductivity:

—Au+v’=f in Q and u=0 on J9Q, (20)

where u is the wave function, which is valid in the absence of internal magnetic field.
It can be shown that this F' satisfies (3) for some o > 0 (see [TT98]).

Domain decomposition methods

In DD methods, the domain © is decomposed into the disjoint union of subdomains €2;,

i =1, ..., m, and their boundary, i.e., QUIQ = UL, (Q;U0Q;) and ;NQ; = @ for i # j.
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The subdomains, which are assumed to form a regular quasi-uniform division (see p.
124 and Eq. (3.2.28) of [Cia78] for definitions) with a specified maximum diameter
of H, are the finite elements of the coarse mesh. To form the fine mesh for the finite
element approximations, we further divide each €2; into finite elements of size h such
that all the fine-mesh elements together form a regular finite element division of Q.
We denote this fine division by 7j. For each €;, we consider an enlarged subdomain
Q! = {e € Ty : dist(e, ;) <}, where dist(e, ;) = mingee yeq, | — y|. The union
of Q2 i = 1,...,m, covers Q with overlap proportional to §. Let Ko C H}(Q) and
K C H}(Q) denote the continuous, piecewise rth-order polynomial (r > 1) finite
element subspaces, with zero trace on 99, over the H-level and h-level subdivisions
of Q respectively. For i = 1,...,m, let K; denote the continuous, piecewise rth-order
polynomial finite element subspace with zero trace on the boundary 9Q¢ and extended
to have zero value outside Qf U 9Q¢. Then Kie = K; for : = 0,1,...,m, and it can be
shown that the space decomposition (4), with summation index from 0 to m, holds.
We assume that the overlapping subdomains are chosen such that each subdomain
Q¢ and its corresponding finite element subspace K; can be painted one of n. colors
(numbered from 1 to n.), with subdomains painted the same color being pairwise non-

intersecting. The coarse mesh and its corresponding subspace K are painted the color
0. Moreover, n. should be independent of h. For general domain , finding overlapping
subdomains with such property is nontrivial. If € is the Cartesian product of intervals,
we can easily find overlapping subdomains with n, =2 i1f d = 1, and n, < 4 if d = 2,
and n. < 6 if d = 3. Then the total number of colors needed for (7) and (8) to hold is
c=mn.+ 1.

Let {#;}72, be a smooth partition of unity with respect to {Q;}/2,, i.e., 8; € C§°(Q)
with 6; > 0, §; = 0 outside of Q;, and >/~ 6; = 1. Let I, be the finite element
interpolation mapping onto K which uses the function values at the h-level nodes.
For any v € K, let vy be the projection in the L%-norm of v onto Ko, i.e., vy € Ky
and fﬂ(vo —v)¢ de = 0 for all ¢ € Ky, and let v; = I(0;(v — vo)). Then, it can
be seen that v; € K; for i = 0,1,...,m and satisfy v = ..., v; [SBG96], [Xu92]. By
further choosing 6; so that |V#6;| has a certain boundedness property, it was shown
in [TX98] that for any v; € K;, i = 0,1,...,m, there exists u; € K; satisfying (5)
(with summation index from 0 to m), where C' is independent of m and the mesh

parameters, and
H\

For F given by (18) or (19), it was shown in [TT98] that

m v Lo
YD (F (wijtuig) — F(wig),vi) < Ch (Zi_(ﬂ“ m ”"“”2> (Z ||”i||2>
i=0 j=0 7=0 T i=0

1

s 140X ol (L loil?) " (21)
i=1

i=1

with Cy a constant depending on Ca,e¢, & only. Compared with (6) (with 4,7 =
0,1,...,m), we see that (21) has an extra term on the right-hand side. It was shown
in [TT98] that this extra term does not affect the convergence rate result of §38.
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Multigrid methods

In MG methods, Q is divided into a finite element triangulation 7 by a successive

refinement process. More precisely, we have 7 = 7T; for some J > 1, where Tk,
k = 1,...,J, is a nested sequence of regular quasi-uniform triangulation, i.e., 7 is
a collection of simplexes 7z = {7/} of size (i.e., maximum diameter) hj such that

Q = U;rF and for which the quasi-uniformity constants are independent of k [Cia78]

and with each simplex in 7;_1 being the union of simplexes in 7. We further assume

that there is a constant r < 1, independent of k, such that hy is proportional to r2*.
Corresponding to each triangulation 7, we define the finite element subspace:

Me={veH}Q) : v, €Pi(r), YTET},

where P; (1) denotes the space of real-valued linear functions of d real variables defined
on 7. We associate with My a nodal basis, denoted by {¢¥}75, that satisfies ¢F € My
and

(ﬁ(z?) =d;;, the Kronecker function,

where {zf}7% is the set of all interior nodes of the triangulation 7. For each such
nodal basis function, we define the one-dimensional subspace: Kf = span (¢¥). Then,
(KF)® = KF and we have the following space decomposition:

J n
K= Zi[{f with K = M.

k=1i=1

On each level k, we color the nodes of 7; so that neighboring nodes are always
of a different color. The number of colors needed for a regular mesh is a constant
independent of the mesh parameters, which we denote by n.. Then the total number
of colors needed for (7) and (8) (with summation indices adjusted accordingly) to
hold is ¢ = n.J. Also, it can be shown that (6) holds and that, for any v} € K¥,

)
i=1,..,ng k=1,..J, there exists #¥ € K} satisfying (5) (with summation indices

adjusted accordingly), where Cy and C3 do not depend on h and J.
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