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Scalability and load imbalance for
domain decomposition based
transport

P. Wilders!

Introduction

Transport phenomena play an important role in reservoir engineering and surface or
subsurface environmental studies. From the application viewpoint, there is a need to
resolve large computational models with fine grids (for example, to study fingering).
Scaled distributed computations are useful at this point and, as a consequence,
scalability is of some concern in this field. We study a simple 2D tracer flow in a
porous medium in order to reveal some basic properties at this point.

The domain decomposition method under consideration is a one-level Krylov-Schwarz
method, formulated in terms of interface variables [BW97], [WB99]. This method is
combined with ILU-preconditioned BICGSTAB for the subdomain inversion. For the
parallel implementation the focus is on distributed MIMD platforms with explicit
parallel programming and a gather/scatter as the basic communication scheme. The
parallel performance is studied, both analytically and experimentally on an TBM-
SP2. Tt is shown that load balancing effects are of major importance and the impact
of this observation on the scalability will be examined. Related studies on parallel
performance modelling of domain decomposition methods have been undertaken in
[GK89], [HZ93], [CS95], [BSK95]. In these studies load balancing effects are either

absent or have assumed to be absent.
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Following [HZ93], [CSSY94], our study deals with relative measures (relative efficiency,
overhead) and concerns, speaking in terms of [Qui94], the parallelizability. This can
be seen as a basic step in a full parallel performance analysis. The absolute efficiency
may be written as a product of the numerical efficiency and the relative (or parallel)
efficiency. This enables a separate study of the two. Of course, the application of
one-level methods leads to a numerical efficiency that does not scale perfectly, e.g.
[AN95], and in some cases degradation occurs. However, for linearly scaled transport
problems the degradation at this point has been found to be moderate [Cai91], [WF98§].
Moreover, it is known that in a two-level method the coarse grid correction leads to a
significant degradation of the parallel efficiency, e.g. [HZ93].

Physical and numerical issues

We consider a scalar conservation law of the form

e
ot

In this paper only tracer flows are considered. The coefficients ¢, v and D are

+ V. [vf(c)=DVel=0 , xeQeR* , t>0 . (1)

assumed to be time-independent and f(c) = ¢. Our interests are on the advection-
dominated case, i.e. the diffusion tensor D depends on small parameters. For the
spatial discretization we employ cell-centered triangular finite volumes, based upon a
10-point molecule [WF97]. This results in the semi-discrete system
de

LEIF(C,X) , (2)
for the centroid values of the concentration. I i1s a diagonal matrix, containing the
cell values of the coefficient ¢ multiplied with the area of the cell. Moreover, F is a
nonlinear differentiable function of ¢. We set

OF
T=5 (3)

The Jacobian J represents a sparse matrix with a maximum of 10 nonzero elements
in each row.

The linearly implicit trapezoidal rule is used for the time integration:

L 1 L 1

—_ __gn n+1:___Jn n Fnoo 4
(2= gt = (L= Lmer (4
Here, 7, denotes the time step. The scheme is second-order accurate in time.

The linear system (4) is solved iteratively by means of a one-level Krylov-
Schwarz domain decomposition method, in our case a straightforward nonoverlapping
additive Schwarz preconditioner with GMRES as the Krylov subspace method. ILU-
preconditioned BiCGSTAB is used for the approximate inversion of the subdomain
problems.

Experimental studies have been conducted for tracer flows in reservoirs. The velocity v
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is obtained from the pressure equation, using strongly heterogeneous permeability data
provided by Agip S.p.A (Italian oil company). In this paper we consider the quarter
of five spots, a well-known test problem for porous medium applications. A fully
balanced blockwise decomposition into () subdomains is introduced. The total number
of unknows is N. Extensive data with regard to timing and parallel performance (on
a SP2) are available for linearly scaled problems, i.e. N = No@Q (with Ny = 3200)
and @ = 4,9,16. As soon as N varies, either in the analysis or in experiments, it
is important to take application parameters into account [SHG93]. From the theory
of hyperbolic difference schemes it is known that the Courant number is the vital
similarity parameter. Therefore, we fix the Courant number. This means that both
the spatial grid size A (N = O(1/h?)) and the time step 7 vary with 7/h constant.
For linearly scaled problems this results in h, H, 7 = O(1/+/Q) with H measuring the
subdomain size.

