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Parallel Domain Decomposition for
Reaction-Diffusion Problems

N. VOLFOVSKY ', M. BERCOVIER *

INTRODUCTION

A parallel domain decomposition technique has been applied to construct a solution of 3d non
linear reaction-diffusion problems arising in the mathematical modeling of calcium dynamic
in neurons. The present method defines the domain decomposition iterations not at each
time step of computation but at automatically determined common times for updating the
individual subdomains boundary conditions. This method uses over-lapping not necessarily
"mesh consistent” geometries. Thus such an approach provides both different space and
different time resolution on each subdomain.

The first extension of the classical Schwarz alternative algorithm to a class of parabolic
equations appeared in the paper of [Lio88, Lio&9]. The basic idea is to divide the domain into
several overlapping subdomains and then to solve the parabolic problem in each subdomain
alternatively with boundary information from the neighboring subdomains.

There are basically two approaches for which a domain decomposition method can be used
to solve a nonlinear problem. The first approach is to locally linearize the nonlinear equation
and then to solve the resulting linearized problems at each nonlinear iteration by a domain
decomposition method. The second approach is to use domain decomposition, such as the
Schwarz alternating method, directly on the nonlinear problems. In this case, a number of
smaller nonlinear problems need to be solved in each domain decomposition iteration. In
this paper we focus on the last approach. Inside each subdomain we used the standard FEM
package, FIDAP 7. 5 [Eng96] which was modified for PVM [Gei94] parallelization [ Ah96] and

was supplemented by the options of time management introduced in [Ber97]. Convergence
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analysis of the algorithm is based on the convergence theorem [Ran93] and was presented in
[Ber97]. The computations were performed on the SP2 machine of High Power Computing
Center of Israel.

The parallel implementation of the algorithms greatly reduces the computational time.
However the problems of load balancing and synchronization in solving complex nonlinear
problems on separate domains become dominant through the inter-processor communication.
The present domain decomposition method concentrates on the time step management.

Numerical tests of the algorithm have been undertaken. It took several days to calculate
the general problem described here without parallel domain decomposition on an Indy SGI
workstation. Parallel computations on a SP2 machine gave us the results in hours. The
algorithm presented here is fully parallel relative to the number of domains, that is the total
solution time is the same for 4 domains on 4 processors as it is for 32 domains on 32 processors.

THE MODEL PROBLEM

Consider a bounded domain, Q of R? with the boundary 9. Then, the full problem to be

solved is the following : Find u; (i =1,..n), real valued functions, defined on Q and satisfying

Orur — Auwp=0ifi in Qx(0,7]
Oufi =" _ (=Amwitim + pmuim) in Qx (0,7]

Opur =g on 9Q x (0,1] (1)
Urli=0 = uge  in  Q

where u; is the concentration of the I-th component of the system, v, is the corresponding
diffusion coefficient, where 9; fi denotes its reaction with the rest of the system, and where
Aitm and pi., are the rate constants and ui,, is the binding complex of components ! and m .

GENERAL ALGORITHM

We consider the domain decomposition of the parent domain 2 into M subdomains ({;}74,)
in such a way that each pair of adjacent subdomains sharing a common boarder will have a
non-empty interior intersection. Thus,

a=U0

Tz (2)

LN A0 = UuNQ; #0 forall 1#j

where Q; C R® is the i-th open subdomain with the boundary 9€;. The steps followed to
define the domain decomposition scheme are as follows

Step 1: Imitialization and definitions

o set dt; the time step associated with the various reactions in the ¢ th subdomain.
Note that this ” internal ” time step can vary from subdomain to subdomain.

e set 1" - the global time over all subdomains and let d1, = Th4+1 — In be the
time step for updating the information between the subdomains.

o set u;(0) =up in €

e let k be the current number of the domain decomposition iterations

e let j be the current number of of the internal iterations on each subdomain.
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Step 2: Domain-decomposition iteration

o for k,n solve M subproblems:
Find u¥, a real valued functions, defined on €; and satisfying :

Ol —vi AU =08,/ In Qx (T, Trugr]

