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1. Analysis of a Multigrid Algorithm for the Mortar
Finite Element Method

Dietrich Braess1

Introduction

The mortar method has attracted much interest as a special domain decomposition
method. It has been analysed in a series of papers (see e. g. [BM97, BMP94, BDW00,
Woh99a]) in particular for second order elliptic boundary value problems

− div a(x) grad u(x) = f(x) in Ω,

a(x)
∂u

∂n
= g(x) on ΓN ⊂ ∂Ω, (1)

u = 0 on ΓD := ∂Ω \ ΓN .

Here a(x) is a (sufficiently smooth) uniformly positive definite matrix in the bounded
domain Ω ⊂ R

d, ΓD is a subset of the boundary Γ of Ω, and ΓN := Γ \ ΓD.
Let Ω be decomposed into non-overlapping subdomains Ωk, k = 1, . . . ,K,

Ω̄ =
K⋃

k=1

Ω̄k, Ωk ∩ Ωl = ∅ for k �= l. (2)

Let Hs(Ω) denote the usual Sobolev spaces endowed with the Sobolev norms ‖ · ‖s,Ω,
and H1

0,D(Ω) be the closure in H
1 of all C∞-functions vanishing on ΓD. The natural

space associated to the domain decomposition (2) is the product space

Xδ := {v ∈ L2(Ω) : v|Ωk
∈ H1(Ωk), k = 1, . . . ,K, v|ΓD = 0}, (3)

endowed with the (broken) norm

‖v‖1,δ :=

(
K∑

k=1

‖v‖2
1,Ωk

)1/2

. (4)

The spaceH1
0,D(Ω) is determined as a subspace ofXδ by appropriate linear constraints.

Corresponding discretizations lead to saddle point problems. In this paper we present
a multigrid method for the efficient solution of such indefinite systems of equations.
According to standard multigrid convergence theory the main tasks are to establish
appropriate approximation properties in terms of direct estimates as well as to design
suitable smoothing procedures which give rise to corresponding inverse estimates.
The discretization error of the mortar finite elements can be analyzed either by

the theory of nonconforming elements and the lemma of Berger, Scott, and Strang
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(Strang’s second lemma), or by the theory of saddle point problems. Up to now most
investigations have used the first approach. It has the advantage that the analysis can
be performed with standard Sobolev spaces.
On the other hand, the framework of mixed methods is more appropriate when

the computions are performed for the saddle point formulation and fast solvers are
to be developed. It seems to be necessary to use mesh-dependent norms if Brezzi’s
theory is applied. Ellipticity of the variational form, boundedness of the functional in
the definition of the constraints, and the inf-sup condition have to be guaranted. We
will follow this scheme.
We note that there is also an alternative which can be found in [BB99] and

[Woh99a]. The finite element spaces for the direct variables and the Lagrange multi-
pliers need not be balanced so strictly if the error estimates are derived in a two-stage
process. First, the direct variables are treated as nonconforming elements. Having an
error estimate for them, only the inf-sup condition and no ellipticity assumption is
required when the error of the Lagrange multipliers are treated; cf. Remark 1.
There is a correspondence between all the approaches. Roughly speaking, the

terms in the formula of the lemma of Berger, Scott, and Strang are obtained by
arguments which are refound in the analysis of the mixed method and vice versa;
there are, however, some tiny but very sophisticated differences. Although we admit
that the finite element functions are not continuous at the cross points, the subset of
the functions without jumps at cross points is responsible for the stability of the mortar
elements.
A suitable smoothing procedure for the multigrid algorithm that is consistent with

the approximation properties above is obtained by a method known from the Stokes
problem. The paper concludes with a numerical example.

