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8. Mesh adaptivity in the mortar finite element
method

by Christine BERNARDI 1, Frédéric HECHT 2

Introduction

The mortar element method [BMP94, BMP93] becomes an important tool for mesh
adaptivity in finite elements. Indeed, completely independent finite element discretiza-
tions can be used on the subdomains of a nonconforming partition of the initial domain
without overlapping. This solves the contradiction between conformity and regularity
and allows for working on a fully adapted mesh with a much smaller number of degrees
of freedom.

In the case of the Laplace equation in a polygon Ω




−∆u = f inΩ,

u = 0 on ∂Ω.
(1)

the a priori analysis of the discrete problem obtained at each step of adaptivity is per-
formed in [BM00], and optimal estimates are proved. The first results of a posteriori
analysis [BOV99, Woh99] required saturation assumptions. However, as explained in
[BH00], these assumptions can be avoided for some appropriate residual type error in-
dicators, and fully optimal estimates are derived for the Laplace equation, in the sense
that the error in the energy norm is equivalent to the Hilbertian sum of error indica-
tors, up to some negligible terms related to the data. We recall these estimates and
prove the efficiency of these error indicators thanks to some numerical experiments.

An outline of this paper is as follows. In the second section, we describe the discrete
problem. Next we introduce the error indicators and recall from [BH00] the results
of a posteriori analysis, which consist of a global upper bound for the error and a
local upper bound for each indicator. In the third section, we describe our adaptivity
algorithm and present some numerical experiments that seem in good coherency with
the previous estimates.

The discrete problem and its error indicators

Let (T 0
h )h0 be a family of “coarse” triangulations of the domain Ω, in the usual sense:

each T 0
h is a finite set of triangles such that Ω is the union of these triangles and the

intersection of two different elements of T 0
h , if not empty, is a vertex or a whole edge

of both of them. As usual, h0 denotes the maximal diameter of the elements of T 0
h .

We make the further assumption that this family is regular, i.e. there exists a positive
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Figure 1: Example of mesh

constant σ such that, for all h0 and for all K in T 0
h , the ratio of the diameter of K to

the diameter of its inscribed circle is smaller than σ.
Starting from this family (T 0

h )h0 , we build iteratively new families of refined trian-
gulations as follows. Assuming that the family (T n−1

h )hn−1 is known, for each value
of the parameter hn−1,
• for arbitrary positive integers 	, we cut some elements of T n−1

h into 22� subtriangles
by iteratively joining the midpoints of the edges of these elements,
• we denote by T n,k

h the set of these triangles which have area equal to 2−2k the area
of the triangle K of T 0

h in which they are contained, and by Kn the largest value of
k such that T n,k

h is not empty,

• we denote by Ωn,k the open subdomain of Ω such that Ω
n,k

is the union of the
triangles of T n,k

h ,
• and we call T n

h the union of the T n,k
h .

Figure 1 illustrates a triangulation T n
h (with Kn = 3). The discretization parameter

δ is now the pair (n, hn), where hn denotes the maximal diameter of the elements of
T n

h .
Next, at each step n, we define the skeleton

Sn =
Kn⋃
k=0

∂Ωn,k \ ∂Ω, (2)

and, as standard in the mortar method [BMP94], we fix a decomposition of it into
disjoint (open) mortars

Sn
=

Mn⋃
m=1

γm and γm ∩ γm′
= ∅, 1 ≤ m < m′ ≤ Mn. (3)

We make the final assumption that each γm, 1 ≤ m ≤ Mn, is a whole edge of a
triangle of one of the triangulations T n,k

h , located on one side of γm, and that, on the
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other side, it is the union of edges of triangles in T n,k1
h ∪ · · · ∪ T n,kp

h , where all ki are
> k. We agree to denote by k(m), k1(m), . . . , kp(m), the corresponding exponents k,
k1, . . . , kp, and by p(m) the number p. We call Em the set of connected components
of γm ∩ ∂Ωn,ki(m), 1 ≤ i ≤ p(m). For simplicity, we assume from now on that there
exists a constant λ independent of δ such that

∀n, sup
1≤m≤Mn

sup
1≤i≤p(m)

ki(m)− k(m) ≤ λ. (4)

We fix an integer 	 ≥ 2 and, with each value of δ, we associate the local discrete
spaces, for 0 ≤ k ≤ Kn,

Xn,k =
{
vk ∈ C0(Ω

n,k
); ∀K ∈ T n,k

h , vk |K ∈ P�(K)
}
, (5)

where P�(K) stands for the space of restrictions to K of polynomials with total degree
≤ 	.

Remark 1 We refer to [BH00] for the analysis of the case of piecewise affine func-
tions (	 = 1), where some restrictions on the decomposition are needed.

Let now γm, 1 ≤ m ≤ Mn, be one of the mortars. With each e in Em, we associate
the space W̃m(e) of continuous functions on e such that their restrictions to each edge
e′ = γm ∩ ∂K for all K in T n,ki(m)

h belongs to P�−1(e′) if e′ contains an endpoint of
e, to P�(e′) if not.

