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9. Adaptive ENO-Wavelet Transforms for
Discontinuous Functions

T.F. Chan1 H.M. Zhou2

Introduction

We have desiged an adaptive ENO-wavelet transform for approximating discontinu-
ous functions without oscillations near the discontinuities. Our approach is to apply
the one-side information idea from Essentially Non-Oscillatory (ENO) schemes for nu-
merical shock capturing to standard wavelet transforms. This transform retains the
essential properties and advantages of standard wavelet transforms such as concentrat-
ing the energy to the low frequencies and having a multiresolution framework and fast
algorithms, all without any edge artifacts. Furthermore, we have obtained a rigorous
uniform approximation error bound regardless of the presence of discontinuities. We
will show some numerical examples and some applications to image compression.

It is well known that wavelet linear approximation (i.e. truncating the high fre-
quencies) can approximate smooth functions very efficiently but cannot achieve sim-
ilar results for piecewise continuous functions, especially functions with large jumps.
Several problems arise near jumps, primarily caused by the well-known Gibb’s phe-
nomenon. The jumps generate large high frequency wavelet coefficients and thus
linear approximations cannot get the same high accuracy near discontinuties as in the
smooth region.

To overcome these problems within the standard wavelet transform framework,
non-linear data-dependent approximations, which selectively retain certain high fre-
quency coefficients, are often used, e.g. hard and soft thresholding techniques, see
[Don95],[Mal98]. Another way is to construct orthonormal basis to represent the dis-
continuities, such as Donoho’s wedgelets [Don97], rigdelets [CD99b], and curvelets
[CD99a], and Mallat’s bandelets [Mal00].

A different aproach is to modify the wavelet transform to not generate large
wavelet coefficients near jumps. Claypoole, Davis, Sweldens and Baraniuk [PCB99]
proposed an adaptive lifting scheme which lowers the order of approximation near
jumps, thus minimizing the Gibbs’ effect. We use a different approach in develop-
ing our ENO-wavelet transforms by borrowing the well developed Essentially Non-
Oscillatory (ENO) technique for shock capturing in computational fluid dynamics
(e.g. see [AHC87]) to modify the standard wavelet transform near discontinuities so
that the Gibbs’ phenomenon can be completely removed. ENO schemes are systematic
ways of adaptively defining piecewise polynomial approximations of the given functions
according to their smoothness. A crucial point in designing ENO schemes is to use
one-sided information near jumps, and never differencing across the discontinuities.

Combining the ENO idea with the multiresolution data representation is a natural
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way to avoid oscillations in the approximations. In fact, it has been explored by
Harten in his general framework of multiresolution [Har94], which is similar to the
lifting scheme of Sweldens [Swe97]. However, his method was not developed to be
directly applied to the widely used pyramidal filtering algorithms which the standard
wavelet transforms are usually implemented in.

The way we accomplish this is to not change the wavelet transforms or the filter
coefficients, which most data dependent multiresolution algorithms do, but instead lo-
cally change the function near the discontinuities in such a way that the standard filters
are only applied to smooth data, and therefore no large high frequency coefficients are
generated. By recording how the changes are make, the original discontinuous func-
tion can be exactly recovered by using the original inverse filters. We show that the
resulting wavelet transform retains all the desirable properties of the standard trans-
form. The extra cost (in floating point operations) required is insignificant, which, in
fact, is of order O(dl) where d is the number of discontinuities and l the filter length.

The arrangement of the paper is as follows. In the next section, we give a general
algorithm to implement the ENO-wavelet transform discretely. And we also state
the rigorous uniform error estimate in this section. In the last section, we give some
numerical examples to illustrate the main advantage of the ENO-wavelet transforms,
including some examples in image compression.

In this short proceeding paper, we are forced to leave out many mathematical
details, and we aim only to give a general idea of the algorithms and the numerical
results. For more details, see [CZ99].

ENO-wavelet Transforms

First, we briefly review the standard discrete wavelet transforms, e.g. see [Dau92],
[Mal98] and [SN96]. In practice, discrete wavelet transforms are often used by starting
with a set of discrete numbers which are the low frequency coefficients of the L2

function f(x) at the finest level. In many applications, this set of numbers are sample
values of the function f(x) on a fine grid (although in [SN96], this is called a ”wavelet
crime”). Let αj,k (βj,k) denote the low (high) frequency coefficients at level j. The
wavelet transform coefficients at a coarser level j − 1 can be computed by:

αj−1,k =
l∑

s=0

csαj,2k+s; βj−1,k =
l∑

s=0

hsαj,2k+s, (1)

where cs (hs) are called low (high) pass filters. It is well known that the inverse
transforms can be easily formed by using orthogonality of the wavelet transforms.
The linear approximation refers to reconstructing αj,k by setting the high frequencies
βj−1,k to zero.

