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28. The Mortar Element Method for 3D Maxwell’s
equations: analysis and application to
magnetodynamics

A. Buffa1 , Y. Maday2 3 , F. Rapetti3

Introduction

In this paper, we describe the main ideas of the mortar element method combined with
H(curl)–conforming finite elements for the numerical approximation of Maxwell’s
equations. This method turns out to be a new non–conforming, non–overlapping do-
main decomposition technique where non–matching grids are allowed at the interface
between adjacent sub–domains. We report the results on the method’s convergence
and error estimate together with the description of the main implementation details
and some numerical results.

Position of the problem

We are interested in a system that can be modeled by the set of Maxwell’s equations
when the displacement currents are neglected:

(a) curlE = −∂tB in Ω×]0, T [
(b) curlH = J in Ω×]0, T [
(c) J = σE in Ω×]0, T [
(d) B = µ H in Ω×]0, T [

(1)

where Ω ⊂ R3 is bounded, E, H are the electric and magnetic fields, B the magnetic
induction and J the current density. In system (1), ∂t stands for the first derivative
in time.

The physical parameters of the problem are: the magnetic permeability µ and the
electric conductivity σ. Without loss of generality we assume that µ is a positive
constant and σ is simply bounded. We set C = supp{σ} the conducting part and we
assume that C is simply connected.

In three–dimensional magnetodynamic applications, system (1) is usually refor-
mulated in terms of a primary variable which is either the magnetic field H or the
magnetic vector potential A. In both cases, by re–writing system (1) in terms of
the chosen primary variable, we obtain the following parabolic equation which is the
object of our study:

∂t(α u) + curl (β curl u) = f in Ω×]0, T [ , (2)
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with α and β two functions related to the physical parameters σ and µ and f related
to the external sources. Equation (2) can be non–strictly parabolic: this may occur
when working with the magnetic vector potential. In this case, a jauge condition (e.g.,
div(u) = 0 where α = 0) has to be added to equation (2) to ensure the uniqueness of
the solution. Moreover, we assume:

u ∧ n = 0 on ∂Ω×]0, T [ and u(x, 0) = 0 a.e. in x ∈ C. (3)

We introduce the following Hilbert spaces (endowed with the corresponding graph
norms)

H(curl,Ω) =
{
u ∈ L2(Ω)3 | curl u ∈ L2(Ω)3

}
,

H0(curl,Ω) =
{
u ∈ H(curl,Ω) | (u ∧ n)|∂Ω = 0

}
.

(4)

The variational formulation of the problem (2) reads:

Find u ∈ H0(curl,Ω) such that ∀v ∈ H0(curl,Ω) :∫
Ω ∂tα u · v dx +

∫
Ω β curl u · curl v dx =

∫
Ω f · v dx .

(5)

It can be proved that this problem admits a unique solution when suitably interpreted
in time and a jauge condition is imposed where α = 0. Note that when α = 0
everywhere, (2) is the magnetostatic problem and (5) its variational formulation.

The main concern of our work is to propose an efficient domain decomposition
method for this type of equations, discretized by using edge element approximation in
three dimensions which allows for non-matching grids. The outline of the paper is the
following: in the second section the mortar element method is proposed, the analysis
is sketched and some details of the implementation are given. The third section is
devoted to the applications: we present some preliminary numerical results in the
magnetostatic case and the governing equations for the magnetodynamic problem in
moving geometries. Numerical simulations in the latter case are in progress.

