39

Viscous-Inviscid Interaction:
Domain Decomposition Avant la
Lettre

A.E.P. VELDMAN!, C.-H. LAT?

THE VISCOUS BOUNDARY LAYER

The paper describes the history of viscous-inviscid interaction methods, and tries
to put them in a modern domain-decomposition context. This history started in
1904, when Ludwig Prandtl presented the ‘boundary layer’ at the Third International
Mathematical Congress in Heidelberg. From that moment on, the flow field around
a body was divided in two parts: a thin shear layer where viscosity plays a role,
and the remaining outer part where the flow can be considered inviscid (Fig. 1).
In the boundary layer the flow equations can be simplified by neglecting the viscous
streamwise derivatives, which changes the elliptic character of Navier-Stokes to a much
easier handled parabolic character. The latter was very relevant in an era where mainly
analytical tools were available for solving differential equations.

The boundary layer is driven by the external pressure distribution p. and (through
Bernoulli’s law) its related streamwise velocity w.. In the boundary layer the
streamwise velocity component is reduced to zero, herewith effectively thickening
and smoothing the shape of the geometry. The resulting effective shape is called the
displacement body ¢*, which becomes a streamline for the inviscid flow.
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inviscid flow
STRONG INTERACTION

viscous flow

Figure 1 Subdivision of the transonic flow field around an airfoil in an

inviscid-flow region and a viscous shear layer (exaggerated in thickness).

The coupled problem can be written as

external inviscid flow: W = E[&*(”_l)],

. (1)

boundary-layer flow: §*(") = B_l[u(en)],

where E denotes the external inviscid-flow operator, and B~! is the shear-layer
operator; below it will be clear why we denote the latter operator in this way. It
is observed that the information exchange between the two regions takes place in
terms of the pressure or the streamwise velocity on the one side, and the displacement
thickness or the normal velocity on the other side. Introducing a streamfunction 1,
we may correlate

Ue g—ﬁ, i o -,

hence in domain-decomposition terminology we have a Neumann-Dirichlet coupling.

FLOW SEPARATION AND ALGORITHM BREAK-DOWN

As the convergence rate of the Neumann-Dirichlet problem (1) scales with the
thickness of the shear layer [Vel84], a fast convergence is expected. Indeed, for
situations with attached flow this fast convergence is found, and the shear layer only
provides a small correction to the inviscid-flow solution. However, as soon as the flow
wants to separate from the surface the iterative coupling strategy (1) fails, because
the shear-layer calculation breaks down, with a solution that tends to infinity.

A number of possible causes can be imagined. Firstly, the assumption of small
streamwise derivatives appears to become invalid, and these derivatives would have to
be included in the flow equations. Secondly, as the stable parabolic direction of the
shear-layer equations is governed by the flow direction, inside separated-flow regions
they should have been solved from downstream to upstream. In 1948 Goldstein added
another possible cause for the break-down by raising the question “does a singularity
always occur except for certain special pressure distributions near separation” [Gol48].
Since then, the singularity at separation bears his name.
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It took twenty more years before algorithms and computers were sufficiently
powerful to investigate the above options through numerical experiments. One of these
was described in 1966 by Catherall and Mangler, who tried to solve the shear-layer
equations with prescribed displacement thickness. Indeed, they succeeded to pass the
point of flow separation, but ran into difficulties a bit further downstream [CM66].
Not convinced by their success, they stopped further research into this subject.

In the mean time Stewartson formulated the so-called ‘triple-deck’ theory, describing
the flow in the neighbourhood of singular points in the flow field [Ste74]. Near these
points the boundary layer is no longer merely providing small corrections to the flow,
but instead wants to have an equal say in determining the flow field. In aerodynamical
terms, the hierarchy between boundary layer and inviscid flow changes from weak
interaction into strong interaction.

In the late 70-ies — after 75 years of research — it became clear that Goldstein had
pointed in the right direction: the problems at flow separation are due to non-existence
of a solution of the shear-layer equations at prescribed pressure. This is the reason
why we have denoted the boundary layer operator at prescribed pressure by B~!; its
existence is not guaranteed, but B does exist.

VISCOUS-INVISCID COUPLING METHODS

From that moment on the path was free to go on, and around 1978 a number of
iterative strategies have been brought forward. Two methods have survived [LW87]:
the semi-inverse method [LeB78], and the quasi-simultaneous method [Vel79, Vel81].

