53

Remarks on the implementation of
the Generalized
Neumann-Neumann algorithm

Marina Vidrascu !

INTRODUCTION

In the past decade significant research efforts have been applied to develop robust
algorithms using domain decomposition methods. From both a theoretical and a
numerical point of view these methods can now be considered mature. For widespread
use, these methods must be accessible to the non-specialist and thus must be available
as black boxes. This paper addresses the issues faced when trying to maintain an
open software platform suitable for ongoing research while simultaneously meeting
commercial code requirements as black boxes. The characteristics of the generalized
Neumann-Neumann algorithm, a good black box domain decomposition algorithm
candidate, are defined and illustrated with specific examples.

First the general methodology used to practically solve a given problem is
described. The next sections review the main characteristics of the Neumann-Neumann
preconditioner and discusses the key points of its practical implementation and use.
This algorithm is implemented whitin the framework of the general purpose finite
element library Modulef. For message passing the PVM library is used. Thus the
software is portable and can be run on different platforms including standard parallel
computers and clusters of workstations.

1 INRTA-Rocquencourt, B.P 105, F78153 Le Chesnay Cedex, e-mail
Marina.Vidrascu@inria.fr
Eleventh International Conference on Domain Decomposition Methods

FEditors Choi-Hong Lai, Petter E. Bjgrstad, Mark Cross and Olof B. Widlund ©1999 DDM.org

GENERALIZED NEUMANN-NEUMANN 485

GENERAL METHODOLOGY

To achieve efficiency and reliability modern software must be open and modular. An
additional important feature is that it should be easlly reused in different situations.
On the other hand, in order to promote the use of numerical methods for non-
specialists, 1t is important to develop black boxes. A black box is a specialized software
which is easy to use and minimizes the user’s decisions. In addition, it has to be robust
and efficient. The question is how to fulfill the apparent conflicting requirements of
both modern software and black boxes.

For numerical analysts who use an open software, the solution of a problem is
built using a selection of appropriate modules. In general several solution methods
are available and it is the user’s responsibility to choose the best ones depending,
for instance, on the problem type or size. Modules for direct or iterative solutions
of linear systems are typical examples of software used in all such constructions. On
the contrary, a black box contains all steps involved in the modeling process and
corresponds to a particular choice at each step.

The approach proposed to derive a black box from an open software for a given
problem is the following:

e Select the optimal solution method, i.e. one whith serious theoretical
background and proved to be robust and reliable. In the context of
black boxes the best choice is not always the most efficient one. It is
interesting to note that, in commercial codes, a direct solution method
is often preferred to an iterative one even if in the research community it
is well established that iterative methods are more efficient than direct
ones especially for large three dimensional problems.

e Design specific pre- and post-processing tools well adapted to the problem
to be solved. In particular, check the validity of the model as far as
possible and use the specific vocabulary of the actual application.

The advantage of this approach is that the solution of a new problem requires only a
few software developments which increase both productivity and robustness.

An overview of existing methods available to solve linear systems shows why it is
interesting to consider domain decomposition algorithms. On the one hand direct
methods are robust but too expensive for large three dimensional problems. On
the other hand, iterative methods are efficient but it is difficult to have robust
preconditioners in particular when considering highly non-homogeneous materials.
Domain decomposition methods use direct solvers on each subdomain and iterative one
on the interface. The choice of the preconditioner is a key point to achieve robustness
and performance. The objective of the following sections is to show that the balanced
Neumann Neumann algorithm is a good candidate to build a black box for linear and
non linear structural mechanics problems.