Definition and analysis of the mortar element method

Since the definition and analysis of a domain decomposition procedure for (2) is strictly
related to the choice of the spatial discretization, in this section, without loss of
generality, we consider the following model problem:

Find u ∈ H0(curl,Ω) such that ∀ v ∈ H0(curl,Ω)∫
Ω

curl u · curl v dx +
∫

Ω

u · v dx =
∫

Ω

f · v dx . (6)

This problem admits obviously a unique solution in H0(curl,Ω) and it is worth
noting that it is strictly related to (2): when the parameters of the problem are set
equal to 1 and an implicit time stepping procedure is applied, (6) is the problem that
we have to solve at each time step. The case of vanishing α will be the object of
further remarks.
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Approximation spaces

Partition of the domain and local spaces

Assume here that the domain Ω is a convex bounded (Lipschitz) polyhedral4 subset
of R3. Let Ωk ⊆ Ω, for 1 ≤ k ≤ K, be a non–overlapping, polyhedral partition of Ω,
that is:

Ω = ∪K
k=1Ωk with Ωk ∩ Ωl = ∅ if k �= l. (7)

For every k (1 ≤ k ≤ K) we denote by nk the outer normal to Ωk and we call{
Γk,i

}
1≤i≤F (k)

the F (k) faces of the polyhedron Ωk. We define the skeleton Σ as

Σ = ∪K
k=1 ∪K

l=1 ∂Ωk \ ∂Ω . Let τk,i be the counterclockwise tangential vector to ∂Γk,i;
we define also the outer normal to ∂Γk,i as nk,i = τk,i ∧ nk.

Among several possibilities we choose a splitting of the skeleton Σ as the disjoint
union of some closed faces {Γk,i}k,i that we call slave faces. A unique set of indices
corresponds to this choice and we denote it by:

IM =
{
m = (k, i) such that Γk,i is a slave face

}
.

To shorten the notations we denote the slave faces by Γm (1 ≤ m ≤ M) and, as
prescribed, we have: Σ ≡ ∪M

m=1Γ
m

and Γm ∩ Γn = ∅ if m �= n. Moreover we set:
γl,k = ∂Ωl ∩ ∂Ωk . We define the following “broken” space:

X :=
{
u ∈ L2(Ω)3 | u|Ωk

∈ H(curl,Ωk) , (u ∧ n)| ∂Ω∩∂Ωk
= 0 1 ≤ k ≤ K

}
. (8)

As standard, X is a Hilbert space endowed with the following broken norm:
||u||2�,curl :=

∑K
k=1 ||u|Ωk

||2curl,Ωk
.

For each index k (1 ≤ k ≤ K), we introduce a regular quasi–uniform triangulation
T k

h(k) on the sub–domain Ωk and we denote by h the maximum of the mesh sizes.
These partitions can be composed either of tetrahedra or parallelepipeds; they are
completely independent and thus, in general, non–matching at the interfaces {γk,l}k,l.

Let K̂ be the reference tetrahedron or cube. For every Ki ∈ T k
h(k), we denote by

Fi : K̂ → Ki a bijective mapping from K̂ to Ki. These mappings can be chosen as
linear both in the case of tetrahedra and parallelepipeds: Fi(x̂) = Bix̂ + ci where
Bi ∈ R3×3 is an invertible matrix and ci ∈ R3 is a constant field. Over each sub–
domain Ωk we define the finite dimensional space which is at the base of the domain
decomposition method:

Y k
h := {vk

h ∈ H(curl,Ωk) | BT
i (v

k
h |Ki

◦ Fi) ∈ Pp(k) ∀Ki ∈ T k
h(k)}, (9)

where Pp(k) denotes a family of Nédélec type finite elements for Maxwell’s equations
of degree p(k) (see [N8́0, N8́6] for a complete definition). Furthermore we set:

Xh :=
{
vh ∈ X | vk

h := vh |Ωk
∈ Y k

h and (vk
h ∧ n)∂Ω\∂Ωk

= 0
}
, (10)

and in the following we denote the elements vh ∈ Xh both as functions and as K-
uplets vh = (v1

h,v
2
h, · · · ,vK

h ) where vk
h ∈ Y k

h (1 ≤ k ≤ K). We use both notations
4The whole theory applies even when Ω is a regular bounded subset of R3. Of course, in this case

the subdomain {Ωk}k, defined afterwards, can not be polyhedra but curved polyhedra.