In Fig 1, the left picture is a piecewise continuous function (dotted) and its linear
approximation (solid). The middle one is a zoom-in at a discontinuity. We clearly
see oscillations near discontinuities. The right one is its DB-4 wavelet coefficients.
We see that most of the high frequency coefficients are zero, except for a few large
coefficients which these coefficients are computed near jumps. In this figure, we clearly
see oscillations near discontinuities.
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Figure 1: Left: The initial discontinuous function (dotted) and its linear approxima-
tion (solid). Middle: A zoom-in at a discontinuity. Oscillations are generated near
the discontinuity. Right: its DB4 coefficients. Most of the high frequency coefficients
(right part) are zero except for a few large coefficients computed near the jumps.

To simplify the presentation, we shall assume that the discontinuities in the func-
tions are well-separated in the following sense:

Definition 1 For a given wavelet filter with stencil length l, we say the j-th level
approximation of the function f(x) with spatial step ∆x = 2−j satisfies the Disconti-
nuity Separation Property (DSP) if (l + 2)∆x < t, where f(x) has discontinuous
set D and t is the closest distance between any two discontinuous points.

For any piecewise discontinuous function and a fixed stencil length l, an approx-
imation will satisfy this DSP if j is sufficiently large, i.e. if the discretization is fine
enough. On the other hand, at the place where the DSP is invalid, we will see that
the approximations produced by the ENO-wavelet transforms are comparable to that
by the standard wavelet transforms.

Now, we are ready to introduce the ENO-wavelet transforms. In addition to the
standard wavelet transform computation, ENO-wavelet transforms have two more
phases: locating the jumps and forming the approximations at the discontinuities.
First, assuming knowledge of the location of the jumps, we give the ENO-wavelet
approximations at the discontinuities by using one-sided information to avoid oscilla-
tions. Then, we give the methods to detect the location of the discontinuities. We also
give the approximation error bound at the end of this section. In this short paper, we
only consider Daubechies’ orthonormal wavelets. The idea can be similarly extended
to other wavelets.

The main idea of the ENO schemes for shock capturing is to use one-sided polyno-
mial interpolations for data with large discontinuities. For ENO wavelets, we borrow
this idea of using one-sided information to form the approximation and avoid applying
the wavelet filters crossing the discontinuities.

The first way is to directly extend the function values, or in general the low fre-
quencies on the finer level, at the discontinuity by p-th order extrapolation from both
sides. For example, a straightforward way is to use p-point polynomial extrapola-
tion. Least square can be used too [WA95]. Then one can apply the standard wavelet
transforms on the extended functions by using (1) to compute the coarser level wavelet
coefficients.

There is a storage problem for this direct function extrapolation. Indeed, it doubles
the number of the wavelet coefficients near every discontinuity. To retain the perfect
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Figure 2: The approximation accuracy comparison of ENO-wavelet and standard
wavelet transforms. Both L∞ (left) and L2 (right) order of accuracy show that ENO
transforms maintain the order 1, 2 and 3 for ENO-Haar, ENO-DB4 and ENO-DB6
respectively and they agree with the theoretical results. In contrast, standard trans-
forms do not retain the order.

invertible property, we need to store the ENO-wavelet coefficients from both sides.
Thus, the output sequences are no longer the same size as the input sequences. In many
applications, such as image compression, this extra storage requirement definitely
needs to be avoided.

To keep the size of the output sequences the same as that of the input sequences
without significant extra computation, we introduce the coarse level extrapolation
schemes. The idea is to extrapolate the coarser level wavelet coefficients near the
discontinuities instead of the function values or the finer level wavelet coefficients. Let
us consider the extension from the left side first.

We have two choices: (1) We can extrapolate the low frequency coefficients αj−1,k

first, then determine the corresponding high frequency coefficients βj−1,k . (2) Or we
can first extend high frequency coefficients βj−1,k, for example to zero, then deter-
mine the corresponding low frequency coefficients αj−1,k . By symmetry, we have two
analogous choices for the right side of the jump.

The storage problem can be easily solved in both options. For example, we can
store the high frequency coefficients for choice (1) and the low frequency coefficients
for choice (2). The corresponding low frequency and high frequency coefficients can
be easily recovered.

For each stencil crossing a jump, an extra cost (in floating point operation) is re-
quired in extrapolating low frequency coefficients, and in computing the corresponding
high or low frequency coefficients. Overall, the extra cost over the standard wavelet
transform is of order O(dl). Compared to the cost of the standard transform, which is
of order O(nl) where n is the size of data, the ratio of the extra cost over that of the
standard transform is O( d

n ), which is independent of l and negligible when n is large.
Next, we introduce the methods to detect the location of the discontinuities for

noisy and noise free functions. First we consider noise free data.
It is well known that for the smooth functions, we have |βj,i| = |f (p)|O(∆xp). In
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contrast, |βj,i| is at least one order lower than that if it involves a discontinuity So, an
obvious way, also the cheapest way, to identify the discontinuities is to compare the
magnitudes of the high frequency coefficients on the current standard stencils |βj,i|
with that on the previous standard stencils |βj,i−1|. Thus, we can design a method
to detect the discontinuities as follows: If we have |βj,i| ≤ a|βj,i−1|, where a > 1 is
a given thresholding constant, then we treat the current stencil as a smooth stencil.
Otherwise, we conclude that there are discontinuities contained in it.