Onuf =g; on (8 NANY x (T, Try1] (3)
Opul =uk on (89,\00) x (1, Ths1],

where
uzl_l on d;NQ,;N [U]#iyjl QJCI] forall j #:
k My on 99 Ny, Ny, N[Ujzig o Q5] for all _
up =9 . . (4)
- NnF#FRFEL
-1
Ui iy, on N NQNn...NQ,, .,
and ufl_ljm (m < M —1) is selected to satisfy [\4in(ufl_1, . ufyzl) < u?l_ljm <
Maz(uj,,... uf;l)

e a segregated algorithm [Eng96] is used to solve these problems; internal
iterations for the current local time step of the implicit Euler integration scheme
are stopped when the following convergence criterion is satisfied

k(541 K
I ut_(J )_ui(J) I . 5)
k —= “
[
where uf(J) is the solution of subprocess 7 at domain decomposition iteration k

at iteration j of the segregated algorithm, and ¢; is the tolerance for subdomain
computations.

o management of time steps
if the convergence ( 5) is not attained then

(i) the solution restarts with the smallest dt; obtained on the current local
step, these dt; being estimated directly in FIDAP.

(i1) if (i) is not sufficient for convergence, the solution restarts from the last
global time step T,, with a decreased dt;;

(iii) if (i1) does not converge, the solution restart s from the same global time
step Ty, but with a decreased global time step d7T,, < T —T,.

Step 3: Global convergence

e the domain decomposition iterations are stopped when the following
convergence criterion is met in all subdomains

[[uf —ui™" |

Rz

where er is the selected tolerance

Ser (6)

o management of time step
if criterion ( 6) is not satisfied then
(i) the solution restarts from the last global time step 75 but with the last

evaluated internal boundaries conditions ( uf)

(i) if the number of iteration exceeds the limit, the solution restarts from the
last global time step 15, with a decreased global time step d75.
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Figure 1 Fragment of the dendrite with eight spines

MODEL OF Ca** DYNAMICS IN THE DENDRITIC SPINES

The reaction-diffusion problem of Ca?t dynamic in the dendritic spines includes the following
processes associated with Ca®t distribution [Gam87, Hol90] : 1) diffusion; 2) Ca** buffering,
3) Ca’t influx and 4) Ca®* extrusion.

1) The diffusion and 2) Ca®* buffering is modeled by

8¢ = DAC—k+C-B+k-(BO) @
98 — _ 259 — . C.B+k_(BC)

at at

where D is the Ca?t diffusion coefficient, C is the Ca?t concentration, B is the free buffer
and BCis the Ca*t bounded buffer. ky and k_ denote the binding and dissociation rate
constants, respectively ( for parameter values see Table 1).

Boundary conditions of the problem are determined by the following equations; a
description of the physical context and real values of the parameters are given in the
Appendix.

3) Ca®tinflux

. — . _ @3
T (e ) ®)
4) Ca®t extrusion
_B-C
‘]P |F_ C +ﬁ2 (9)

where I' is the spine surface, ['i» is the surface of head of spine.

NUMERICAL TESTS

The numerical example represents a three dimensional model of second-messenger dynamics
in the dendrite (Figure 1) . The physical domain is a long wide cylinder with any number of
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TEST 1

Number of degrees of freedom 12 804
per domain _
Number of Basic domain
domains
10 User time System time 32
Ed 143 880 sec 39180 sec
16
Ed 60 480 sec 17 340 sec
Ed 27 960 sec 9 060 sec
8
Ed 11 400 sec 9000 sec

Figure 2 TEST1: A reaction-diffusion problem was solved for a domain with

4, 8, 16, and 32 spines. The DD algorithm was applied for partitions on 4, 8, 16,
and 32 domains. TEST?2: A reaction-diffusion problem was solved for a domain
with 32 spines. The DD algorithm was applied for partitions on 32, 16, and 8

domains

spines. Fach spine is the union of a thin cylinder and a ball.
To implement the proposed Domain Decomposition (DD) algorithm, the initial dendritic
domain was divided in basic ones, describing a spine head and a fragment of the dendrite.

