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29. Solving non-linear electronic packaging problems
on parallel computers using domain decomposition
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Introduction

Miniaturisation of electronic equipment, such as those found in a notebook computer,
palm held devices, cell phones etc., requires high-density packing of electronic com-
ponents onto printed circuit boards (PCB). To join the interconnections, solder ma-
terials are used to bond microprocessor chips and board during assembly. In the
Reflow process case, the board assembly passes through a furnace where the solder
bump initially in the form of solder paste, melts, reflows, and then solidifies to bond
the interconnections. A number of defects may occur during and after this process
such as, respectively, bridging of the liquid solder and cracking of solder joint, chip
or board. With the increasing drive towards miniaturisation and smaller pitch sizes
(gap between interconnection of solder bumps), these are serious issues to industry in
manufacturing and component reliability in operation.

Finite Element Analysis (FEA) is used extensively in the electronic packaging com-
munity to calculate stress of solders and components, for reliability analyses [Lau93]
[SYS97]. Computer simulations, together with some experiments, provides an effective
design and optimization route to reducing these defects and in assessing solder and
board integrity and reliability. For models to fully characterise the physical phenom-
ena of the process that govern the integrity of the final joints requires the representing
physics of:

• Heat transports with solder solidification involving latent heat evolutions
• Residual stress evolution involving thermal miss-match between materials.
Also, an integrated solution procedure is needed to solve governing equations of

temperature, evolving solder shape, solidification, and stress, as they are interde-
pendent. For example, stress analysis is dependent on temperature changes in solid
regions. While for the solder joint formation, the solder material will initially, after
heating, be liquid and when the board exits the furnace it starts to solidify and stress
developments begin.

A microprocessor chip commonly has large number of interconnects that bonds to a
circuit board. The general modelling practice is to take a Macro-Micro approach that
simulates a single interconnect or assumes each interconnect behaves like a beam in the
finite element analysis. In the Macro-Micro case, there is a data transfer between the
models at each time step, see Figure 1. A detailed 3D model requires a sizeable mesh
and long computing time, i.e. solving non-linear equations of thermal and mechanical
systems; thereby, constraining the number of the number of cycles possible for the
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Figure 1: Solder Modelled as Beams (Macro) and Continuum (Micro)

design and optimization process. In the multiple chips case, it can easily leads to
models with mesh sizes having millions of elements.

Parallel computing technology opens up the possibility of undertaking such detailed
and large-scale analyses, and delivers the solution in a practical timeframe. In appli-
cation areas such as automobile and aerospace, parallel computing has significantly
reduced the time for analyses and increased the size of models (both of physical mod-
els and mesh sizes) that can be performed. Such success is also due to the advances
in the Domain Decomposition method, now a key element in the majority of parallel
models such as mesh or domain partitioning, linear and non-linear solver strategies,
and matching and non-matching overlapping grids. Here, we show some parallel com-
putations of 3D electronic packaging models that involves cooling, solidification, and
residual stresses of solder joints and throughout the component during assembly. All
the computations are performed on a Fujitsu AP3000 system using up to 12 processing
elements, with the largest model completed having over 1 million elements.

Heat Transport Equations

The equations governing the physics of heat transport and solidification can be ex-
pressed as:

ρc
∂T

∂t
+∇ · (ρcvT ) = ∇ · (k∇T ) + S

where T , t, ρ, c, k, v and S are the temperature, time, density, specific heat, thermal
conductivity, velocity vector, and source term, respectively. The equation for evolution
of latent heat during solidification is represented by the source term, and expressed
by:

S = −Lρ
∂f

∂t
− Lρ∇(vf)

where L and f are the latent heat and liquid-fraction, respectively. The relationship
between the liquid-fraction and temperature describes how the material (here it is the
solder) solidifies between the liquidus and solidus temperatures range. For isothermal
materials the latent heat release is instantaneous; this means liquidus and solidus
temperatures are the same and translates to a vertical jump in the curve between
liquid-fraction and temperature. Such numerical discontinuity needs to be addressed
properly to maintain energy conservation, if not, it is possible to artificially gain or lose
energies in the system. To fully conserve energy, the Enthalpy Source-Based method
[VS91] is used to address such discontinuity.
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Stress-Strain Equations

For stress analysis, the incremental equilibrium equations governing solid deformation
are [ZT89] [TBC95]:

∆σij,j = 0 (i, j = x, y, z)

where ∆σij,j are the Cartesian components of the Cauchy stress tensor. The incre-
mental stress ∆σ , (∆σxx ∆σyy ∆σzz ∆σxy ∆σxz ∆σyz) is due to the elastic strain
given by:

∆σ = [D]∆eel

where ∆eel and [D] are the elastic strain vector and elastic materials matrix respec-
tively. The elastic strains are dependent on the total ∆e, thermal ∆eth, and visco-
plastic strain ∆evp vectors given by:

∆eel = ∆e −∆eth −∆evp

For small strains, the total strain, ∆e, is given by the gradient in displacements, which
in matrix form is:

∆e = [L]∆d

where [L] is the matrix of differentials and ∆d is the displacement vector. The visco-
plastic strains in this analysis are represented by the Perzyna [Per66] constitutive
model give by:

ėvp =
∂evp

∂t
=

2λ
3σeq

(
σeq

σy
− 1

)n

Sij

where λ, σeq, σy , n and Sij are the fluidity, von-mises stress, yield stress, strain
rate sensitivity, and deviatoric stress, respectively. Within a time increment, ∆t, the
incremental visco-plastic strain is:

∆evp = ∆tėvp

An Integrated Procedure

The solution procedure for the coupling of solidification and stress, plus others such
as thermal convection (not included in the solder for the present study) is given in
reference [BCF+96], and is in the PHYSICA toolkit. Figure 2 shows the coupled
solution procedure for transient analysis of temperature, solidification, and stress.

Within the time step loop the thermal variables, temperature and liquid-fraction,
are first solved and the temperature changes, ∆T , calculated. To account for latent
heat evolution during solidification, and other non-linearity, an iterative procedure is
generally used. Next, the resulting changes of temperature and liquid-fraction are
used in the stress calculations.
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Figure 2: Coupled solution procedure in PHYSICA

Based on temperature changes the incremental displacements are calculated. Us-
ing the new displacements and current total stress, σo, the incremental total and
viscoplastic strains can be calculated. The incremental elastic strain and stress can
then be obtained for the time step. This incremental stress will update the total stress
(σn = σo+∆σ) that will change the values for viscoplastic strain. Due to non-linearity
and coupling, an iterative procedure is commonly used.

After the thermal and stress variables have been solved within the time step, the
values for these become the old values for calculations at the next time step. As
cooling progresses the liquid solder region solidifies and the resulting ”solid” elements
becoming eligible for stress calculations. The solution procedure continues until the
simulation finishes.

Software & Parallel Model

The PHYSICA toolkit [Phy] [CCB+96] from University of Greenwich is used for the
study. It has an open single-code component-based software framework [CBM+99] for
coupled and Multiphysics applications. The code is 3D, unstructured mesh, with anal-
ysis models for fluid flow, heat transfer, solidification, elastic/visco plastic, combustion
and radiosity. PHYSICA’s parallel model (see refs [CBM+99] [MCJ97]) is based on
the Single Program Multiple Data (SPMD) paradigm, where each processing element
runs the same program on a sub-portion of the model domain. The mesh, representing
the model domain, is partitioned using the graph-partitioning tool JOSTLE [Jos] into
sub-domains that are minimized for data exchanges between the overlapped region.
Message passing is then used to perform any data exchange needed between these
sub-domains on each processing element (PE).

For parallel codes to scale well for performance, the non-scalable portions needs to
be eliminated - if not possible, it will be a point of concern in the solution procedure’s
critical path. Some common examples of non-scalable parts are, reading and writing
to files (parallel input and output are currently system dependent, if available), and
global summation operatives commonly found in popular linear solvers. In the version
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Table 1: Parallel performance for electronic package case
CPU time in minutes

PE Solution time Total time Speedup
1 17.40 17.92
4 6.00 6.75 2.65
8 4.87 5.62 3.19

of PHYSICA used for this work, the embedded JOSTLE is scalar and it is a critical
point in the overall scalability. Also, by default, the whole mesh is first read into
memory for JOSTLE to perform the partitioning before distribute to the PEs for
processing. For larger model sizes this non-stop processing can be inappropriate due
to memory demands by JOSTLE and PHYSICA - together, the optimal performance
configuration of the computing system can degrade significantly. In this work, the
mesh partitioning and analysis are executed separately for all the large models; first
partitioning the mesh and save the PE index for each mesh element to file, then the
analysis phase reads the save index data and distributes the mesh element to each PE
for processing. For multiple run cases with the same number of PEs, this ”partition
and save” approach may, in some instances, be more advantages than the non-stop
approach; since for any amount of multiple runs the partitioning only occurs once. A
parallel version of JOSTLE is underway to address the non-stop processing and other
related matters.

Parallel Results

Table 1 shows the computing times for a model solve in electronic packing (consisting
of 21,413 vertices, 57,577 faces and 18,150 elements) in CPU minutes for 1, 4 and 8
PEs. For this model the total time for 8 PEs is a speedup of 3.19 over a single PE,
the solution speedup (without initial setup, such as mesh partitioning, and reading
and writing to files) is 3.57. This means the non-solution portion takes about 11 and
13 percents of the total CPU time, respectively for 4 and 8 PEs, compared to 0.03
percent for single PE.