The discrete space Xδ is now defined in the usual way, see [BMP93]. It is the space
of functions vδ such that
• their restrictions to each Ωn,k, 0 ≤ k ≤ Kn, belong to Xn,k,
• they vanish on ∂Ω,
• the following matching condition holds on any γm, 1 ≤ m ≤ Mn,

∀e ∈ Em, ∀χ ∈ W̃m(e),
∫

e

[vδ](τ)χ(τ) dτ = 0, (6)

where [vδ] denotes the jump of vδ through e.

Remark 2 As proposed in the first version of the mortar method [BMP94], some
further matching conditions can be added, more precisely the functions in Xδ can be
enforced to be continuous at the endpoints of all γm. These conditions are satisfied in
the numerical experiments of this paper, but they are not necessary for the analysis.

For fixed data f in L2(Ω), the discrete problem now reads:
Find uδ in Xδ such that

∀vδ ∈ Xδ, aδ(uδ, vδ) =
∫

Ω

f(x)vδ(x) dx, (7)

where the bilinear form aδ(·, ·) is defined by

aδ(uδ, vδ) =
Kn∑
k=0

∫
Ωn,k

graduδ · grad vδ dx. (8)
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Thanks to the matching conditions (6), it is readily checked that this problem has
a unique solution. Moreover, the following a priori error estimate can be proved as
an extension of [BM00, Thm 2.8]: if the solution u of problem (1) is such that each
u|Ωn,k , 0 ≤ k ≤ Kn, belongs to Hsk(Ωn,k), sk > 1,

‖u− uδ‖H1
δ (Ω) ≤ c

(Kn∑
k=0

(2−k h0)2(sk−1) ‖u‖2
Hsk(Ωn,k)

) 1
2
, (9)

where the mesh-dependent norm ‖ · ‖H1
δ (Ω) is defined by

‖v‖H1
δ (Ω) =

(Kn∑
k=0

‖v‖2
H1(Ωn,k)

) 1
2
. (10)

Remark 3 As explained in [BB99], the matching conditions (6) can be enforced
thanks to to the introduction of a Lagrange multiplier. In this case, problem (7) is
equivalent to a saddle-point problem. The corresponding global matrix is symmetric,
so that solving it is not expensive.

However, we are more specifically interested with a posteriori estimates. As usual,
we fix an approximation fδ of the function f in the space

Zδ =
{
gδ ∈ L2(Ω); ∀K ∈ T n

h , gδ |K ∈ P�∗(K)
}
. (11)

where 	∗ is a nonnegative integer. We consider two types of indicators.
• Error indicators linked to the finite elements

For each K in T n
h , we denote by EK the set of edges of K which are not contained

in ∂Ω. In what follows, hK stands for the diameter of K and he for the length of any
e in EK (or in any Em).

The residual error indicator ηK associated with any triangle in T n
h is now defined

in a completely standard way, see [Ver96, (1.18)]:

ηK = hK ‖fδ +∆uδ‖L2(K) +
1
2

∑
e∈EK

h
1
2
e ‖ [∂nuδ] ‖L2(e), (12)

where ∂n denotes the normal derivative on e and [ · ] the jump through e. Note that
the term “residual” here means that, when suppressing all the δ in the previous line,
the quantity in the right-hand side is zero.
• Error indicators linked to the edges of the skeleton

Like in [BV96, (3.3)], for 1 ≤ m ≤ Mn, we associate with each e in Em the indicator
ηe defined as

ηe = h
− 1

2
e ‖ [uδ] ‖L2(e). (13)

There also, this quantity vanishes when suppressing the δ.

Remark 4 It is readily checked that, for all m, 1 ≤ m ≤ Mn, and for all e in Em,
the quantity ηe is equivalent to the norm ‖ [uδ] ‖

H
1
2 (e)

. However it is much easier to
compute.
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We sum up in the two following propositions the estimates concerning these indi-
cators, and we refer to [BM00, §3] for their detailed proofs. The first one relies on the
formula, obtained by local integration by parts,

‖u− uδ‖H1
δ (Ω) ≤ c

( ∑
K∈T n

h

(
‖fδ +∆uδ‖L2(K)

‖v − vδ‖L2(K)

‖v‖H1
δ (Ω)

+‖f − fδ‖L2(K)

‖v − vδ‖L2(K)

‖v‖H1
δ
(Ω)

−1
2

∑
e∈EK

‖[∂nuδ]‖L2(e)

‖v − vδ‖L2(e)

‖v‖H1
δ (Ω)

)

+|
Mn∑
m=1

∑
e∈Em

∫
e

∂n(u− uδ) [uδ] dτ |
1
2

)
,

(14)

where v is equal to u− uδ and vδ is any “conforming” approximation of v, i.e. which
belongs to Xδ∩H1

0 (Ω). The first three terms are evaluated by constructing an extension
of Clément’s operator to the present situation, while estimating the last one relies on
conditions (6). The arguments for proving the second proposition are standard for
residual indicators, see [Ver96, Chap.3].

