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Overlapping Methods with
Pertectly Matched Layers for the
Solution of the Helmholtz Equation

ANDREA TOSELLI '

INTRODUCTION

In recent years, a considerable effort has been devoted to the the study of preconditioners
for scalar and vector Helmholtz equations; see, e.g., [Des91, Gha96, CCEW97, MSRKA97].
In this paper, we build a class of overlapping Schwarz preconditioners for a finite element
approximation of a scalar Helmholtz problem with a first—order Sommerfeld condition, in two
dimensions. Perfectly Matched Layers and two kinds of boundary conditions are employed
to build the local problems.

Let © C R? be a bounded connected polygon. We consider the following Helmholtz problem
for the complex—valued function u:

P(u) = —Au—Ku=f, inQ (1)
Ju .
%-I-lku_o, on 902, (2)

where the frequency k is positive and the source f has support contained in 2.

Equations 1 and 2 can be derived from the full 3D Maxwell’s equations for time-harmonic
fields and first—order Silver—Muller boundary conditions, when considering waves with the
electric and magnetic fields, respectively, parallel and perpendicular to the xy—plane (TM
waves). Then, 1 and 2 are the equations for the z-component of the magnetic field.
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We then approximate Equations 1 and 2, by introducing a triangulation 75 of £, made
of quadrilaterals of maximum diameter h, and considering the standard finite element (FE)
space Vi, C H'(), consisting of continuous piecewise bilinear functions. Triangular linear FE
spaces can also be employed; see [QV94]. The well-posedness, stability, and accuracy of the
corresponding linear system are studied in [IB95]. In particular, we recall that for the stability
of the linear problem, the condition kh < 1 must be satisfied; see [TB95]. As is well-known,
a restriction on kh requires that there are enough discretization points per wavelength. The
number of points per wavelength is defined as

ppw = 27 /kh.

SCHWARZ METHODS

In the following, we suppose that the domain €2 is a rectangle and, for simplicity, that the
triangulation 7 is uniform. We want to build a preconditioner for Equations 1 and 2, and
consider an overlapping decomposition, built in the following way:

Starting from a decomposition of the rectangle Q into M nonoverlapping rectangles {€;},
we extend each rectangle, and obtain a family of overlapping subdomains {Q;}, such that
their boundaries do not cut through the elements. Let Q;yd be the extended part of Q; and
let d be the the overlap,

d:=éh,

defined as the thickness of Q;d Each subdomain can then be decomposed as
O =0,U0.
For the generic subproblem on the subdomain Q}, we solve a Helmholtz problem with the

Perfectly Matched Layers studied in [ZC96]. The Perfectly Matched Layer in Q] is exactly
szd and the corresponding operator is defined as

. —Au — k2u, in €Q;
Pa(u) = { —div (A grad u) — k*a,u, in Qi 4. (3)

Here A = diag {a.(z,y),ay(z,y)} and a.(z,y) are suitable complex functions, that ensure
that incident waves on the boundary between €2; and Q;d are not reflected and that the
energy of a wave traveling inside Q:d is partially absorbed. In the layer that is perpendicular
to the x axis, for instance, they are given by

_ . y\ ™
azlzayzazzl—za/(E) , 4)

where « is an absorption coefficient. We refer to [Z2C96] for the exact expression of the
coefficients a,, a, and a. in the general case, and to [CM97] for a discussion of practical
issues of Perfectly Matched Layers.

We obtain different preconditioners, by choosing different boundary conditions for the
local problems. We consider Dirichlet conditions (Algorithm 1L) and Sommerfeld conditions
(Algorithm 2L). We define the following linear iterations. We start with an initial vector u®.

A full iteration step is performed through M fractional steps, where u™* M is the solution of
the following problem on the subdomain Q;, 7=1,---,M:

e Algorithm 1L (Dirichlet + Layers)

& i=1 i=1 .
Pd(u7+M—u"+M):f—P(u"'"M), in Qf,

7 i=1
n+ n4 S
M _ M !
u; =u,,, 7, on 9;.