486 VIDRASCU
GENERALIZED NEUMANN-NEUMANN PRECONDITIONER

Definition

The generalized Neumann-Neumann preconditioner described in [LV98], [LVIT7] is
a particular case of the additive Schwarz method applied to the primal Schur
complement.
To define the interface problem, first split the original domain of calculation €2 into
non-overlapping sub-domains Q = Ui\;l Q; with interfaces T'; = 9Q,\0Q T = U;T;.
Then consider a decomposition of each local stiffness matrix in internal and interface
nodes contributions :

B' Ki
Denoting by R!X the restriction of the set of interface nodal values X to the

interface I';, the entire interface problem takes the form of the classical Schur
complement system :

Ki:[K B]’

sX:= Y R' (K- B (K)'B)RIX = F - Y R'BI(K)'F. (1)

To define the generalized Neumann Neumann preconditioner choose :

1. a partition of unity D? : V|r, — V satisfying (V = {¥ = Tr v|r})

N
> DR =1d|v. (2)

i=1

2. an approximate local operator S such that

S=Y R'SRixs. (3)
In linear elasticity this is generally the exact local Schur complement,
in non linear elasticity it may be the local Schur complement of the

linearized elasticity operator.
3. an S'-orthogonal decomposition of each local space V|p;,i =1, N, into

Vir, =Vi®Z;. (4)
The local coarse space Z; contains all potential local singularities.

The generalized Neumann-Neumann domain decomposition technique is then the
additive Schwarz algorithm solving S on the space V of restrictions with

1. coarse space Vg = Zil DiZ; C V, endowed with the scalar product é,

2. local spaces Vi, 1 = 1, N endowed with the scalar product B; = éi,

3. extensions I; = (I — P)D!, with P the S orthogonal projection of
V — Vj.

This algorithm corresponds to the following preconditioning operator

M-t =871+ (1 -P)D'S; "DV (1 - P). (5)

GENERALIZED NEUMANN-NEUMANN 487

General properties

The purpose of this section is to explain why the Neumann-Neumann preconditioner is
a good candidate for a black box system. The relevant features in this context include
the fact that one can use arbitrary unstructured subdomains and meshes and various
different finite elements (2d, 3d, shells).

This preconditioner has been extensively studied both from a theoretical and
numerical point of view ([Man93], [Le 94], [LV9T7]). It is robust and can handle
non-homogeneous materials and jumps in coefficients. The algorithmic scalability of
the preconditioner was proved, i.e. the number of iterations to reach convergence is
asymptotically independent on the mesh size and on the number of subdomains. In
early versions of the preconditioner (Original Neumann-Neumann in Table 1) the
independence on the number of subdomains was not achieved. This improvement, due
to J. Mandel [Man93], obtained by the introduction of the coarse space is mandatory
for the robustness (Generalized Neumann Neumann in Table 1). There still is a
drawback, the aspect ratio of the subdomains has an important influence in the
convergence. In practice this means that the way the domain is split into subdomains
is very important.

Both the importance of algorithmic scalability and aspect ratio of the subdomains
are illustrated with a very simple example. We consider a two dimensional elasticity
problem. The domain is clamped on the left side and a uniform traction is imposed on
the right side. The domain is decomposed into 2, 4, 8, 16 subdomains. In this last case
several decompositions are considered, see Figures 1, 2, 3. The convergence behavior
is presented in Figure 4 and clearly shows that the original Neumann-Neumann is
not a good candidate for a black-box as the number of iterations increases with the
number of subdomains. In addition, the generalized Neumann-Neumann algorithm is
stable with respect to the number of subdomains. The number of iterations is given in
Table 1. In Figure 4 the best result for the decomposition in 16 subdomains is used for
the graphic representation. This example is not used to prove the performance of the
method (for this purpose a small 2d problem is irrelevant), but to illustrate that the
algorithmic scalability is an issue. The comparison between the three decompositions
used for the case of 16 subdomains shows the importance of the aspect ratio of the
subdomains and of the regularity of the boundary. This is even worth in 3d real life
problems where the algorithm may not converge for an inappropriate decomposition.

In addition this preconditioner is easy to implement and several extensions, to non-
matching grids, to non-linear elasticity or to low frequency vibration problems are
possible in a straightforward manner.