Timing and load imbalance

The computational domain has been divided into ) subdomains. Most of the
computation within subdomain ¢ can be done independently of the other subdomains;
this part of the computation is referred to as subtask q. The subtasks may be executed
in parallel. The computation is divided into (p 4+ 1) tasks, numbered j=0,...,p. Task
0 is the sequential task and the tasks 1,...,p are the distributed tasks. Q(j) of the
subtasks are assigned to the distributed task j. We distinguish p processes. Task 0
and task 1 are taken together to form process 1. For j > 1, process j is identical to
task j. Each process is executed on its own processor. The processes are connected via
explicit parallel programming, using message passing.

Our concern is on the computational heart of the code, i.e. the time stepping loop.
For the ease of presentation we consider a single time step. There are three phases in
the program, i.e. communication and computation either as a part of the sequential
task 0 or as a part of the distributed tasks 1,...,p. In this paper we consider the
fully synchronized case only. The different processes are synchronized explicitly each
time the program switches between two of these three phases. The elapsed time in a
synchronized p processor run is denoted with 7},. It follows that

T, =TW + T + ) (5)

with 7®) the computational time spent in the sequential task 0, Tp(d) the maximal time

spent in the distributed tasks and Tp(c) the communication time. Of course, Tl(c) =0.

Let us define » _
Ti(p) =T +pT{? . (6)
For p = 1, there holds Ti(p) = Ti. For p > 1, Ti(p) is the elapsed time of a single
processor shadow run, carrying out all tasks in serial, while forcing the distributed
tasks to consume the same amount of time. It is clear that 73 (p) — 71 presents a
measure of idleness in the parallel run due to load balancing effects. Tt easily follows
that
Tp) - T =1 -1 . (7)
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Figure 1 Overhead O, and its components OS) , O,(,p).

Performance measures; factorization and approximation

The (relative) efficiency E,, the (relative) costs C, and the (relative) overhead O, are
defined by
T 1 T
Ep=— , Cob=—=="L | 0,=C,—1 . 8

P pr p Ep T1 p P ( )
Note that in (8) we compare the parallel execution of the algorithm (solving a multi-
domain problem with () subdomains) with the serial execution of the same algorithm
(relative).

We introduce the following factorization of the costs Cjp:

C, = C}EI)C;EP) , C}gl) -1+ O}()l) ’ Cz()P) =14+ O}()P) J (9)
where
y _TNilp) - Th y _ T = Ti(p)
oW = L7 -1 , o) = £2p — 2 1\7) 10
P T P 71 (p) (10)

It follows that
0, =00 + 0% + 0Wolr . (11)

(p)

The term Ol(,l) is associated with load balancing effects. Op"’ is referred to as the

(p)

parallel overhead. Oy’ combines sequential overhead and communication costs. Figure

1 presents the overhead O, and its components 0,8”,0&’) such as measured in the
linearly scaled experiments, mentioned in Section 54. The importance of load balancing
effects can be observed. Let us introduce

d d
50 — T =1

0 o (12)
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From (7), (10) it follows that

o -0 __ __19 (13
oy |

Here, € measures the fraction of the work done in the sequential task and this fraction

(1)

is small (< 1% in our experiments). Therefore, we expect 6p to present a good

(1)

approximation of Op”.

Performance model for a square domain

As before, a fully balanced blockwise decomposition of the square domain into @
subdomains is employed; the total number of unknowns is N, N/@Q per subdomain.
The total number of edges on internal boundaries is B, on the average B/@Q per
subdomain. The number of interface variables depends linearly on B. B is given by

B=V8N(/Q-1) . (14)

We assume that either p = 1, i.e. a serial execution of all subtasks, or p = @, i.e. the
subtasks coincide with the distributed tasks. In first approximation there holds

=T —Ozl—-I-M Ozg——l—Ozg—[) s 15)
Q P Q ( Q Q P ( )
with
, X8
M > Q > I(m, q) , p=1
[p — m];l g=1 (16)
ar > max I(m.q) , p=Q
m=1 q=1,...,Q ’
Here, m = 1, ..., M counts the number of matrix-vector multiplications in the domain

decomposition iteration (outer iteration) and I(m,q) denotes the number of matvec
calls associated with the inner iteration in subdomain ¢ for the m-th outer matvec
call. The first term on the rhs of (15) corresponds with building processes (subdomain
matrix, etc.). The third term on the rhs of (15) reflects the inner iteration and the
second term is due to correcting the subdomain rhs.