262 BUFFA, MADAY, RAPETTI

since it is never misleading. Since we deal with tangential traces of these vector fields,
we introduce some further definitions. For any index m = (k, i) ∈ IM , we set T k,i

h ={
(vk

h ∧ nk)|Γk,i | vk
h ∈ Y k

h

}
and its subset T k,i

h,0 =
{
λh ∈ T k,i

h | (λh · nk,i) |∂Γk,i = 0
}
.

Let Γm be a slave face with m = (k, i) the corresponding indices and vh ∈ Xh: for
almost every x ∈ Γm there exists an l (1 ≤ l ≤ K , l �= k), such that x ∈ Γm ∩ γk,l.
At this point x, we have two fields, namely vk

h and vl
h. In general, since the macro–

decomposition is non–conforming, the value of l depends on the point x and we denote
by Im the set of indices l (1 ≤ l ≤ K , l �= k) such that Γm ∩ γk,l �= ∅. We then set
v−k

h (x) = vl
h(x), ∀x ∈ Γm∩γk,l, l ∈ Im. The function v−k

h (x) is defined at almost
every x ∈ Γm. Due to the non–conformity of the macro–decomposition, v−k

h (x) is not
in general the tangential trace at Γm of a field v in H(curl,Ωk).

Constraint problem and matching condition

Let v ∈ H0(curl,Ω), we have that (v−k ∧ n)|Γm = (vk ∧ n)|Γm in
(
H

1/2
00 (Γm)

)′. The
purpose of this section is to express how to impose this condition on the discrete
broken space in a weak sense. To this aim, we define, for any m ∈ Im, Mm

h ⊆
Tm

h , dim{Mm
h } = dim{Tm

h,0}. We set:

Mh :=
{
ψh ∈ L2(Σ)2 | ∀m ∈ Im , ψh |Γm ∈Mm

h

}
. (11)

As before we also adopt the vector notation ψh = (ψ1
h, ψ

2
h, . . . , ψ

M
h ) when it is con-

venient. Then, we propose the following non–conforming approximation space for
H0(curl,Ω):

Xc
h =

{
v ∈ Xh | ∀m ,

∫
Γm

(vk
h ∧ nk − v−k

h ∧ nk) · ψh dΓ = 0 ∀ψh ∈Mm
h

}
. (12)

The discrete problem reads: find uh ∈ Xc
h such that ∀ vh ∈ Xc

h:

K∑
k=1

[∫
Ωk

curl uk
h · curl vk

h dx +
∫

Ωk

uk
h · vk

h dx
]
=
∫

Ω

f · vh dx ∀ vh ∈ Xc
h.

(13)

The numerical properties of the space Xc
h depend strongly on the choice of the

Lagrange multiplier space Mh. In the following, we discuss our choice for this space
and, we proceed to the analysis of the method. We refer to [Hop99] for a different
approach using the first family of edge elements.

Thanks to the locality in the definition (11) of Mh, we focus our attention on a
single slave face Γm. Γm is decomposed by T k

h(k)|Γm either into triangles or paral-
lelograms. For every parallelogram (resp. triangle) of T k

h(k)|Γm , there exists a linear

mapping Fi satisfying Ti = Fi(T̂ ) where T̂ is the reference square ]− 1, 1[2 (resp. the
reference triangle T̂ := {(x, y) ∈ R2 | 0 < x < 1 , 0 < y < 1− x}). The construction
of Mm

h consists in imposing additional constraints at Tm
h on the parallelograms (resp.

triangles) which meet the boundary ∂Γm. We denote by BTm the set of all these ele-
ments Ti and assume that the mapping Fi associates to (one of) the boundary edge(s)
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(T i ∩ ∂Γm) an edge of T̂ that is parallel to a Cartesian axis (this is exhaustive up to
a rotation). Our choice of the Lagrange multiplier space turns out to be:
Case of parallelograms:

Mm
h :=

{
λm

h ∈ Tm
h | B−1

i (λm
h ◦ Fi) ∈ Qp,p(Ŝ)×Qp,p−1(Ŝ) , Ti ∈ BTm

}
(14)

where Qp,p′ denotes the space of polynomials which are of degree p in the first variable
and of degree p′ in the second one. Of course, if a corner of Γm belongs to the
parallelogram T i, then the Lagrange multiplier λm

h is chosen so that B−1
i (λm

h ◦ Fi) ∈
Qp−1,p(Ŝ)×Qp,p−1(Ŝ).
Case of triangles:

