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Some Local and Parallel Properties
of Finite Element Discretizations

Jinchao Xu', Aihui Zhou?

Introduction

This paper is devoted to the study of some local and parallel properties of finite
elements for elliptic boundary value problems of second order. Several local and
parallel algorithms are proposed and analyzed by means of two-grid discretizations.
The algorithms are motivated from the observation that, for a solution to some elliptic
problems, low frequency components can be approximated well by a relatively coarse
grid and high frequency components can be computed on a fine grid by some local
and parallel procedure. One major technical tool for the analysis is some sharp local
a priori estimates for finite element solutions on general shape-regular grids.

This paper can be considered as a sequel of our earlier paper [XZ98] on a similar
topic. While in [XZ98] we studied our methods for a rather general class of model
partial differential equations, in this paper we focus our attention on a rather specific
case, namely, Neumann boundary value problems on a smooth domain and as a result
we obtain some better error estimates for higher order elements.
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Preliminaries

Let Q be a bounded smooth domain in R¥(d > 1). We will use the standard notation
for Sobolev spaces W*P(Q) and their associated norms and seminorms, see e.g.
[Ada75, CL91]. For p = 2, we denote H*(Q) = WS’Q(Q), [| s, 0 = |l - ||s,2,0 and
[|“lla =1 lo,2,e. ( In some places of this paper, || - ||s,2, should be viewed as defined
piecewise if it is necessary.) For D C G C Q, we use the notation D CC G to mean
that dist(9 D\ 9Q, G\ 9) > 0. In this paper, we will use the letter C (with or without
subscripts) to denote a generic positive constant which may stand for different values

at its different occurrences. Following [Xu92a], A < B means that A < C'B for some

constant C' 1s independent of mesh parameters.

Finite element spaces

Assume that 7" (Q) = {r} is a mesh of Q with mesh-size function h(z) whose value is
the diameter h; of the element 7 containing z. Let h, = maxzeq h(z) be the (largest)
mesh size of T"(Q). Sometimes, when it is clear from the context, we will drop the
subscript in h, and use h for the mesh size on a domain. One basic assumption on
the mesh is that it is not exceedingly over-refined locally:

A.0. There exists ¥ > 1 such that

hl Sh(z), ze€ Q.

Associated with a mesh 7% (Q), let S*(Q) C H(R) be a finite dimensional subspace
on Q. Given G C Q, we define S"(G) and T"(G) to be the restriction of S (Q) and
T"(Q) to G, respectively, and

SHG) = {v e S"(Q) :supp v CC G}.

For any G C Q mentioned here, we assume that it aligns with 7% (Q) when it is
necessary. We now state our basic assumptions on the finite element spaces.
A.1. Approzimation. There exists r > 1 such that for w € H'(Q),

(7 w =)lloa+ w=vlh.a) £ B wlhgsn, 0S5

A.2. Inverse Estimate. For any v € S"(Q),
[vlli,0 S 1A~ vllo, and [lvlloa S 1A~ vl|-s 0.

A.3. Superapprozimation. For G C Qo C Q, let w € C§°(Q2) with supp w CC G.
Then for any w € Sh (G), there is v € Sg (G) such that

b~ ww = v)l,a < w6
The assumptions mentioned above are satisfied by most of the finite element spaces

used in practice when the elements that meet Q2 are curved to fit 9Q exactly. We
refer to [SW77, SW95, Wah91, Wah95, XZ98] for details.
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A model problem
We consider a Neumann boundary value problem

d

_ Z 0 Ou .
LU:—.. 6,13((1”6331)-1_0“ _fJ mn Qa
ij=1""" 5 (1)
u
— = Q.
o 0, on 0

Here ﬁl—“L denotes the co-normal derivative on 92, a;; and ¢ are smooth, and (a;;) is

uniformly positive definite on Q.
The weak form of (1) is as follows: Find u = L™'f € H'(Q) such that

a(u,v) = (f,v), Yo € HY(Q), (2)
where (+,-) = (-, -)q is the standard inner-product of L?(2) and
d Ju Qv
a(u,v) = ag(u,v) = /ﬂ Z_: aija_l‘ia_xj + cuv.
ij=1