The Continuous Problem

For convenience, we assume that the domain Ω ⊂ R
d and the subdomains Ωk in (2)

are polygonal. If Ωk and Ωl share a common interface, we set Γ̄kl := Ω̄k ∩ Ω̄l. The
interior faces form the skeleton

S :=
⋃
k,l

Γkl. (5)

Γkl, ΓN , and ΓD will always be assumed to be the union of polygonal subsets of the
boundaries of the Ωk. Often such a decomposition is called geometrically conforming.
In order to characterizeH1

0,D(Ω) as a subspace ofXδ, recall that for any (sufficiently
regular) manifold Γ the Sobolev spaces Hs(Γ) can be defined by their intrinsic norms
(see [LM72, Section 7.3]), or alternatively, when Γ is part of a boundary, as a trace
space. In fact, whenever s− 1/2 is not an integer,

‖v‖s−1/2,Γ := inf
w∈Hs(Ω),w|Γ=v

‖w‖s,Ω

is an equivalent norm forHs−1/2(∂Ω). Moreover, if Γ′ is a smooth subset of Γ, Hs
00(Γ

′)
consists of those elements v ∈ Hs(Γ′) whose extension ṽ of v by zero to all of Γ belongs
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to Hs(Γ), cf. [LM72, p. 66], in particular,

H
1/2
00 (Γkl) = {v ∈ H1/2(Γkl) : ṽ ∈ H1/2(∂Ωk), ṽ|Γkl

= v; ṽ = 0 on ∂Ωk\Γkl},
‖v‖

H
1/2
00 (Γkl)

:= ‖ṽ‖1/2,∂Ωk
. (6)

We note that H1/2
00 (Γkl) is an interpolation space between L2(Γkl) and H1

0 (Γkl)

H
1/2
00 (Γkl) = [H1

0 (Γkl), L2(Γkl)]1/2,

while
H1/2(Γkl) = [H1(Γkl), L2(Γkl)]1/2.

This can be realized, e. g., by the K-method [LM72, pp. 64–66, pp. 98–99].
It is appropriate to characterize H1

0,D(Ω) as a subspace of

X00 := {v ∈ Xδ : [v] |Γkl
∈ H1/2

00 (Γkl) ∀Γkl ⊂ S}, (7)

endowed with the norm

‖v‖2
X :=

∑
k

‖v‖2
1,Ωk

+
∑

Γkl⊂S
‖[v]‖2

H
1/2
00 (Γkl)

. (8)

The trace terms in (8) arise from the fact that X00 is a proper subspace of Xδ, and
they motivate our later treatment of the finite element discretization. Specifically we
have

H1
0,D(Ω) = {v ∈ X00 : (µ, [v])0,Γkl

= 0 ∀µ ∈ H−1/2
00 (Γkl), Γkl ⊂ S}. (9)

Here and in the sequel we write H−1/2
00 and H−1/2 for the dual of H1/2

00 and H1/2,
respectively.
We now turn the problem (1) into a weak form based on the above characterization

of H1
0,D(Ω). Let

a(u, v) :=
∑

k

∫
Ωk

(a(x)∇u(x)) · ∇v(x)dx, (10)

b(v, µ) :=
∑

Γkl⊂S
(µ, [v])0,Γkl

. (11)

Setting
M :=

∏
Γkl⊂S

H
−1/2
00 (Γkl),

we consider the variational problem: find (u, λ) ∈ X00 ×M such that

a(u, v) + b(v, λ) = (f, v)0,Ω + (g, v)0,ΓN , v ∈ X00,

b(u, µ) = 0, µ ∈M. (12)

From the definition of the trace spaces it follows that the operator B : X00 →∏
Γkl
H

1/2
00 (Γkl), v �→ Bv defined by (Bv, µ)0,S =

∑
Γkl⊂S(µ, [v])0,Γkl

for any µ ∈ M ,
is bounded.
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Moreover, the saddle point problem (12) satisfies the inf-sup condition. A straight
forward proof can be found in [BDW00]. The crucial point is that the jump on Γkl

belongs to H1/2
00 (Γkl), and it can be extended without interference to other parts of

the skeleton.
Furthermore, we know from (9) that H1

0,D(Ω) = V := kerB. Since ‖v‖X = ‖v‖1,Ω

for v ∈ H1
0,D, the bilinear form a(·, ·) is V -elliptic, i.e., elliptic on the kernel of B.