PARALLEL IMPLEMENTATION FOR THE SOLUTION OF
LARGE SIGNIFICANT PROBLEMS

One motivation for the design of domain decomposition algorithms was that they are
suitable for coarse-grained parallel computers with distributed memory or for clusters
of workstations. The actual implementation is done within the finite element library
Modulef with no restrictions on the shapes of the domains and on the choice of finite
elements. To preserve the portability, the PVM library is used to exchange messages

488 VIDRASCU

Figure 1 Decomposition 8*2

Figure 2 Decomposition 4*}

GENERALIZED NEUMANN-NEUMANN

Nbre iteralions

140
95 |
50 |
5,,"",,‘,,,,T,,,,
2 22 43 64
NDSD

Figure 3 Irregular decomposition

Figure 4 Number of iteration vs number
of subdomains

489

490 VIDRASCU

Table 1 Number of iterations for the two versions of the preconditioner

subdomains Orig. Neumann Neumann | Generalized Neumann Neumann
2 9 6
4 14 10
8 28 10
16 (4*4) (Fig: 2) 65 21
16 (8*2) (Fig: 1) 45 8
16 (irregular) (Fig: 3) 70 17
64 140 9

and data between processors.

There are two different ways to tackle the practical implementation of this domain
decomposition algorithm : either consider the entire domain or a given decomposition
into non-overlapping subdomains as an input.

The choice used here is the second one because:

e It is more amenable to a modular approach. Indeed, from an algorithmic
point of view the only link between the decomposition of the domain
into subdomains and the solution is that regular domains with nice
aspect ratio are needed. In addition several tools can be used for
mesh partitioning (see section 53) and the re-usability of algorithms is
increased.

o Tt allows the solutions of very large systems where the memory of one
processor 1s not sufficient for the entire mesh.

e Each subdomain is considered as a standard mesh data structure. Thus,
the data locality, an important problem in parallel processing, is obtained
with no additional work and this also ensures a very low degree of data
migration.

There is, of course a drawback: a particular data structure to describe the interface
between subdomains is needed. We will concentrate here on the solution algorithm,
the mesh partitioning being a completely different problem.

To summarize section 53, the problem is to solve SX = F where S is defined by
(1), using a preconditioned conjugate gradient algorithm where the preconditioner M
is defined by (5).

The software is parallel and uses the message passing paradigm and a master-
slave approach. Here, the master pilots the PCG algorithm for the interface problem
and each slave is in charge of the local computations by subdomain. As for classical
problems the boundary conditions, material characteristics and loads are described
globally, in a standard way.

The user starts the master process which will start as many slave processes as
subdomains. A modular approach is used which make it easy to program the extensions

GENERALIZED NEUMANN-NEUMANN

described in section 53.

ii)

iii)

The master process has the following tasks:

spread data to all processors, collect data to compute the data structure
describing the interface,

pilot construction of the coarse problem,

pilot the conjugate gradient iterations. The only non-standard step is
the solution of the coarse problem in the preconditioning step. As this
is a problem of small size (less then 6 x subdomains) a direct method is
convenient.

491

The main programming effort is contained in step ii). Step iii) is standard and uses
numerical kernels such as BLLAS. The specific steps are the matrix vector product and
the preconditioning step. Notice that S is never computed but, building the matrix-
vector product SX involves local solutions of Dirichlet problems on each subdomain.
This will be done by the slave processes. Similarly, at the preconditioning step,
computation of M~ involves solution of local Neumann problems. In both situations
the master process send to the slave processes a vector containing data on the

boundary, the slave processes perform the local computations and send back a vector

containing local solutions and, finally, the master process add up all contributions.

This description shows that the communications are very simple, so the choice of the

message passing software is not an issue.

i

ii)

iii)

The slave processes have the following tasks:

receive data from master and use it to compute matrix K' in (1) and
S in (5). These matrices will be used to solve local Dirichlet problems
(for the computation of Sx), respectively Neumann problems (for the
preconditioner). They are computed and factorised once for all as direct

methods are used to solve local problems. Also compute matrix B in
(1).

construction of the coarse problem. The key point is the choice of the local
coarse space Z; in (4). For elasticity problems, Z; is the space of local
rigid-body motions. To compute it, introduce the independent degrees
of freedom characterizing the rigid body motions (six or less of them).
The simplest way to identify these modes is to stop the factorization
process when a “null pivot” is found. This procedure is not very robust
as the value of the “null pivot” depends on the conditionning of the
matrix which is unknown. A reliable procedure, such as that described
in [FG96], is requiered for a black box.

conjugate gradient iteration. The local contribution of vector X is
X; = R'X and contribution to solution of SX implies the solution

of the Dirichlet problem (Ki)_l(BiX,-). Similar computations for the
preconditioning step, once the D? in (5) are choosed as indicated in (2).
A good choice which allows to consider jumps in coefficients is to define
D’ at each interface point P; as the relative value of the average stiffness
pi of subdomain Q; to the sum ZPIEQJ' p; of stiffness values of all the
subdomains ; containing F;.