Mm
h :=

{
λm

h ∈ Tm
h | B−1

i (λm
h ◦ Fi) ∈ Pp(T̂ )× Pp−1(T̂ ) , Ti ∈ BTm

}
. (15)

As before, if a corner of Γm belongs to the triangle T i, then the Lagrange multiplier
λm

h is chosen so that B−1
i (λm

h ◦ Fi) ∈ Pp−1(T̂ )× Pp−1(T̂ ).
The spaces Tm

h and Mm
h are H(div)–conforming and the degrees of freedom are

related to the normal components of the fields along the edges. We refer to [BBM00]
for a complete characterization.

The following proposition holds in both cases of triangles and parallelograms:

Proposition 1 Let Πm
h : L2(Γm)2 → Tm

h,0 be defined by∫
Γm

(u−Πm
h u) · ϕh dΓ = 0 ∀ϕh ∈Mm

h . (16)

There exists a constant C independent of h such that the following stability estimate
holds:

∀u ∈ L2(Γm)2 , ||Πm
h u||0,Γm ≤ C ||u ||0,Γm . (17)

Remark 1 If one deals with the first family of Nédélec type finite elements (see
[N8́0]), then at the interface Γm the space Tm

h is of Raviart-Thomas type and the
Lagrange multiplier space can be similarly defined (see [Hop99]).

Convergence result

In this section we simply state the convergence results concerning problem (13) whose
proofs can be found in [BBM00]. We have

Theorem 1 Let u ∈ H0(curl,Ω) be the solution of problem (6) and uh the solution
of problem (13) with Mh defined by (14) or (15). We assume that uk ∈ Hp+1(Ωk)
with curl uk ∈ Hp+1(Ωk) (1 ≤ k ≤ K) and we suppose that there exists a uniform
constant γ such that maxk{hk} ≤ γ mink{hk}. We set h := maxk{hk}. The following
estimate holds:

||u− uh||�,Ω ≤ C1 h
p

(
K∑

k=1

||u||2p+1,Ωk

) 1
2

+ C2 hp
√
| lnh|

(
K∑

k=1

||curl u||2p+1,Ωk

) 1
2

(18)

where C1, C2 are uniform constants depending only on the macro-decomposition.
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Note that the first term comes from the best approximation error and the second one
from the consistency error.

Remark 2 The same error estimate holds when the coefficients are not set equal to
one but they jump through the different sub–domains: the constant in front of the right
hand side will depend on the size of their jumps.

Remark 3 - Imposing a jauge condition - When the parameter α is vanishing
on a part of the domain, equation (6) must be replaced by:∫

Ω

αu · v dx +
∫

Ω

β curl u · curl v dx =
∫

Ω

f · v dx ; div (u)|{α=0} = 0. (19)

The definition of the proposed method in this case would involve a non–conforming
mortar element approximation of the mixed problem related to (19) which is still not
understood. Nevertheless, it is worth noticing that when the partition (7) is chosen in
a way that α = 0 in one sub–domain only, say Ωk̄, the sub–domains are decomposed
in polyhedra and none of the faces of Ωk̄ is slave; then problem (19) can be suitably
approximated. The discrete problem is: find uh ∈ Xc

h such that ∀vh ∈ Xc
h and ph ∈

Sp+1(T k̄
h ,Ωk̄) ∩H1

0 (Ωk̄):∫
Ω\Ωk̄

αuh · vh dx +
∫

Ω

β curl uh · curl vh dx =
∫

Ω

f · vh dx (20)

and
∫

Ωk̄

uh · grad ph dx = 0 (21)

where Sp+1(T k̄
h ,Ωk̄) is the standard scalar space of Lagrange finite elements of degree

p+ 1. Making use of the approximation results proved in [ABDG98] and the ones of
the previous section, it can be proved that (20)–(21) admits a unique solution and the
error estimate (18) holds true when u is solution of (19) and uh of (20)–(21).