The discrete problem

In the discussion of the finite element discretization of (12), we will restrict ourselves to
the bivariate case, d = 2. For each subdomain Ωk we choose a family of (conforming)
triangulations Tk,h independently of the neighboring subdomains; i.e., the nodes in
Tk,h that belong to Γkl need not match the nodes of Tl,h. The corresponding spaces
of piecewise linear finite elements on Tk,h are denoted by Sh(Tk,h). Following [BB99,
BM97, BMP94] we set

Xh := Xδ ∩
K∏

k=1

Sh(Tk,h), (13)

i.e., the functions in Xh are not required to be continuous at the cross-points of the
polygonal subdomains Ωk and Xh �⊂ X00. We associate with each interface Γkl the
nonmortar side which, by the usual convention, is Ωk while Ωl is the mortar side.
Let Mkl,h be the space of all continuous piecewise linear functions on Γkl on that
partition induced by the triangulation Tk,h on the nonmortar side, under the additional
constraint that the elements in Mkl,h are constant on the two intervals containing
the end points of Γkl. Thus the dimension of Mkl,h agrees with the dimension of
T̃kl,h := Sh(Tk,h) ∩H1

0 (Γkl) ⊆ H1/2
00 (Γkl). The space of discrete multipliers is defined

as

Mh :=
∏

Γkl⊂S
Mkl,h. (14)

The kernel of the restriction operator is

Vh := {vh ∈ Xh : b(vh, µh) = 0 for µh ∈Mh}. (15)

As already anounced in the introduction we will employ mesh-dependent norms as
in [AT95, Woh99b]. Setting

‖w‖1/2,h,Γkl
:= h−1/2‖w‖0,Γkl

,

let

‖vh‖2
1,h := ‖vh‖2

1,δ +
∑

Γkl⊂S
‖[vh]‖2

1/2,h,Γkl

= ‖vh‖2
1,δ +

∑
Γkl⊂S

h−1‖[vh]‖2
0,Γkl

, (16)

‖µ‖2
−1/2,h :=

∑
Γkl⊂S

‖µ‖2
−1/2,h,Γkl

=
∑

Γkl⊂S
h‖µ‖2

0,Γkl
. (17)
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Obviously, (16) corresponds to (8). Whenever a distinction of local mesh sizes matters,
the global h in (16)–(17) has to be replaced by the mesh size hk of the non-mortar
side in the summands for Γkl. In this framework,

a(uh, vh) + b(vh, λh) = (f, vh)0,Ω + (g, vh)0,ΓN , vh ∈ Xh,

b(uh, µh) = 0, µh ∈Mh,
(18)

is a stable discretization of (12).
When verifying this, one crucial point of the analysis is the proof of the inf-sup

condition. This is well-known for the saddle point formulation, but the reader may
wonder that we find the arguments for the inf-sup condition (often very concealed) also
in the analysis by the theory of nonconforming elements. It is done for the following
reason. Given u ∈ H2(Ωk), by the classical theory there is a finite element function
vh ∈ Xδ such that ‖u − vh‖1,δ can be easily estimated. The lemma of Berger, Scott,
and Strang, however, requires a good approximation by an element that satisfies the
mortaring condition. Now Fortin’s theory (see [BF91] or [Bra97, p. 130]) yields this
property whenever the inf-sup condition holds.
There is one more point that is found in all treatments of mortar elements which we

know. Although the analysis in the papers aim at different norms (the usual Sobolev
norms or mesh-dependent norms), they start with an inf-sup condition for the L2 inner
product on the skeleton. We will exemplify a simple proof. Here the inf-sup condition
is stated in terms of a projection operator.
To this end we consider the trace space on an interface Γkl and let

ξ0 < ξ1 < . . . < ξp−1 < ξp

be a partition of the interval [ξ0, ξp] which represents Γkl. Motivated by the setting
(14) of T̃kl,h and Mkl,h we consider two subspaces of the space of continuous piecewise
linear functions on [ξ0, ξp]. Let T̃kl,h be the subspace of those functions that vanish
at the endpoints ξ0 and ξp, and let Mkl,h be the subspace of those functions that
are constant on the first and on the last interval. So T̃kl,h and Mkl,h have the same
dimension p− 1.