Our basic assumption is that (2) is well-posed, namely (2) is uniquely solvable for
any f € H='(Q). Thus, since §Q is smooth, if f € H'=1(Q), then L='f € H"t1(Q).
For u € H'(Q), we define a finite element solution up, : H'(Q) — S"(Q) by

a(up,v) = (f,v), YveS"(Q) (3)
and it 1s well-known that

[unllie S llullie and lu—usll-s0 S S A ulprg, -1 <s<r—1. (4)
Q

Locality of finite element approximations

In this section, we shall study some local properties for finite element discretizations
on general shape regular grids. The results presented here generalize local a priori error
estimates known in literature (cf. [NS74, SW77, SW95, Wah91, Wah95, ZLSLIg]) to
more general finite element meshes, which will play a crucial role in our analysis.

We assume that D CC Qq C © and that 9Qg is smooth. The proof of the following
lemma is similar to a corresponding result in [XZ98] (see also [NS74, SW77, SW95,
Wah91, Wah95]).

Lemma 1. If Assumptions A.0, A.2 and A.3 hold and w € S"(Q) satisfies

a(w,v) =0, Yov e S;(Qo), (5)
then

llwllr,p S llwll-1,00, 1=0,1,2,-- 7= 1. (6)
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Proof. Let p be an integer such that p > vy—1and Q; (j = 1,2, -, p) be subdomains
with smooth boundaries which satisfy

D CC Qopy1 CCT Ny CC--- CC 1 CC Q.

ChoE)se Dy C Q satisfying D CC Dy CC Qgp41 and w € C§°(Q) such that w =1
on Dy and supp w CC Qop41. For any ¢ € HY(D)1 =0,1,---,r = 1), let E¢ be the
universal extension of ¢ on Q and ® = L™1¢. Then ® € H'*%(Q) and

(w,¢)p = (ww, ¢) = a(ww, D).
Note that ||®|[i42,0,,,, S ||¢lli,p and, for any v € S,(_)L (Qap41),
alww, ®) S a(w,w®) + |[wl|-1-1,00p 41 [ Plli+2,22p4:
= a(w,wq) - U) + ||w||_l_]702p+1||¢||l+2702p+17
we get

141

lwll-1,0 S w1100 +hg) | llwll10u4.- (7)

Using [|w|]1 qzp40 S [Jw]]0,00, (see [XZ98]) and taking I = 0, we obtain
llwllo,p < [lw]l-1,0, + b, llw]lo,0s,-
The argument may be repeated for [Jw||q,, on the right to yield
lwl]0,02p 202 S lwll-1,00 + Ao, w000y ;s T =1,2,-+,p.
Thus, we obtain from Assumption A.2 that
llwlle.p < lJwll-1.00 + BEF [lwlo.aq
< lwll-rq + RS IR w210, S flwll-1 00

This proves (5) for [ = 1 (see [XZ98] for | = 0). The argument then proceeds via
induction using (7) to complete the proof.

Theorem 2. If Assumptions A.0, A.1, A.2 and A.3 hold, then

o= wall S | inf (e = vl 4 lu =l ) (3)

Proof. Let Ry, : H'(Q0) — S"(Q0) be the Galerkin-projection defined by
ag,(w— Rpw,v) =0, Ywe HY(Q), Yv € 5" (Qo). (9)

Choose Dy C Q satisfying D CC Dy CC € and w € C§°(£2g) such that w = 1 on Dy,
then for & = wu,

a(Rpt — up,v) =0, VvES,?(Dl).
Thus, Lemma 1 yields

|1Rht — un|li,p S [[Ratt — unll1-rD,.
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Therefore, estimates similar to (4) lead to

llu —unlli,p < |[|@— Ratllr,p +||Rnti — unll1,p

IN

li — Rptll1,p + [|[Rett — un|li—r p, S || — Retilli p, + [lu— unlli—rp,

N

[ — Rniil|1 00 + ||u = unlli—rp, S [Jull1,00 + [|u = vn|l1—rq,

which together with a standard argument produce (8).
Theorem 3. Under the assumption of Theorem 2, there holds

b =l o < (B, + 2l 0. (10)

Local and parallel algorithms

In this section, we shall develop some local and parallel finite element algorithms.
These algorithms are motivated by the local properties of finite element studied in the
previous section. We shall first discuss the local algorithms. The parallelization of the
local algorithms is straightforward.