(5)
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o Algorithm 2L (Sommerfeld + Layers)

n+L . j=1 =1 . ’
Pd(uj M—u"+M):f—P(u"+M)7 in Q,
nt L . i=1 . (6)
Bu; M ik nt i _ 8“:; M ik nt 15 an!
Frine Y = T Tonowr  Wlour  ,  ORLORL.

Here nin: and now: are the outward and inward normal vectors to 893, respectively. The

i=1
M s the iterate at step n + %, defined in €\ Q;

In the definition of the fractional steps 5 and 6, we have chosen to solve the local problems
in sequence and obtained multiplicative algorithms, but additive algorithms can also be

. nt
function u,,,

considered. These basic iterations can be employed to build preconditioners to be combined
with a Krylov—type accelerator. A coarse solver can also be added in a standard way, by using
the FE discretization of Equations 1 and 2 on a coarse mesh Tz, H > h. See [SBG96] for
a general discussion of these issues. We also refer to [QV99], for other examples of iteration
schemes, similar to Algorithms 1L, and 2L, where the continuity of suitable traces across the
boundaries of the subdomains is enforced. We note that the corresponding algorithms with
no absorption (@ = 0) have already been studied: see Algorithms 1 and 2 in [CCEW97]. We
also remark that Perfectly Matched lLayers are only employed for the local solvers.

NUMERICAL RESULTS

In this section, we compare the performance of the two algorithms introduced in the previous
section, when varying the overlap, the number of subregions and the diameter of the
coarse mesh. We will only present results for multiplicative preconditioners, since we have
observed that they give far better performances than the corresponding additive ones, for
this particular problem.

We have taken Q = (0, 1)2 in all our experiments. In the following, n and nc denote the
number of discretization nodes in each direction, for the fine and the coarse mesh, respectively,
and nsub x nsub is the number of subdomains. We also define the wavelap as the fraction of
a wavelength that is covered by the overlap:

wlp = ;
ppw

see [CCEW97].

In our numerical results, we have employed GMRES acceleration and right preconditioning,
with restart equal to 40, a maximum number of iterations equal to 70, and a reduction of
the relative residual of the preconditioned system, by a factor of 107%. For the absorption in
the Perfectly Matched Layers, we have chosen m = 2, in 4.

For our two methods, an optimal range of values of the absorption coefficient o can be
found, which is fairly insensitive to the frequency, the number of points per wavelength, the
number of subregions and the diameter of the coarse triangulation. The supporting results
are not shown here. We also note that our methods is pretty robust with respect to variations
of the absorption coefficient, if @ > 1 for Algorithm 1L, and a > 0.25 for Algorithm 2L. In
our experiments, we have chosen a = 2.0 for Algorithm 1L and a = 0.75 for Algorithm 2L.

The first set of tables shows the dependence on ppw (or n, equivalently), the overlap and
the number of subregions, for a fixed value of the frequency and no coarse space; see Table 1
for ppw = 10.1 and Table 2 for ppw = 13.5. The tables show results for Algorithm 1L with
a = 2.0, Algorithm 2L with o = 0.75 and Algorithm 2L with oo = 0.
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Table 1 Number of GMRES iterations, versus § (wavelap) and nsub; n = 121,
ppw = 10.1, k = 75, nc = 0; first rows for Algorithm 1L with o = 2.0, second
rows for Algorithm 2L with @ = 0.75 and third rows for Algorithm 2L, with

a=0.