Lemma 1 The projectors Qh : L2[ξ0, ξp]→ T̃kl,h defined by

(Qhf, v)0 = (f, v)0 for v ∈Mkl,h, (19)

are uniformly bounded in L2, specifically

‖Qhf‖0 ≤ 4
3
‖f‖0 for f ∈ L2[ξ0, ξp]. (20)

Proof: For uh := Qhf ∈ T̃kl,h let vh ∈ Mkl,h be defined by vh(ξi) = uh(ξi), i =
1, . . . , ξp−1. The two functions are determined by these p− 1 values. Thus uh and vh
agree on [ξ1, ξp−1], and

∫ ξp−1

ξ1
uhvhdx = 1

2

∫ ξp−1

ξ1
(u2

h + v
2
h)dx. On the other hand, one

obtains for the first (and last) interval

ξ1∫
ξ0

uhvhdx =
1
2
D,

ξ1∫
ξ0

u2
hdx =

1
3
D,

ξ1∫
ξ0

v2hdx = D,
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where D := (ξ1 − ξ0)uh(ξ1)2. Hence,

ξ1∫
ξ0

uhvhdx =
3
8

ξ1∫
ξ0

(u2
h + v

2
h)dx.

Summing over all intervals and using Young’s inequality yields

‖f‖0‖vh‖0 ≥ (f, vh)0 = (uh, vh)0 ≥ 3
8
(
‖uh‖2

0 + ‖vh‖2
0

)
≥ 3
4
‖uh‖0‖vh‖0, (21)

which proves (20).
Let µh ∈Mh and Γkl be an interface. It follows from the lemma that (µh, wkl)0,Γkl

is large if wkl := Qh,kl µh. Specifically we conclude that

inf
µh∈Mh

sup
vh∈Xh

b(vh, µh)
‖vh‖0,S ‖µh‖0,S

≥ 3
4
.

The proof of the Brezzi condition for the correct norms usually proceeds in a standard
way. Interpolation theory yields an inverse estimate

‖wkl‖H
1/2
00

≤ ch−1/2‖wkl‖0,Γkl
= c‖wkl‖1/2,h,Γkl

. (22)

There is an extension v such that

[v] = wkl on Γkl ,

and the ‖ · ‖1-norm of the extension is bounded by the H1/2
00 norm above. Thus the

same construction is good for the proof of the Brezzi condition for the mesh-dependent
norms or for the Sobolev norms.

Theorem 1 Assume that the triangulation in each subdomain Ωk is quasiuniform.
The discretizations (18) based on the spaces Xh,Mh defined by (13) and (14), respec-
tively, satisfy the LBB-condition, i.e., there exists some β > 0 such that

inf
µh∈Mh

sup
vh∈Xh

b(vh, µh)
‖vh‖1,h‖µh‖−1/2,h

≥ β, (23)

and

inf
µh∈Mh

sup
vh∈Xh

b(vh, µh)
‖vh‖X ‖µh‖H

−1/2
00

≥ β (24)

holds uniformly in h.

