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FETI domain decomposition
algorithms for sensitivity analysis
in contact shape optimization

Vit Vondrak, Zdenék Dostdl ', John Rasmussen 2

Introduction

In this paper, we show that the computational cost of the contact shape optimization may
be essentially reduced by the application of a domain decomposition method to the solution
of the state variational inequality that describes the equilibrium of a system of elastic bodies.
In particular, we describe an algorithm for the minimization of a compliance of one body in
a coercive system of bodies during their mutual contacts. After discretization by the finite
element method, the algorithm uses a feasible directions method for minimization of the cost
functional.

To evaluate gradients of the cost function that are necessary for implementation of the
feasible direction method, we describe two different methods for sensitivity analysis. The
first one, the so-called overall finite difference method, is based on a simple approximation
of partial derivatives of the cost function by the finite differences. It turns out that the
decomposition of the stiffness matrices of bodies that have prescribed shape is carried out
only once, so that the proposed method of solution of the discretized variational inequality
can partly exploit the specific structure of the shape optimization problem. However, the
stiffness matrix of the body whose shape is to be designed must be decomposed for each
design variable in each design step. This leads naturally to application of the semianalytic
method [O1.94] that, though algebraically more complicated, works in each design step with
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only one stiffness matrix, so that only one decomposition of one block of the block diagonal
stiffness matrix is necessary to carry out one design step, regardless of the number of design
variables. The state variational inequality is then solved by an efficient algorithm [ZAS98]

The algorithm has been implemented into the system ODESSY [01.94, R1.O93] developed
at the Institute of Mechanical Engineering in Aalborg and tested on several model problems.
Results of numerical experiments indicate that there are problems for which the algorithm
presented is effective.

Discretized contact shape optimization problem

We shall start our exposition from the discretized contact problem. Suppose that K is the
stiffness matrix of order n resulting from the finite element discretization of a system of elastic
bodies Q1,...,Q, with enhanced bilateral boundary conditions. With a suitable numbering
of nodes, we can achieve that K = diag (K1, ..., K;), where each K; denotes a band matrix
which may be identified with the stiffness matrix of the body ;. We assume that K is
positive definite. Let us denote by f the vector of nodal forces.

Let us now assume that the shape of the first region Q; depends on a vector of design
variables «, so that the energy functional will have the form

J(u,a) = %UTK(O/)U —t(a)u (1)

where the stiffness matrix K(«) and possibly the vector of nodal forces f(a) depend on a.
The matrix N and the vector ¢ that describe the linearized incremental condition of non-
interpenetration also depend on a, so that the solution u(«a) of the contact problem with the
region €1 = Q1 («) satisfies

u(a) = argmin J(u,a) : u € C(a), (2)
where

C(a) ={u:N(a)u < c(a)}.
More details about formulation and discretization of contact problems may be found in
Kikuchi and Oden [KO88] or Hlav4cek at al [HHNLSS].
We shall consider the contact shape optimization problem to find

min{j(o/) T € Dadm} (3)

where J(a) is the cost functional that derives optimality criterion for design of body €1 (a).
The set of admissible design variables D4, defines all feasible designs. For example, if
the cost functional is defined by J(a) = J(u,a), then the minimal compliance problem is
obtained. Set of admissible design parameters could be given by

Doyam = {l < a < r:vol(Q(a)) < vol(©(0))} (4)

It has been proved that the minimal compliance problem has at least one solution and that
the functional J(u,«) considered as a function of a has derivatives under natural assumption

[HN96].
Duality-based sensitivity analysis

The goal of the sensitivity analysis is to find the influence of design change to the solution
of state problem and to the value of the cost function. It means, that we are looking for the



578 varT VONDRAK7 ZDENE K DOSTAL7 AND RASMUSSEN

directional derivative of solution of the state problem

u'(o, 8) = lim w

t—0+ t

(5)

where 3 denotes direction of this directional derivative which is substituted during
computation by vectors Ao = (0,...,0, Aa;,0, ..., O)T forz =1,...,k, where k is the number
of design variables that control the design of bodies.