) 1 2 3 4 5 6

wavelap 0.10 | 0.20 | 0.30 | 0.39 | 0.49 | 0.59
nsub =4 | >70 | 37 29 27 26 25
21 20 18 18 17 17
24 19 19 20 18 21
nsub =5 | >70 | 44 32 29 28 26
25 22 21 20 19 18
28 22 23 23 23 26
nsub=8 | >70 | 61 43 36 33 31
35 31 28 27 26 23
41 34 38 48 44 | >70

As expected, without a coarse space and for a fixed §, the number of iterations increases
with the number of subregions. By comparing the results for Algorithm 2L, one can see that
the increase is larger if no absorption is present. We also remark that Sommerfeld boundary
conditions for the local problems ensure faster convergence; see also [CCEW97]. In this case,
results for & > 0 are somewhat better than those for a = 0 for a few subregions, and
considerably better for many subregions. In particular, some absorption ensures a steady
decrease of the number of iterations when the overlap is increased.

By comparing Tables 1 and 2, one can see that, for a fixed number of subregions, a constant
value of the wavelap gives comparable numbers of iterations. This shows the importance of
this parameter in the analysis of overlapping methods for Helmholtz problems. This has
already been pointed out in [CCEW97, MSRKA97] for other Schwarz algorithms.

Tables 3 and 4 show the results when a coarse space is added. For a fixed value of ppw
and nsub, they show the number of iterations when varying the wavelap and the size of the
coarse space, for different values of the frequency. Results are given for Algorithm 1L with
a = 2.0, Algorithm 2L, with @ = 0.75 and Algorithm 2L, with o = 0.

We observe an initial deterioration of the performances when a very coarse space is added,
but note a considerable improvement, when the number of coarse points per wavelength
(cppw) is sufficiently large (greater than or equal to 4).

As for Tables 1 and 2, we remark that for Algorithm 2L, some absorption ensures better
performances. We also remark that, for a fixed value of the wavelap and the number of coarse
points per wavelength, the number of iterations increases with the frequency.

CONCLUDING REMARKS

We do not show any results for Algorithm 1L with @ = 0. This case was considered
in [CCEW97] and it generally performs very poorly. From the numerical results, we can
deduce that, in general, adding Perfectly Matched Layers to the local problems, improves the
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Table 2 Number of GMRES iterations, versus § (wavelap) and nsub; n = 161,
ppw = 13.5, kK = 75, nc = 0; first rows for Algorithm 1L with o = 2.0, second
rows for Algorithm 2L, with & = 0.75 and third rows for Algorithm 2L with
a=0.

) 1 2 3 4 5 6
wavelap 0.07 1 0.15 | 0.22 | 0.30 | 0.37 | 0.44
nsub =4 | >70 | 48 33 28 28 27
26 21 20 19 19 19
56 21 20 21 22 22
nsub =5 | >70 | 64 40 32 30 28
29 24 22 22 21 20
>70 | 25 24 25 27 27
nsub =8 | >70 | >70 | 53 43 39 36
42 33 32 31 30 29
>70 | 38 37 42 65 65

performance of Schwarz methods for Helmholtz equations.

555

The key parameters of the algorithms are the wavelap for the one—level algorithms and the

wavelap, the number of coarse points per wavelengths, and the frequency, for the two-level

algorithms.

The methods developed in this paper can be easily generalized to the full three—-dimensional

Maxwell’s equations, using the theory of PMLs developed in [ZC96] for the three—dimensional

case and results are forthcoming.
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Table 4 Number of GMRES iterations, versus é (wavelap) and nc; ppw = 20,
nsub = 8, n = 161, k = 50.6; first rows for Algorithm 1L with o = 2.0, second
rows for Algorithm 2L, with @ = 0.75 and third rows for Algorithm 2L with
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) 1 2 3 4 5 6
wavelap 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30
nc=20 >T70 | >70 | >70 | 58 48 45
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>70 | >70 | 47 43 47 | >70
nc = 16 >70 | >70 | >70 | >70 | >70 | >70
cppw = 2.6 | >70 | >70 | >70 | >70 | >70 | >70
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>70 - 49 60 | >70 | >70
nc = 32 69 36 30 33 33 31

cppw = 5.3 | 46 30 36 30 25 24
>70 | >70 | 43 31 28 | >70

557