Let S"(Q) C H'(Q) be a finite element subspace satisfying Assumptions A.1, A.2
and A.3 associated with a grid 7" (Q) which satisfies Assumption A.0. Let uj, € S"(Q)
be the solution of the standard finite element scheme for solving (2). Either locally or
globally, with proper regularity assumption, we have the following error estimate:

[|u — uplls S A"

With this type of error estimates in mind, we will, in the rest of this section, only
compare the approximate solutions of our algorithms with uj instead of the exact
solution u.

Local algorithms

The main idea for the local algorithm is that the more global component of a finite
element solution may be obtained by a relatively coarser grid and, the rest of the
computation can then be localized.

Roughly speaking, the algorithms will sometimes be based on a coarse grid of size
H and a fine grid of size h < H, and sometimes on a grid that is fine in a subdomain
and coarse on the rest of the domain. The fine grid may be defined locally only. In
our analysis, we shall use an auxiliary fine grid, denoted by T"(Q), that is globally
defined and coincide with the local fine grid in the subdomain of interest.

Let TH(Q) be a shape-regular coarse grid, of size H > h, and T"(Qg) an highly
locally refined mesh, where Qg is a slightly larger subdomain with smooth boundary,
containing a subdomain D C Q (namely D CC Qq). More precisely, we let T%(Q)
denote a locally refined shape-regular mesh that may be viewed as being obtained by
refining 77 (Q) locally around the subdomain D in such a way that Tl (Qq) = T" (o).
We are interested in obtaining the approximate solution in the given subdomain D
with an accuracy comparable to that from 7"(Q). We shall propose two different
gridding strategies for obtaining finite element approximations on the subdomain D.
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We denote the corresponding finite element space by S%*(Q) C H!(Q), which satisfies
Assumptions A.1, A.2 and A.3, too.
The first strategy is simply to solve a standard finite element solution in S%"(Q).
Algorithm AO. Find u% € S™"(Q) such that

G(UI;IJU) = (f;v)a Vv € SH’h(Q)

Although this algorithm is still a global algorithm since a global problem is solved,
it is designed to obtain a local approximation in the subdomain /) and it makes use
of a mesh that is much coarser away from D.

We have the following theorem

Theorem 4. If ul; € ST (Q) is obtained by Algorithm A0, then

lun = wirllip S H* [ulr41,0.

Proof. By the definition of Algorithm A0 and our assumption on the auxiliary grid
T"(Q) that coincide with T} (Q) on Qg, we have

a(u'}, —up,v) =0, Vve€ S,?(Qg).

By Lemma 1, we get
[[un = ugll1,p < llun = willi-r

and can then finish the proof.

Our second strategy is an improvement of the first strategy by using a residual-
correction technique as in [Xu92b, Xu94, Xu96]. In this strategy, we first solve a
global problem only on the given coarse grid 77 (Q) and then correct the residual
locally on the fine mesh Th(QO)(: T}_}(Qg)).

A prototype of the local algorithms is as follows.

Algorithm BO.

1. Find a global coarse grid solution ury € S™(Q):
a(ug,v) = (f,v), Yve ST (Q).
2. Find a local fine grid correction ey, € S"(Q):
ag, (en,v) = (f,v)a, — aq,(um,v), Yve S"(Qo).
3. Set u" = up +ep, in Qq.