Proposition 1 There exists a constant c independent of δ such the following error
estimate holds between the solutions u of problem (1) and uδ of problem (7):

‖u− uδ‖H1
δ (Ω) ≤ c

( ∑
K∈T n

h

(
η2

K + h2
K ‖f − fδ‖2

L2(K)) +
Mn∑
m=1

∑
e∈Em

η2
e

) 1
2
. (15)

Proposition 2 There exists a constant c′ independent of δ such that the following
estimate holds for all K in T n

h :

ηK ≤ c′
(
‖u− uδ‖H1

δ (ΞK) + (
∑

K′⊂ΞK

h2
K′ ‖f − fδ‖2

L2(K′))
1
2
)
, (16)

where ΞK is the union of at most four triangles such that at least an edge of K is
contained in an edge of such triangles. There exists a constant c′′ independent of δ
such that the following estimate holds for all m, 1 ≤ m ≤ Mn, and for all e in Em:

ηe ≤ c′′ ‖u− uδ‖H1
δ (Ξe), (17)

where Ξe is the union of the triangle of T n,k(m)
h that intersects γm and a triangle K

contained in an Ω
n,ki(m)

such that e is an edge of K.

Remark 5 The constants c, c′ and c′′ in the previous propositions only depend on
the regularity parameter σ of the initial family of triangulations (T 0

h )h0 and on the
constant λ introduced in (4). Their dependency with respect to λ is explicitly written
in [BH00].
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Proposition 2 states a local version of the upper bounds for the error indicators.
However a global version can be proven by similar arguments. When compared with
(15), this global estimate proves that the error ‖u − uδ‖H1

δ (Ω) is equivalent to the
Hilbertian sum of the indicators, up to some terms concerning the approximation of
the data f . These terms are most often negligible, so that the combined two types of
indicators lead to an optimal evaluation of the error.

The adaptivity algorithm and numerical experiments

Thanks to the previous choice of the discrete problem, the algorithm for mesh adap-
tivity is now straightforward. Assume that we are given a triangulation T n

h and the
corresponding skeleton Sn. We solve the associated problem (7) and compute all the
error indicators ηK and ηe, next the meanvalue ηn of the ηK , K ∈ T n

h , and the mean
value ηn

∗ of the ηe, e ∈ Em, 1 ≤ m ≤ Mn. The next triangulation T n+1,k
h and skeleton

Sn+1 are then built in two steps.
• Step 1. For all K in T n

h , there exists an integer k such that

2k ηn ≤ ηK ≤ 2k+1 ηn. (18)

If k is positive, we cut the triangle K into 22k equal subtriangles by iteratively joining
the middle of the edges. This allows for defining an intermediary skeleton Sn

∗ .
• Step 2. We only consider the e in Em, 1 ≤ m ≤ Mn, such that

ηe ≥ 2 ηn
∗ . (19)

If this edge remains in Sn
∗ after Step 1, we cut the triangles on both sides of e, such

that e becomes “conforming”, i.e. it is no longer contained in the next skeleton Sn+1.
We stop the algorithm either after a finite number of iterations or when the fol-

lowing condition is satisfied for a given tolerance ε:

∑
K∈T n

h

η2
K +

Mn∑
m=1

∑
e∈Em

η2
e ≤ ε2. (20)

We now present some numerical results in the case where Ω is the L-shaped domain
] − 1, 1[2\[0, 1]2 and the data f is equal to 1. We work with piecewise quadratic
functions (	 = 2) and an initial mesh T 0

h made of 64 triangles. The dimension of the
corresponding space Xδ is 105.

Figure 2 presents the initial mesh T 0
h and the first five refined meshes T n

h , n = 1,
2, 3, 4, 5, according to the previous algorithm.

Figure 3 presents the isovalue curves of the error indicators ηK , K ∈ T n
h , for each

of the previous T n
h .

Table 1 presents for each triangulation T n
h the number of triangles Nn

T , the total
number of mortars Mn, the dimension dimXδ of the corresponding space Xδ, the
maximal value Kn of the k and finally the Hilbertian sum ηn

norm of all indicators ηK

and ηe. It can be observed that, for a fixed initial mesh, this sum decreases at each
iteration n.
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Figure 2: The sequence of adapted meshes
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Figure 3: Isovalue curves of the indicators
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Figure 4: Isovalue curves of the solution

n 0 1 2 3 4 5
Nn

T 64 88 121 214 301 325
Mn 0 8 18 32 47 59

dimXδ 105 171 256 466 661 730
Kn 0 2 2 4 4 5

ηn
norm 0.3438 0.2187 0.1587 0.0927 0.0677 0.0562

Table 1

The isovalue curves of the discrete solution obtained on the mesh T 5
h are presented

in Figure 4 .
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This paper appeared as a technical report about five years earlier.

[BOV99]Christine Bernardi, Robert G. Owens, and José Valenciano. An error indi-
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