Figure 3 shows one quarter of a chip bonding to a PCB example being modelled
during the reflow process, and Figure 4 showing an enlarged view of the solder bumps
with two different attachment materials at top and bottom. The model consists of
273,504 vertices, 1,133,207 faces and 425,890 elements. Figure 5 shows the solidifica-
tion fronts of the solder bumps during cooling phase of the reflow process. The corner
solder bump is solidifying at a rate faster than its neighbours as indicated by the so-
lidification front in dark colours. Figure 6 shows the magnitude of visco-plastic strain
and deformation throughout the solder bumps at the end of reflow when all the solder
bumps are solid. Again the corner solder bump has a higher amount of strain than
all the other solid bumps. The deformation, as shown by the inclining solder bump, is
board contracting more than the chip because of different thermal coefficients in the
material properties.

Table 2 gives the computing times from 2 up to 12 PEs in CPU hours. The model



276 CHOW, BAILEY, ADDISON

Figure 3: Chip bonding to PCB Figure 4: Solder bumps

Figure 5: Solidifying solder bumps Figure 6: Solder bumps deformation

is too big for single PE on the AP3000, as it reports out of memory. The CPU runtime
for 2 PEs is under 7 hours and 12 PEs is under 2 hours. This gives a speedup factor
of about 8 for 12 PEs, representing a saving of about 5 hours in analysis time or an
extra 1 to 2 cycles in the design and optimization process. For lower PE runs the
speedup factor moves nearer to the linear scaling mark.

To get an idea of a single PE runtime, the same model was run on a Sun Enterprise
10000 (E10000) with 2GB memory in scalar mode. With UltraSPARC processors
inside the AP3000 and E10000 systems, U170 and U250 respectively, a total CPU
time of 15.34 hours was reported on the E10000 with solution time being 15.24 hours.
If we put the E10000 result with the 12 PEs of AP3000, it represents a saving of over
13 hours in analysis time or giving an extra 5 to 6 cycles in the design & optimization
process. In terms of speedups, it represents a factor of 9 (compared to 8) for analysis
time and 11 (compared to 9) for the solution period. Figures 7 and 8, respectively,
show graphs of parallel performance for total and solution times; the triangle markers
indicates an idea of the true speedup if the 1 PE time had been possible. These
estimates are obtained by substituting the E10000 single PE result in the calculation
for speedups.

From the performance graphs, it is encouraging to see the curve for total time
shows there are potential gains for this model case by adding more PEs (12 PEs is
the highest we have access to at present). A downside is the non-solution portion of
the analysis time is also increasing with PEs, some 19 percent (or 20 minutes) for the
12 PEs case. To see how larger models may fair, a similar problem with model size of
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Table 2: Parallel performance for a chip bonding to a PCB example
CPU time in hours

PE Solution time Total time Speedup
2 6.281 6.748
3 4.233 4.621 2.921
4 3.261 3.648 3.699
5 2.703 3.070 4.397
6 2.350 2.701 4.997
7 2.082 2.488 5.425
8 1.816 2.153 6.268
9 1.684 2.023 6.671
10 1.530 1.848 7.305
11 1.460 1.762 7.658
12 1.379 1.698 7.951

Figure 7: Total time performance Figure 8: Solution time performance
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1,205,997 vertices, 3,504,048 faces and 1,149,312 elements was conducted on 12 PEs.
The parallel performance reports an analysis time of 6.01 hours with a solution period
of 4.94 hours, representing some 18 percent or 1 hour for non-solution activities. This
is encouraging, as the percentage figure has not altered significantly.

Conclusion

The above results indicate significant reduction in analysis time for electronic packag-
ing applications, even for a model mesh size of 18,000 elements. As for larger models
with elements in the millions, such as multiple chips on board cases, it can exceed the
memory capacity of today’s workstations. Parallel computing with domain decompo-
sition offers a solution to run and deliver the analysis within a design and development
timeframe.

The numerical experiments conducted indicate some 20 percent of the analysis
time on 12 PEs are in non-solution activities, such as data retrieving and saving to
files and setup period for parallel computation. Therefore, there is great potential
in reducing this figure even further and improving parallel performance by removing
the present scalar events in the procedure’s critical path such as having parallel IO
and parallel mesh partitioning. Memory usage is lot higher in mechanical analysis
section than in the thermal section; a ratio of about 2 to 1 has been observed - this
is primarily due to the segregated method used in thermal analysis section as to the
full-system employed in the mechanical.
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