The above described detection method may not be reliable if the function is pol-
luted by noise, especially when the noise is ”large”. In this situation, we need to
use heuristics to locate the exact position of the essential discontinuities. In many
applications such as in image processing, large discontinuities in function value are
the most significant features. A simple way to detect this kind of discontinuities is to
look for these large magnitude high frequency coefficients and then compare the data
values in the corresponding stencils to locate the exact jump positions.

Finally, we present the following uniform error estimate; the proof can be found in
[CZ99]

Theorem 1 Suppose the wavelets have finite support in [0, l], and p vanishing mo-
ments, f(x) is a piecewise continuous function in [a, b], and fj(x) is its j-th level
ENO-wavelet approximation. If the approximation fj+1(x) satisfies the DSP, then

‖f (x)− fj(x)‖ ≤ C(∆x)p‖f (p)(x)‖(a,b)\D, (2)

where ∆x = 2−j and D is the jump set. The norm ‖ · ‖ can be either L2 or L∞.

This theorem shows that the error in the ENO-wavelet approximation depends
only on the size of the derivative of the function away from the discontinuities. In
contrast, the error estimate for standard wavelet transforms depends on ‖f (p)(x)‖(a,b)

which is unbounded at discontinuities. From an approximation point of view, the
error bound for ENO-wavelets is as if the discontinuities were not there, and this is
the best possible for discontinuous functions.

Numerical Examples

In this section, we give some 1-D and 2-D numerical examples by using the ENO-
wavelet transforms. In particular, we show results for the ENO-Haar, ENO-DB4 and
ENO-DB6 wavelet transforms.

To illustrate the performance of ENO-wavelet transforms, we show picture com-
parisons of the standard wavelet approximations (dash dotted in all figures) and corre-
sponding ENO-wavelet approximations (solid). In addition, we compare their L∞ and
L2 errors at level i: E∞,i and E2,i. Also, we compute the order of accuracy defined
by: Order∞ = log2

E∞,i

E∞,i−1
, Order2 = log2

E2,i

E2,i−1
.

We apply Haar and ENO-Haar, DB4 and ENO-DB4, and DB6 and ENO-DB6 to
this function and compare the approximation errors. Fig 2 shows the comparison of
the order in L∞ and in L2 norm. It is clear that both the L∞ and L2 order of accuracy
for ENO-wavelet transforms are of the order 1, 2 and 3 for ENO-Haar, ENO-DB4 and
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Figure 3: The 4-level ENO-Haar and Haar (left), ENO-DB4 and DB4 (middle), and
ENO-DB6 and DB6 (right) approximation. The second row are corresponding zoom-
ins near a discontinuity. We see the Gibbs’ phenomenon in the standard approximation
but not in the ENO approximation.

ENO-DB6 respectively, agreeing with the results of Theorem 1. In contrast, standard
wavelet transforms do not retain the corresponding order.

To see the Gibbs’ oscillations, we display the 4-level ENO-wavelet and standard
wavelet approximations in the first row of Fig 3, for ENO-Haar (left), ENO-DB4
(middle) and ENO-DB6 (right) respectively. The second row are corresponding zoom-
in at a same discontinuity. We clearly see the Gibbs’ oscillations in the standard
approximations. In contrast, the ENO-wavelet approximations preserve the jumps
accurately.

In Fig 4, we also present the standard DB4 (dotted) and the ENO-DB4 (solid)
wavelet coefficients respectively. There are some large standard high frequency coef-
ficients (right part) related to the discontinuities. On the other hand, no large high
frequency coefficients present in the ENO-wavelet coefficients.

The next 1-D example shows the ENO-DB6 wavelet transform applied to noisy
data (see Fig. 5). Despite the presence of noise in the initial data (circles), the level-3
ENO-DB6 approximation (solid line) still retains the sharp edges (see zoom-in in the
right picture) compared to the standard DB6 approximation (dash-dotted line) which
not only has oscillations at the discontinuities but also smears them.

Finally, we give a 2-D image compression example to compare the standard Haar
and the ENO-Haar approximations. Here we use tensor products of 1-D transforms.
The original picture (left), the 3-level standard Haar (middle) and ENO-Haar (right)
approximation are shown in Fig 6. Both approximations use the same number of low
frequencies ( 1

64 of the original data). It is clear that in the standard Haar case, the
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Figure 4: The 4-level ENO-DB4 (solid) and the standard DB4 (dotted) coefficients.
There are large high frequency coefficients (right part) near the discontinuities in the
standard transform but not in the ENO-DB4 transform.
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Figure 5: Left: The comparison of the 3-level ENO-DB6 (solid line) with the standard
DB6 (dash-dotted line) approximation for noisy initial data (circles). Right: A zoom-
in of the left example at a discontinuities. The ENO-DB6 approximation retains the
sharp jumps but the standard DB6 approximation does not.

image becomes fuzzier than the ENO-Haar case. This illustrates that the ENO-Haar
approximation can reduce the edge oscillations for 2-D images.
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