The simplest method for computation of this derivative is to use the overall forward finite
difference approximation Au/Aa; to the design sensitivity du/da; that is given by

ou(a)  Aju(a)  ular,...,ai+ Aai,...,ar) —ular, ..., ak) ()
Oo; - Aa; - Aa;

It follows that the overall finite difference method for evaluation of the gradient of u as a
function of the design variables « requires k + 1 solutions of (2). An unpleasant complication
is that the Hessian of the quadratic form (1) is different for each auxiliary problem so that
we have to carry out k + 1 times the decomposition of the block K4 that corresponds to the
body whose shape is to be computed.

This drawback may be removed by extending the analytic or semianalytic method of
sensitivity analysis for problems with state equality [O1.94] in contact problems [HN96]. In
the rest of this section, the semianalytic aproach will be described.

The Lagrange function of the problem (2) has the form

L(u,x,a) = %uTK(oz)u —t"(a)u+x" (N(a)u — ¢(a)) (7)

where u and x also depend on the vector of design variables a. For the problem (2) we can
prescribe Karush-Kuhn-Tucker conditions in following terms

K(a)u =f(a) - N7 (a)x
N(a)u—c<o
A>o (8)

Let the set I = {i: nix(@)u = ci(a)} denote set of indices of nodal variables in contact, let
nix (@) denote the i*" row of matrix N(«) from the problem (2) and let vector u denote
solution of the state problem (2). Further, for analysis of all contact cases we divide the set
I to the two sets

I,={i:ielAx >0}
Iy={i:1€lAx; =0} (9)

where [, is the set of indices of nodal variables in, so called, strong contact, /., is the set of
indices in weak contact and x is the solution of the dual formulation of the state problem
(2). After formal differentiation of conditions (8) and after some simplification we obtain the
new problem

it M) "
where
H(f!,ﬂ) = ;_ZTK(O[)Z - ZT (f’((y7ﬁ) - Kl(()z7ﬁ)ll - NlT(O{7ﬁ)x)
G(a,B) = {z :nyu(a)z < f'(a, 8) — nju(a,B)u for j€ I,

nj.(e)z =f'(e, ) — nju (e, B)u for je L} (11)
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Symbols K'(«, 8), f'(«, 8) and N'(«, 8) represent directional derivatives in direction 8 that
have the same definition as u'(a,). At this place it is important to notice that these
derivatives can be simply evaluated. It has been proved [HN96] that the solution of this
problem is the directional derivative u’(a, 3) of solution of problem (2).

Let us make some notifications for simplifying the problem (10)

f(a,8) =1'(a,8) — K'(o, B)u —= N'" (o, B)x
Nu(a) = (nyu());er, cw(a,B) = (f'(a, 8) — njy(ax, B)u)
N.(a) = (njx(a)),e;, c.(@,8) = (f'(a, 8) — nfu(a, B)u)

J€ETw

JEIs

where N,,(a),N,(a) are matrices that decompose the original matrix N(a) of contact
conditions from problem (2) and ¢ (e, 3),¢s(c, 3) are vectors of dimensions corresponding
to number of rows of matrices N, (a),N.(a). Then, we can rewrite problem (10) in the form

min (e, ) (12)
)
where
H(a,B) = %ZTK(Q)Z—%T(Q,;;)Z

é(oz,ﬂ) = {z:Ny(a)z <cuw(a,B),Ny(a)z = c(a,8)}
It is easy to see that the last problem is again a quadratic programming problem with linear
constraints in the form of equalities and inequalities. Using the theory of duality, we can
convert our problem to the following problem

®(A) > min  subject to A>o,MA=d (13)

where
(N) = %)\TNw(oz)K_l(oz)Ng(oz))\ — AT (Nu(a)K ™ (@)t (o, B) — cu(er, B))

and
M = N,(o)K™ ' (@)NI(a),d = Ny (a)K™ (o)t (o, B) — cs(a, B)

Finally, the derivative u’(a, 8) can be obtained from equation
ul(oz,ﬂ) = K_l((.v) (f(a,[j) - NZ((J))\) .