On the other hand, when the quantity of interest is the magnetic vector potential,
a unique solution can be selected by using a suitable iterative solver and expressing
J = curl T for a vector T. Note that only the curl of the magnetic vector potential
is needed: so, the magnetic induction is uniquely determined in any case.

Reduction of the computational cost

The use of the second family of Nédélec type finite elements is often out of range in
realistic three–dimensional computations and the use of the first family is often pre-
ferred. In the standard approximation context, with respect to the first one, the second
family does not give a substantial improvement in the accuracy while it increases the
number of degrees of freedom. In this section we show how these two families of edge
elements can be merged in a way to obtain, on one hand, “quasi-optimal” convergence
of the mortar element method and, on the other hand, a sensible reduction in the
algebraic system dimension. We consider here the case where each sub–domain is
discretized by a finite number of tetrahedra, first or second order edge elements are
chosen and we will focus the attention on one slave face Γm.
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First family: six degrees of freedom per tetrahedron – Given a tetrahedron K,
let rj (j=1,4) be the position vectors of its vertices and λj(r) be the barycentric coor-
dinate of a point P ∈ K (with vector position r) with respect to the vertex j. It is clear
that λj(r) is a linear function in the tetrahedron with λj(rk) = δjk (j, k ∈ {1, 2, 3, 4}).
The vector basis function corresponding to an edge eij going from ri to rj , is given by

wij(r) = λi(r) grad λj(r) − λj(r) grad λi(r) , i, j = 1, 2, 3, 4, i < j ; (22)

let us denote by P1(K) the space generated by the basis functions settled in (22). The
interpolating function uh on K for the vectorial state variable u ∈ (C0(K))3 has the
following form

uh =
3∑

i=1

4∑
j=i+1

wij αij(u) with αij(u) = |eij | (u · teij )(x
M
ij )

where |eij | is the length of eij , xM
ij its midpoint and teij its tangent unit vector.

Second family: twelve degrees of freedom per tetrahedron – A complete linear
interpolation of a three-dimensional vector in a tetrahedron needs twelve degrees of
freedom. The corresponding edge element can be obtained by taking two unknowns
over each edge of the tetrahedron. Keeping the same notations as the ones used to
introduce the first family of edge elements, one of the possibilities is to define the
vector basis functions corresponding to an edge eij going from ri to rj , as follows

wij(r) = λi(r) grad λj(r) , i, j = 1, 2, 3, 4, i �= j ; (23)

let us denote by P2(K) the space generated by the basis functions defined in (23).
The interpolating function uh on K for the vectorial state variable u ∈ (C0(K))3 has
the following form

uh =
4∑

i=1

4∑
j 
=i,j=1

wij βij(u) with
βij(u) = |eij | (u · teij )(xi)

βji(u) = |eij | (u · teij )(xj)

where xi and xj are the end points of the edge eij .

Merging the two families – In paper [BBM00], the authors have shown that the
mortar method combined with edge elements in three dimensions leads to an approxi-
mation which is slightly sub-optimal with the second family and give indications that
with the first family non-optimal results could be feared. On the other hand, by using
the second family of edge elements in one domain, the number of unknowns for a
given mesh is multipled by two. To overcome the difficulties, the idea is based on the
following two facts:

• taking the difference of wij and wji defined in (23) we get the old element wij

defined in (22); moreover, one element v ∈ P1 can be thought as an element
v ∈ P2 with the corresponding degrees of freedom (βij , βji) = (αij ,−αij);

• the Lagrange multipliers of the mortar method are defined locally on Γm.
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The compromise to have a good approximation without too many unknowns is to limit
the use of the second family to all edges that belong to the interface Γm. The first
family is then adopted to approximate the problem solution along all edges that do not
belong to the interface (i.e. over each tetrahedron that does not meet the interface).
The space of edge elements P involved in the definition (9) is the following:

P(K) = {u |u|e ∈ P1 , ∀e /∈ ∂K ∩ Γm and u|e ∈ P2 , ∀e ∈ ∂K ∩ Γm } . (24)

From the implementation point of view, the merging can be done by introducing
a rectangular matrix RK that depends on the current tetrahedron K as follows:

RK ∈ M(6, 12) ∂K ∩ Γm = ∅ or reduced to one point

RK ∈ M(7, 12) ∂K ∩ Γm consists of one edge of K ,

RK ∈ M(9, 12) ∂K ∩ Γm consists of one face of K ,

RK ∈ M(11, 12) ∂K ∩ Γm consists of two faces of K .

M(n,m) denotes the set of matrices with n rows and m columns. Moreover, the local
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Figure 1: The elements of matrix RT
K for a given tetrahedron K; to each edge among

those with numbers 1, 3, 4, is associated one circulation and to those with numbers
2, 5, 6, are associated two.

stiffness matrix associated to each tetrahedron is built using the second family for only
those elements K that meet the interface, i.e. SK ∈ M(12, 12) if ∂K ∩ Γm �= ∅ nor
to one point. In this case, the assembling process does not involve the full matrix SK

but the smaller one given by RKSKRT
K (we have got rid of the additional unknowns

for all edges of K that do not lie on Γm).

Dealing with the first family

The use of the first family inside each sub-domain together with the second one at
the interface glued together with the mortar element method as defined in the second
section does not pollute the general accuracy of the problem. In order to analyse this
we refer to the standard tool for the analysis of non-conforming approximation: the
Berger-Scott-Strang Lemma. This Lemma allows to state:

|u− ũh|∗,Ω ≤ inf
vh∈X̃c

h

|u− uh|∗,Ω + sup
vh∈X̃c

h

∑K
k=1〈vk

h ∧ nk, curl u〉− 1
2 , 12 ,∂Ωk

|vh|∗,Ω
(25)
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where X̃c
h denotes the subspace of Xc

h composed of all functions that are of the first
family inside the subdomains as described in the previous subsection, and ũh denotes
the solution of problem (13) where Xc

h is replaced by X̃c
h. The first contribution

is known as the best fit of u by elements of X̃c
h and the second contribution is the

consistancy error. This second contribution is exactly the same as in the analysis of
problem (13) while the former is analyzed following the same steps of the proof of
Theorem 2.3: starting from the local approximation od u|Ωk

by elements of the first
family (e.g. the interpolation Ik

hu|Ωk
), we correct the trace value on the slave side of

the interfaces by substructing from Ik
hu|Ωk

the function obtained by prolongating by
0 the difference Πm

h (Ik
hu|Ωk

− I−k
h u|Ω−k

) between the current value on the slave face
and the value derived from the application of the mortar condition.

Since the local interpolation operator has the same asymptotic approximation
properties in the first and second family, the previous correction is optimal and we
can state that the same error bound holds for ũh as what is stated in Theorem 2.3.

Applications

The flexibily and performance of a numerical method for the simulation of electro-
magnetic field distributions relies, in several cases, on the possibility of working with
non-matching grids at the interface between adjacent sub–domains. One example is
given by the treatment of moving structures. Our choice is to work in Lagrangian
ones, dealing with non-conforming discretizations at the level of the sliding interface
between the stator and the rotor. The second choice is less expensive from the com-
putational point of view if we use a method that avoids re-meshing or interpolation
procedures. Another example is the optimization of the structure shape for an electro-
magnetic device. We can re-mesh either the whole domain or only a region containing
the shape to be optimized: in the second case it may be useful to work with non-
matching grids to simplify the local re-meshing task and successive solution of the
problem. A third example consists in the possibility of coupling variational methods
of different others or with unknowns associated to different geometric entities.

Some preliminary results in magnetostatics

Currently, the work in progress consists in applying the described method to compute
the distribution of induced currents in moving structures: this is an information of
great importance for performances prediction and devices design. Nevertheless, the
magnetostatic problem is of great interest due to the fact that we have to face all
the difficulties of the method’s implementation even if the geometry does not move.
The movement treatment would add the additional cost of discretizing the coupling
condition at each new position of the free part.