We want to stress one point. Since we admit that the finite element functions inXh

can be discontinuous at the cross points, their jumps on the interface Γkl are only in
H1/2(Γkl). Nevertheless, the construction for the proof of the inf-sup condition yielded
finite element functions with jumps in the subspaces H1/2

00 (Γkl), and we conclude that
the subspace of finite elements with this property is thick enough. Therefore it is
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natural that the Lagrange multipliers are equipped with the norms ‖µh‖H
−1/2
00 (Γkl)

in those investigations in which norms of the classical Sobolev spaces rather than
mesh-dependent norms are preferred.
After the inf-sup condition has been established, only approximation properties are

required for the proof of the error estimate. Assume that the problem is H2-regular,
i.e., u ∈ H2. Let wh ∈ Xh be finite element function with ‖u− wh‖1,δ ≤ ch‖u‖2 that
need not satisfy the mortar condition. Similarly, we have ‖ ∂u

∂n −µh‖0,Γkl
≤ ch1/2‖u‖2,

for some µh ∈ Mh and all Γkl, (and this term appear also in the usual bounds of
the consistency error of the second Strang lemma). The regularity assumption and
a density argument assert that the first equation in (12) holds for all v ∈ X00 +Xh.
Hence,

a(uh − wh, vh) + b(vh, λh − µh) = 〈l, v〉 ∀vh ∈ Xh,

b(uh − wh, µ) = 0, ∀µ ∈Mh,
(25)

where 〈l, v〉 := a(u − wh, v) + b(v, λ − µh). By construction |〈l, v〉| ≤ ch ‖u‖2 ‖v‖1,h.
From this bound and the stability of (25) we obtain the error estimate

‖u− uh‖1,h + ‖λ− λh‖−1/2,h ≤ ch‖u‖2 (26)

and by a duality argument

‖u− uh‖0 + h‖λ− λh‖−1/2,h ≤ ch2‖u‖2. (27)

For details the reader is refered to [BDW00].

Remark 1 We have provided the well-known arguments in the derivation of the er-
ror estimates since we want to be more specific about the remark at the end of the
introduction.

In establishing (25) we have used ellipticity of a(·, ·), boundedness of b(·, ·), and the
inf-sup condition. On the other hand, if a bound for ‖u− uh‖1,δ has been determined
elsewhere, following [BB99, Woh99a] the first equation in (25) may be rewritten

b(vh, λh − µh) = b(vh, λ− µh)− a(uh − u, vh) ∀vh ∈ Xh. (28)

From (24) we know that we obtain ‖λh −µh‖H
1/2
00

≤ β−1b(vh, λh −µh)/‖vh‖X with an
appropriate test function vh. Specifically, the right test function has its jumps on the
interfaces in H1/2

00 , and it is not an obstacle that b(·, ·) is not bounded on H1/2×H−1/2
00 .

After applying the triangle inequality the error of the Lagrange multipliers is established
in the H−1/2

00 norm. This technique circumvents the fact that the bilinear form b is
not bounded on H1/2 × H−1/2

00 . – The unboundedness is an obstacle for the direct
application of Brezzi’s theory.

Finally, we note that recently other finite elements for the Lagrange multipliers
have been suggested. Computations are easier if they are obtained from a dual basis
[Woh99c].
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Multigrid Convergence Analysis

The saddle point problem (18) gives rise to a linear system of the form(
A BT

B

)(
uh

λh

)
=
(
f

0

)
, (29)

where the dimension of the vectors coincides with the dimension of the finite element
spaces Xh and Mh, respectively. For convenience, the same symbol is taken for the
finite element functions and their vector representations, and the index h is suppressed
whenever no confusion is possible.
The finite element basis functions are assumed to be normalized such that the

Euclidean norm of the vectors ‖ · ‖�2 is equivalent to the L2-norm of the functions, i.e.