A least-squares estimation of the coefficients in (15) has been carried out, using the
linearly scaled experiments mentioned in Section 54 (six measurements available for

fitting (15)). This leads to
a1 =.72%107% | as=59%10"% | as=.26%10"° . (17)

Using (12), (15), it is now straightforward to obtain the analytical approximation 61(,1)
of the overhead function 01(71):

6(l) _ OZSNM([p — [1)

= 1
P alN+M(QQB+a3[1) ( 8)
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This shows that the load imbalance is due to variations of the number of BICGSTAB
iterations over the subdomains. The load balancing effects seems to be that strong,
because we are dealing with an advection-dominated transport problem in which a
front, connecting two constants states, is moving through the domain. This means
that there are subdomains in which the solution is constant and little happens, besides
subdomains close to the front with a lot of activity.

We set

n

1
Dev:gz

i=1

O\;gl) . OI()I)
O(l)

P

«100% | (19)

with n denoting the number of measurements for OZ(,l)(n =3, p=0Q =4,9,16). It is

found that Dev = 5.8, showing that the analytical approximation is quite reliable.

Scalability

Using the isoefficiency metric a parallel algorithm is called scalable if it is possible to
find curves in the (p, N)-plane on which the efficiency F,, is constant [GK93], [CSSY94].

A sufficient condition for the existence of isoefficiency curves is

lim F, >0 or lim Op,<oco . (20)
Nooo Nooo :
p fixed p fixed

The condition regarding the overhead function is equivalent with (see (11))

lim OI()I) <oco , lim Oép) < oo . (21)
N—ooo N—ooo
p fixed p fixed

A discussion of the second limit in (21) is beyond the scope of the present paper.
We only remark that numerical experiments indicate that OZ(,p) approaches zero in the
limit.

In Section 54 an analytical approximation of OZ(,I) for square domain has been given
together with arguments showing that this approximation is valuable, at least for
linearly scaled problems. Here, we use this approximation to investigate the limiting

process in (21). From (14), (18) it follows that

61(1) ~hF, , N —oo, pfixed (22)

with I L
Fl=—"' P — 23
! S+ ML ? L (23)

Note that (17) leads to a1/as ~ 28.

The numbers Fy and F5 have been computed, as an average over multiple time steps,
for p = @ = 4 (4 subdomains) and N = 3200, 12800, 51200. Table 1 presents all

relevant information (note that these data can be obtained from a serial run). The
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Table 1 Iterative properties for 4 subdomains (p = Q@ = 4) and Fi F», the
approximation of load imbalance.

N M L I, B B R

3200 11.2 58 7.0 .70 .21 15
12800 115 6.2 80 .72 .29 21
51200 12.0 6.8 86 .74 .26 19

data in Table 1 indicate that the parallel algorithm meets the first condition of (21).
However, the overhead due to load balancing effects does not approach zero in the
limit and some degradation of the efficiency has to be accepted. The values found for
F1Fyin Table 1 are in agreement with some early experiments done on a SP2. In fact,
these experiments gave O, = .18,.19, .20 for, respectively, N = 3200, 12800, 51200.

Concluding remarks

We have presented a parallel performance model for domain decomposition based
transport. The model was used to investigate load balancing effects. Load imbalance
due to variable iterative properties of the inner iteration over the subdomains presents
a major factor. The analysis shows that load imbalance excludes efficiencies close to
one. However, it was observed that load balancing effects do not prevent scalability
in the isoefficiency metric. Experimental results indicate that isoefficiency curves with
an efficiency around 0.8 exist.

The values of M, Iy and I, found in Table 1 indicate that the iterative procedures
depend only weakly on the mesh size h for a fixed number of subdomains. With regards
to the domain decomposition iteration a similar observation was done in [BW97]. A
further study of the iterative procedures is necessary in order to present theoretical
arguments for this behaviour.
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