Semi-inverse The semi-inverse method combines the favourable parts of the direct
and the inverse method (Fig. 2, left). Tt solves both flow domains with prescribed
displacement thickness, and could be called a Dirichlet-Dirichlet coupling. In order to
obtain convergence some tuning of the relaxation parameter w is required, and a fair
convergence can be obtained:

uf = B0, WP = B a0 = gD p o F —uP) ()
semi-inverse guasi-simultaneous
External flow External flow
. uF =oy/o
5{ §"=8" v U - %) ‘ SF-U D u = ogion
B
L j u Boundary layer
+ -
Boundary layer Interaction law

Figure 2 Semi-inverse and quasi-simultaneous VII method.
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Quasi-simultaneous The quasi-simultaneous method wants to reflect the lack of
hierarchy between the subdomains: in principle, it wants to solve both subdomain
problems simultaneously. When the shear layer is modelled by an integral formulation
a simultaneous coupling is well feasible, e.g. [HV84]. However, when in both domains a
field formulation is chosen, software complexity prevents a practical implementation.
Thus the idea was born to solve the shear-layer equations simultaneously with
a simple but good approrimation of the inviscid flow: the interaction law. The
difference between this approximation and the ‘exact’ inviscid flow can then be handled
iteratively.

Triple-deck theory delivers the flow model that describes the local interaction: thin-
airfoil theory. Thus the interaction law

1 [0y do

oY 1oy

3_11(8): mJr 0o s—o

(3)

appears naturally, where I' is the boundary between the subdomains. In this way,
for acrodynamical applications the quasi-simultaneous method (Fig. 2, right) can be
formulated as

ul — 15+ ™) = B D) - gfer ),

| (4)
ul™ — B[s*")]

0,

where the interaction law reads

1104 = l/rda* do (5)

T do s—o

Tt is observed in (4) that the interaction law is used in defect formulation, i.e. it does
not influence the final converged result; it only enhances the rate of convergence!

Discretization The discretization of the thin-airfoil integral (5) leads to a positive-
definite matrix /. E.g. the discretization as presented in [Vel84] yields the following
expression on a uniform grid with mesh size h

* 1 1 * *
10 = — Y {E(Hl—dj)ln

j#i—1,i

i_j 2 * * *
S s 98 8T ).
Z—]—l‘} ﬂ_h(z-l-l z+ 1—1,)

We recognize in the latter term the discretization of derivative d?¢*/dz?, which
describes the local contribution from the two intervals adjacent to the i-th grid point. Tt
follows that I is symmetric and diagonally dominant. The discrete form of (4), setting
E = I for convenience, reads u, — I§* = Ry, u. — B§* = Rs, where R; contains
contributions to the integral (5) from the end points of the computational domain.
B now stands for the Jacobian of the shear-layer equations (it is lower triangular in
attached flow), and in Ry we can hide effects from their nonlinearity. After elimination
of u, we are left with

(=1 + B)&* = Ry — R, (6)

Experience learns that the diagonal of B is negative in regions of attached flow, but it
vanishes in a point of separation after which it is slightly positive. This phenomenon
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is responsible for the break-down of the classical approach (1) for solving the shear-
layer equations. But when the interaction law is added to the formulation, the matrix
I — B becomes relevant. With [ being diagonally dominant, there is some room for
subtracting positive contributions from B without I — B becoming singular. Practice
shows that a simple Gauss-Seidel procedure (i.e. a number of traditional boundary-
layer sweeps) suffices to solve the system (6). For a more detailed discussion of the
numerics involved we refer to [Vel84].

Simplification The interaction law (5) can be simplified even further to

2h d%6*

[[6*] = ?Wa (7)

after which the first equation in (4) simply becomes

ok a2\l 2k (d2e Y
u£)+_<ds2) = uf 1)+_<F> : (8)

™ ™

Of course, since the description (7) contains less physics than (5) the convergence rate
deteriorates [Coe99]. But (8) is easily implementable in existing boundary-layer codes,
and it prevents the fatal break-down that occurs when pressure is prescribed.

APPLICATIONS

Transonic airfoil flow The performance of the quasi-simultaneous coupling concept
will be demonstrated on some calculations of transonic flow past an RAE 2822 airfoil.
In these airfoil-flow problems the integral (5) has been used to describe the symmetric
displacement effects (‘thickness problem’). Tts skew-symmetric counterpart has been
used to describe the effects of camber (‘lift problem’); for details see Veldman et al.
[VLABS90].

Fig. 3 (bottom right) shows the inviscid-viscous convergence for a computation of
Case 1, subsequently followed by Case 6. It reveals that a handful of quasi-simultaneous
iterations suffice to obtain a solution. The convergence is independent of the grids
applied in the two subdomains. For completeness we mention that the inviscid flow
was computed with an O-type 128x64 grid, whereas the shear layer was covered with
a 173x21 C-type grid. Computing time is one minute on a PC. To appreciate the fast
convergence even better, one has to realize that the external flow in these examples is
transonic, with a significant supersonic flow region in Case 6, whereas the interaction
law (5) is based on sub(!)sonic theory.