Theorem 5. If u" € S"(Qq) is obtained by Algorithm B0, then
[un = u"[[1,0 S H” |ulr41,0.
Proof. By the definition of Algorithm B0,

a(uh —up,v) =0, Vve SQ(QU).
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By Lemma 1, we get
llun — uP|l1,0 < " = unllizray < llun — umlliora, + llenlli=ra,-

To estimate |lep||i—rq,, We use the Aubin-Nitsche duality argument. Given any
¢ e Hr_l(Qo), there exist w € Hr+1(Qo) and w € HT‘H(Q) such that

ag, (v, w) = (¢,v)q,, Yv € H'(Q) and a(v,®) = (¢,v)a,, Yv € H'(Q).
One sees that there exist @y € S7 (Q) and wg e sh (Q0) satisfying

a(v, ) = (¢, v)q,, Yv € S7(Q) and [|&—dpll1a < H||6]lr-1,00,

aﬂo(v,wg) = (¢,v)q,, Yv € Sh(QO) and ||Jw — w2||1}90 S AT|6|lr=1,00-
Tt follows that

(en, D), = aqq(en, w) = agqy(en, wg) = ag,(un — um, wg)
= aq,(un —up, wy —w) + alup — g, —dg) S H |lun — uglllléll-1,0,,

which implies [lep||1-r 0, S H"||un — upr||1,0. The desired result then follows.

~

Parallel algorithms

Given an initial coarse triangulation 7 (Q), let us divide Q into a number of disjoint
subdomains Dy, ..., Dy, and we then enlarge each D; to obtain Q; that align with
TH(Q) and have smooth boundaries. The basic idea of our parallel algorithm is very
simple: we just apply the local algorithms in parallel in all ©;’s.

Let us first discuss the parallel version of Algorithm AQ. For each j, we use some
adaptive process to obtain a shape-regular mesh 7;(Q) and the corresponding finite
element solution denoted by u;. We note that each T;(2) has a substantially finer
mesh inside ;. We note that the T;(Q) provide different triangulations for Q and
that they can be very arbitrary; for simplicity of exposition, we assume that each
T;(Q) has the same size h in Q; (more precisely, T;(Q;) = T"(€;)) and has the size
H away from Q;. Let S"i(Q) C H'(Q) be the corresponding finite element spaces.

Algorithm A1.

1. Find uj € S"(Q) (j =1,2,---,m) in parallel:
a(uj,v) = (f,v), YveSh(Q).
2. Setuh =wy, in D; (j=1,2,---,m).

Define a piecewise norm by |||up —u”|||1,0 = (Z;-n:l [|un — uh||%7Dj)1/2. By Theorem
4, we have

llun = u"l[10 S H [ulr41,0 and [[lu—u"[[l1.0 S (B + H)|ul41,0.

We now discuss the parallel version of Algorithm B0. For clarity of exposition, it
appears to be most convenient to discuss this method using two globally defined grids:
an initial coarse grid 77 (Q) and a refinement of 77 (Q), T"(Q) with h < H.

Algorithm B1.
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1. Find a global coarse grid solution ug € SH(Q):
a(ug,v) = (f,v), VYveSH(Q).
2. Find local fine grid corrections e{b € S"(Q;) ( =1,2,-,m) in parallel:
ag,(€),v) = (f,v)a, — aq, (um,v). Yv € S"(Q;),
3. Set u" = uH+€3;, inD; (7=1,2,---,m).

By Theorem 5, we have the following result for this algorithm.
Theorem 6. If u" is the solution obtained by Algorithm B1, then

up — w10 S H* |ul,g1,0 and [[Ju—u"[|l10 < (A" + H*")|ul,41 0.
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We note that the approximations obtained by Algorithms A1l and B1 are defined
piecewise and they are in general discontinuous and, that [|u; — u"||o o does not
in general have higher order than |||u, — u”|||1 . We point out that some further
modifications of these algorithms can achieve: (1) smoothing u” to obtain a global
H'(Q) approximation; (2) improving ||un — u”||o,q to be of higher order, cf. [XZ98].
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