The dual problem (13) with simple inequality constraint and linear equality constraint is
efficiently solvable by the algorithm using the augmented Lagrangians with adaptive precision
control described by Dostal, Friedlander and Santos in [ZAS96]. Thus the semi-analytic
method for sensitivity analysis requires solution of k& quadratic programming problems (13)
with the same matrix

K™ '(a) = diag (Kl_l(oz), ...,Kp_l(oz)) .

Using this method we exploit not only the advantages of dual formulation of quadratic
programming problems, but we can use the decomposition of matrix K(a) from the solution
of the state problem to the sequence of problems in the semi-analytic sensitivity analysis.
Thus the semi-analytic approach requires only one decomposition of the stiffness matrix
which compares favorably with k41 decompositions of the overall finite difference approach.

The directional derivatives obtained by the sensitivity analysis can then be exploited for
shape optimization. We use sequential linearization in our experiments. More discussion about
the outer minimization procedure may be found in Kirsch [Kir94] or Fancello and Feijéo

[FF94].
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Numerical experiments

We have tested our algorithm on the solution of a simple model problem. The problem was
to find the shape of the lower part of the upper body of the system of elastic bodies in
Figure 1 so that the compliance of the system is minimal while the volume of the modified
upper body does not exceed the volume of the body in the original design. The system has
been discretized by the finite element method, so that the discretized system had 1600 nodal
variables with possibly 41 nodes in contact. The latter number is the number of dual variables.
The Poisson ratio of both bodies was 0.3, the Young modulus of the upper and the lower body
was 210000MPa and 100000MPa, respectively. The distributed force with density -1000MPa
was acting on the upper surface of the upper body. The bodies were fixed on the right, while
zero normal displacements were prescribed on the left and on the bottom of the lower body.
It was also required that the bodies do not penetrate in the reference configuration. The
design is controlled by vertical movement of six points that are uniformly distributed on the
lower boundary of the upper body.

ODESSY

Name: cont2

Date: May 20 1998 14:14

von Mses Stress

. 238E+004
114E+004
904E+003

666E+003
428E+003
190E+003

952E+003

714E+003

476E+003

238E+003

OodfaEEEns

RN A O N ® O R R

122E-007

Figure 1 Model problem

The algorithm has been included in the system ODESSY with the overall finite difference
sensitivity analysis and sequential linear programming. The performance of the algorithm
is given in Table 1 and the final design is depicted in Figure 2. The distribution of the
contact pressure is nearly uniform as expected. We explain small variations of the contact
stresses by the imposed condition of non-interpenetration in the reference configuration. The
computations were carried out on one processor of an IBM SP/2.
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ODESSY

Name: cont2

Date: May 20 1998 14:08

von Mses Stress

5. 936E+003
5. 342E+003
4. 7T49E+003
4. 155E+003
3. 561E+003
2. 968E+003
2. 374E+003
1. 781E+003
1. 187E+003
5. 936E+002
6. 026E- 007

EEEREEOCO0

Figure 2 Optimized design

Table 1 Performance in cg iterations and seconds
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Comments and conclusions

A new duality-based method of solution of strictly convex quadratic programming problems
has been applied to the minimization of the compliance of a system of elastic bodies.
Theoretical results [ZAS98] guarantee the convergence and the robustness of the method.
The method has been applied to minimization of compliance of a system of elastic bodies
and the efficiency of the method has been confirmed by results of a numerical experiment.
The method may be extended to the solution of problems with friction [DV97b, DV97a]
and to the solution of semicoercive problems [ZAS96, ZAS98]. The implementation of the
algorithm to the solution of these problems is in progress together with implementation of
the semianalytic method of sensitivity analysis and a more sophisticated outer minimization
procedure. The salient feature of the algorithms presented is essentially the reduction in
the cost of decomposition in preparing domain decomposition based solutions for the state
variational inequality that is enabled by the special structure of the problem considered. The
algorithm may be more efficient in a parallel environment.
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