Also in three dimensions the quasi-simultaneous concept (with the simplified
interaction law (7)) has been applied successfully to transonic flow [WM93].

Domain decomposition Viscous-inviscid interaction is an example of a Schwarz
non-overlapping domain-decomposition with a Dirichlet-Neumann coupling. Thusfar,
VII methods have only been used in situations where the Neumann region is very
thin. In [dBV95] the usefullness of the quasi-simultaneous method for differently
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Figure 3 Pressure distributions and convergence for RAE 2822 airfoil.

shaped domains or for different governing equations has been investigated. As an
example, it has been applied to a Dirichlet Laplace problem on a domain Q with
two subdomains ©; and Q5. In this case the multiplicative Dirichlet-Neumann (D-N)
domain-decomposition method reads

A =0inQ;, M =¢l VonT, (9)
(n) (n)
Awg”) =01in Q-, agi = ag; onT. (10)

To the Neumann region Qs an interaction law like (3) has been added, after which
the Dirichlet-Neumann Interaction (D-NI) method can be formulated as (9) combined
with the following modification of (10)

onT.

ous™ 1 ol de ol 1 [ oY de
Tz on Ta T or

on T 00 s—o s—0
r

We emphasize that the added terms describe how subdomain € is reacting on changes
in subdomain 3, and hence give an immediate response. Heuristically, this is the
mechanism that will lead to a speed-up of the inter-subdomain iterations.

A convergence analysis has been made of the D-N method versus the D-NT method
for various shapes of the subdomains ©Q; and Qs; some of these shapes are shown
in Fig. 4. For each method relaxation has been added, and the optimal relaxation
factor woep: has been determined by trial-and-error. From Fig. 4 we conclude that the
D-NI method converges very fast when the Neumann domain is thin (case A). In the
opposite case, with a thick Neumann domain (case B), both D-N and D-NI diverge,
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Figure 4 Influence of adding interaction to D-N coupling.
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Figure 5 6-point stencil in local coupling by Tan.

but they can be made convergent with appropriate relaxation; again the optimal D-NI
method is faster than the optimal D-N method.

In [dBV95] more configurations have been studied. In all of them the convergence
behaviour is in line with the above findings, revealing that the (optimum) D-NI
method is always faster than the (optimum) D-N method. In many cases the optimum
relaxation factor for D-NT is close to w = 1, whereas the D-N method requires more
fine-tuning of the relaxation factor.

Relation with local coupling methods A close relation exists with the class of
local coupling methods introduced by Tan [Tan95] which make use of combinations
of function values, lateral derivatives and normal derivatives. In fact, his interface
condition is a linear combination of 1, %, %, %Z;é’ d 5;5/’”, leading to a 6-point
stencil as shown in Fig. 5. Tan has optimized the coefficients in this combination based
on mathematical arguments. Tt appears that his optimum for ellipticity-dominated
problems is very close to the interactive coupling condition (8) which is based on

physical arguments.
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Relation with quasi-Newton methods The present method has also a close
relation with the defect equation approach where an equilibrium or a matching
condition [Lai98] is required to satisfy. The idea is to set up such a defect equation
along the interface of two subproblems which are most likely governed by two different
mathematical models. For the present problem, the typical defect equation is given by
(compare (6))

D(\) = EA— BA =0,

where E and B are defined as in (1). It is natural to solve the above defect equation
using the well-known Newton’s method

A+ — \(n) _ J()\(”))—]D()\(”))

which has excellent local convergence properties. However, the viscous and inviscid
coupling does not allow the Jacobian matrix being evaluated analytically. Therefore
quasi-Newton methods obviously suit the present case. There are a lot of different
approximations to the Jacobian and its inverse, such as Broyden’s method and
Schubert’s method, etc. These approximate updating methods are applied in the
coupling context [Lai98]. In fact, the equivalent interface condition is a suitable
linear combination of the field variables deeply hidden in the two subdomains. In
the limiting case when the approximation to the Jacobian is chosen as a diagonal
matrix with constant diagonal entries, the method is essentially equivalent to the
semi-inverse method (2). One can also easily see that the quasi-simultaneous method
(4) is equivalent to choose the approximation of the Jacobian to be I — B.

CONCLUSIONS

During the last two decades, it has become clear that interaction laws are very
beneficial in a viscous-inviscid coupling strategy. We have described their history,
and placed them in a modern domain-decomposition setting. Additionally, it has been
shown that they can also be beneficial in non-aerodynamic applications.
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