‖vh‖�2 ≈ ‖vh‖0,Ω for vh ∈ Xh. (30)

When the equations (29) are solved by a multigrid algorithm, the design of the smooth-
ing procedure is the crucial point. Motivated by [BS97] our smoothing procedure will
be based on the following concept. Let C be a preconditioner for A which, in partic-
ular, is normalized so that

vTAv ≤ vTCv, v ∈ Xh, (31)

and for which the linear system(
C BT

B

)(
v

µ

)
=
(
d

e

)
(32)

is easily solvable. In actual computations the vectors v, µ are obtained by imple-
menting Sµ = BC−1d − e, v = C−1(d − BTµ), where S := BC−1BT is the Schur
complement of C in (32).
Then the iteration that will serve as a smoother in our multigrid scheme has the

form (
uj+1

h

λj+1
h

)
:=

(
uj

h

λj
h

)
−
(
C BT

B

)−1
{(

A BT

B

)(
uj

h

λj
h

)
−
(
f

0

)}
(33)

=
(
uj

h

0

)
−
(
C BT

B

)−1(
Auj

h − f
Buj

h

)
, (34)

where superscripts will denote iteration indices. It is important to note that uj+1
h

always satisfies the constraint, i.e.,

Buj+1
h = 0, (35)

see [BS97]. Specifically the implementations are based on (33) in order to have aux-
iliary problems with small (correction) vectors, while the representation (34) shows
that the next iterate is independent of the old Lagrange multiplier λj

h.
Now we assume that the reader is familiar with the general concept of multigrid

algorithms [Hac85] and knows some simple application. This is sufficient since the
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finite element spaces Xh ⊂ Xδ and Mh ⊂M are nested and the coarse grid correction
of the multigrid scheme can be performed in the standard manner, see e.g. [BS97] or
[Hac85, p. 235].
As usually, the analysis of the multigrid method will be based on two different

norms. The fine topology will be defined by the norm

|||vh, µh|||2 := ‖Avh +BTµh‖�2 , (36)

i.e., by a discrete analogon of the H2-norm, and the coarse one by the L2-norm

‖vh‖0,Ω.

The latter expression is independent of the Lagrange multiplier since the iteration
(34) is independent of the multiplier in the previous step. We recall that λmax(A) =
O(h−2).

Smoothing property: Assume that λmax(A) ≤ α ≤ cλmax(A). If m smoothing
steps of the relaxation (34) with C := αI are performed, then

|||um
h − uh, λ

m
h − λh|||2 ≤ ch−2

m
‖u0

h − uh‖0,Ω. (37)

Approximation property: For the coarse grid correction u2h one has

‖uh − u2h‖0,Ω ≤ ch2|||uh, λh|||2. (38)

The proof of the two properties are now quite standard. The verification of the
smoothing property is performed by purely algebraic manipulations [BDW00, BS97].
The approximation property looks very much like the L2-error estimate (27). Indeed,
it is derived from the latter by a duality argument; cf. [BDW00] or [Bra97, Lemma
V.2.8].
Recently, a version was implemented as a cascadic multigrid algorithm; see [BDL99].

In that context it is shown that the Lagrange multipliers must be treated in a different
way than the u-variables if the iteration (33) is built into a conjugate gradient method.

Numerical Example

We report on one of the examples in [BDW00] with big jumps of coefficients and
several cross points. The equation (1.1) is considered with scalar diffusion coefficients
that are constant on each subdomain. In Figure 1 large bricks are separated by thin
channels. Fixing the diffusion constant for the bricks to a0 = 1, we test the cases where
the channels have higher or lower permeability (a1 = 106 or a1 = 10−6, resp.). We
perform the cg-method with V(1,1)-cycle and two inner iterations. The convergence
rates are stable if the mortar side is on the side with the smaller diffusion constant
and large step size, resp.; otherwise the method may fail. The results in Figure 1 for
the case a1 = 106 show clearly that the diffusion is faster in the small channels.
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level elements a0 = 1, a1 = 1 a0 = 1, a1 = 106 a0 = 1, a1 = 10−6

3 6784 0.21 0.12 0.08
4 27136 0.21 0.14 0.07
5 108544 0.21 0.14 0.08

inner iterations 1–2 1–2 1–2

Table 1: Convergence for the example with several cross-points for MG with V(1,1)-
cycle

Figure 1: Example with several cross-points
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