As an example of application, we present some results obtained by solving the
magnetostatic problem in terms of the magnetic vector potential A, i.e. the equation
curl (µ−1curlA) = J, with homogeneous boundary conditions. We consider a hexa-
hedrical domain divided into two sub–domains which are discretized by non–structured
tetrahedrical coarse meshes. The computational domain in presented in Figure 2 while
the magnetic induction B = curlA computed on matching and non–matching grids
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is displayed in Figure 3. In both cases, the information (i.e. the tangential component
of the unknown) is well transmitted from one domain to the other.
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Figure 2: The domain Ω: a flat interface separates the two sub–domains.
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Figure 3: Field B on the plane y = .25 computed on matching (left) and non-matching
(right) grids. The stored magnetic energy is ≈ 1.9 MJ in both cases.

Formulation and discretization of the magnetodynamic problem

We are given with a domain Ω ⊂ R3, decomposed in a rotating part (rotor) Ω1 and
a static one (stator) Ω2 = Ω \ Ω̄1. Ω1 is a cylinder that turns around its axis. Let
θ ∈ C1(0, T ) be the law of rotation, i.e., θ(t) denotes the rotation angle at time t and
rt : Ω1 → Ω1 the rotation operator which turns the domain Ω1 with an angle θ(t) and
r−t its inverse. Here we suppose for simplicity that α > 0 everywhere.

In both domains Ω1 and Ω2, we have to solve the equation (2) while the transmis-
sion conditions at Γ take into account the movement. They are:

rtu1(r−tx, t) ∧ nΓ = u2(x, t) ∧ nΓ , (26)

rtβ(r−tx, t)curl u1(r−tx, t) ∧ nΓ = β(x, t)curl u2(x, t) ∧ nΓ . (27)

Set H = H(curl,Ω1)×H0,∂Ω(curl,Ω2), we then are led to introduce

Ht = {u = (u1,u2) ∈ H | rtu1(r−tx, t) ∧ nΓ = u2(x, t) ∧ nΓ ∀x ∈ Γ}. (28)
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The problem obtained by considering equation (2) in both domain together with ho-
mogeneous boundary condition at ∂Ω and the transmission conditions (26-27) admits
a unique solution u ∈ L∞(0, T,H) ∩ H1(0, T, L2(Ω)) when suitably interpreted in a
variational sense both in time and space. Note that here the essential transmission
condition (26) is strongly imposed in the definition of the functional space, while
the natural one (27) is weakly imposed through the variational formulation (this is
a consequence of the integration by parts). We are now in the position of making a
discretization of this problem and the key point will be the discrete counterpart of the
time-dependent constraint characterizing the definition of the space Ht.

The mortar element method proposed in the second section provides an “optimal”
spatial discretization of the stated problem. The computational domain is split up into
two sub–domains Ω1 and Ω2 and the skeleton consists of 3 interfaces (see the Figure
4). Over each sub–domain, we consider the finite element discretization derived in the

Figure 4: Interfaces for the definition of the mortar element method.

first part of the second section. We call Ht
h the resulting broken edge element space.

The Lagrange multiplier spaces are chosen according to the second section , namely
we have M i

h, i = 1, 2, 3. At each interface, the matching condition turns out to be
time-dependent, namely, for any i = 1, 2, 3 and uh = (u1,h,u2,h) ∈ Ht

h we have:∫
Γi

(
rtu1,h(r−tx, t)− u2,h(x, t)

)
∧ nΓ · ψi

hdΓ = 0 ∀ψ ∈M i
h.

The problem is then discretized in time by means of an implicit Euler method. The
analysis of such a formulation is available in the 2D case together with some numerical
results (see [BMR99], [Rap00]), and it is in progress for the 3D problem.
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[N8́0]J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35:315–341, 1980.



270 BUFFA, MADAY, RAPETTI
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