The numerical tests concerned the numerical efficiency of the present algorithm as well as
an original 3d model of Ca®t dynamics in the dendrite. To evaluate the parallel properties
of the DD algorithm two different tests were performed and the following computational
parameters were discussed: real time of computations, user time - total time of the
computation and the system time, which is the communications and 1/O time.

First, problems of different sizes were considered. Fragments of dendrite with 4, 8, 16, and
32 spines were divided in 4, 8, 16, and 32 unitary subdomains respectively. Results of the first
series of the tests are presented in Figure 2. This indicates that, as expected, an increase in
the number of unitary domains (Test1) leads to a proportional increase in user and system
time of the simulation , but the "real time” i.e. the actual clock time a user has to wait for
an answer is growing significantly less than the computer resources usage.

In the second series of computations a domain with 32 spines (Figure 2) was studied. Three
cases of partition were selected on 32, 16, and 8 subdomains, each with one, 2 and 4 spines
correspondingly. For all simulations , convergence was defined by requiring that er = 1077,

The second test is significantly different than the first one. Real time of simulation declined
proportionally to the increase in the number of subdomains. User time increased with the
largest number of subdomains. However, relative changes are small. In these tests, unlike the
first ones, the system time decreased with the number of subdomains, which suggests that
this parameter is insensitive to the size of the problem on each CPU.
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Figure 3 Interaction of the spines with different activation protocol; line a.
denotes distribution of calcium in the stimulated spine, lines b1, ba denote
distribution of calcium in the instimulated spines (distance between spines

0.65pum) and lines ¢1, ¢ -the same but with a distance of 0.95um between the

spines

A specific characteristic of the DD algorithm presented here is that it accepts different time
steps on separate subdomains, such as in the problem of chemical interactions of dendritic
spines with different activation protocols. The results of simulations are shown on Figure 3.

The dynamics of calcium (Ca®t) was monitored in a spine which was not stimulated at all
and only two neighbors were stimulated (an index 1 denotes a spine whose two neighbors are
stimulated and an index 2 when only one neighbor is stimulated.) Five depolarizing pulses
of 5msec were given at 100 Hz. The accumulation of Ca** in nonstimulated spines shows
interspine interaction, which is one of experimentally unsolved problems of Ca?* dynamics
in neurons. As expected this interaction is more profound at the high density of 0.65 um
interval between spines ( b; and bg). At the lower density of 0.95 4 m ( ¢; and c2) interval
the interaction is less profound, but clearly apparent.

The main conclusions of this interdisciplinary research are : (1) the present DD algorithm
is fully parallel relative to the number of domains and (2) parallel domain decomposition
methods provide an efficient procedure for solution of reaction-diffusion problems arising in
the modeling of complex biological systems.

APPENDIX

Boundary conditions and description of parameters.

Boundary conditions are determined by the influx equation on the spine head boundary
and extrusion equation on the all boundary of the spine.

The Ca®t fluz through voltage dependent channels situated in the membrane of the spine
head and dendrite is described by

RT Cout
Jin |70 = Gmaz - [V — ﬁl”(m)] (10)
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where [';;, is the segment of the membrane on the spines head and on the dendrite which
include voltage-dependent channels, V' is the membrane potential, C,y,; is the extracellular
concentration of Ca*t, g,... is the maximal conductance, R is the gas constant, T is the
absolute temperature (in degrees Kelvin), Z is the valence of Ca®*, F is the Faraday constant,
and C(t) is the concentration of intracellular Ca®T beneath the head membrane at time t.
The Ca®* extrusion which is conducted by pumps located throughout the entire spine
membrane is given by
z, - C

. (11)

JIp |F=

where T' is the spine surface.

Table 1 Parameters of the model

Parameter Description Value
D Diffusion coefficient 4 -10~°% cm?s™!

Co Initial concentration of Ca®*t 0.06 uM

B.o Initial concentration of calcineurin 10 pM

Beno Initial concentration of calmodulin 25 uM

kery on rate constant of calcineurin 50 /JM_1S_1

ke off rate constant of calcineurin 25 571

kent on rate constant of calmodulin 50 uM~1s1

kep— off rate constant of calmodulin 500 s~

z, maximal rate of extrusion 15 uMs!

ky, half saturation constant 0.9 uM
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