Notice that the computations performed by the slaves are done in parallel.

492 VIDRASCU

REQUIREMENTS FOR CORRECT USE OF DOMAIN
DECOMPOSITION

To use a domain decomposition algorithm as a black box it is essential to use an
automatic mesh partitioning tool. The Modulef library has a partitioner based on
K-means techniques. Other popular partitioning tools well-adapted to this algorithm
are described in ([SF95], [Sim91]). As noted in section 53 the quality of the partition
is very important from an algorithmic point of view, which is true for an entire class
of domain decomposition methods [FMB94]. For this method a good aspect ratio of
the domains is required, as already mentioned in the example of section 53 (compare
results obtained with the decompositions in figures 1 and 2). It is almost impossible,
for general meshes to obtain a regular boundary with an automatic mesh partitioner.
This has an impact on convergence behavior (again, see in section 53 results obtained
with meshes of figures 1 and 3). Nevertheless, in realistic computations it is mandatory
to use an automatic tool partitioning.

To obtain parallel performance the decomposition must also achieve a good load
balancing. How to achieve a good decomposition is still an active research area. This
is an essential requirement for a correct use of domain decomposition methods.

CONCLUSIONS

Domain decomposition methods when used on parallel computers provide a very
powerful tool to solve large real-life elliptic problems. The generalized Neumann-
Neumann algorithm is robust and can easily be implemented using existing software.
In order to use it as a black box it is necessary to combine the use ot this algorithm
with an automatic mesh partitioning tool, further research should address the issue
of the impact of the size of subdomains to achieve parallel performance as well as the
choice of the best strategy to partition the mesh.

REFERENCES

[FFG96] Farhat C. and Gradin M. (may 1996) On the computation of the null
space and generalized inverse of a large matrix, and the zero energy modes of
a structure. Technical Report CU-CAS-96-13, Center for aerospace structures,
University of Colorado, Boulder.

[FMB94] Farhat C., Maman N., and Brown G. (january 1994) Mesh partitioning
for implicit computations via domain decomposition: Impact and optimization
of the subdomain aspect ratio. Technical Report CU-CAS-94-02, Center for
aerospace structures.

[Le 94] Le Tallec P. (1994) Domain decomposition methods in computational
mechanics. In Computational Mechanics Advances, number 1 in Computational
Mechanics Advances, pages 121-220. North-Holland.

[LV97] Le Tallec P. and Vidrascu M. (1997) Solving Large Scale Structural
Problems on Parallel Computers using Domain Decomposition, chapter 2, pages
49-82. John Wiley & Sons.

[LV98] Le Tallec P. and Vidrascu M. (1998) Generalized neumann-neumann
preconditioners for iterative substructuring. In Petter Bjgrstad M. E. and

GENERALIZED NEUMANN-NEUMANN

Keyes D. (eds) Proceedings of the ninth international symposium on Domain
Decomposition Methods for Partial Differential Fquations, Bergen, June 96,
pages 413-425.

[Man93] Mandel J. (1993) Balancing domain decomposition. Comrmunications in
numerical methods in engineering 9: 233-241.

[SF95] Sharp M. and Farhat C. (1995) TOP/DOMDEC A Totally Object
Oriented Program for Visualisation, Domain Decomposition and Parallel
Processing. User’s manual, PGSoft and The University of Colorado, Boulder.

[Sim91] Simon H. (1991) Partitioning of unstructured problems for parallel
processing. Comput. Sys. Engrg. 2: 135-148.

493

