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30. A heterogeneous domain decomposition for
initial– boundary value problems with conservation
laws and electromagnetic fields

C.A. Coclici, W.L. Wendland1, J. Heiermann, M. Auweter–Kurtz2

Introduction

In this paper a nonoverlapping domain decomposition method for the numerical treat-
ment of compressible viscous plasma flows inside a self–field magnetoplasmadynamic
(MPD) accelerator is developed. The high–enthalpy magneto–plasma flow is modelled
by a system of conservation laws extended by partial differential equations describ-
ing the electromagnetic field. Due to the tremendous computational time needed for
the numerical solution of the complex equations, the flow–field domain is decomposed
into two model zones, characterized by different physical properties of the flow. The
complete model of the extended Navier–Stokes equations in the near field of the ac-
celerator is coupled with a simplified model of the extended Euler equations in the far
field. The coupling is realized by appropriate transmission conditions at the artificial
coupling boundary.
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Figure 1: MPD thruster

The principle of a self–field thruster is
shown in Figure 1. A cold gas (argon)
enters the accelerator and is heated up
by an electric discharge to a hot plasma.
The plasma expands thermally and accel-
erates into a test tank in the laboratory.
In addition, the plasma is accelerated by
electromagnetic Lorentz forces. The flow
is described by the conservation equations
for mass, momentum and energy for the
heavy particles (argon atoms Ar0 and ions
Ar1+, Ar2+), by the conservation equa-
tion for the electron and the ionization
energy, and by the Maxwell equations of
classical electrodynamics.

Furthermore, reaction equilibrium, thermal non–equilibrium (two–fluid model), and
laminar flow are assumed at this time.
The complete system of governing equations is employed within an essentially smaller
near–field region Ω1, containing the thruster, and is coupled by appropriate
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Figure 2: Decomposition of the compu-
tational domain

transmission conditions across the ar-
tificial boundary Γ with a simplified
model in the complementary far field
Ω2, corresponding to the test tank.
Generally, the far–field simplifications
should be chosen in such a way, that
on one hand the flow in the far–field
domain is still modelled accurately
enough, and on the other hand, the
numerical treatment can be performed
efficiently.

The axisymmetric plasma flow is described in cylindrical coordinates by the vector–
valued function

W = W(r, z; t) :=
[
w, pH , TH ; we; wEB

]�(r, z; t), (r, z) ∈ Ω, t ∈ [0, T ].

Here, w=(ρ, ρvr, ρvz , EH)� collects the conservative variables with the density ρ, the
velocity vector v=(vr, vz)�, and the energy of the heavy particles EH . The pressure
and the temperature of the heavy particles are denoted by pH and TH , respectively.
The function we =(eei , pe, Te)� describes the electron component of the plasma, with
eei containing the electron and the ionization energy, and with pe and Te representing
the pressure and the temperature of the electron component, respectively. Finally,
wEB = (E,B, j)� contains the electromagnetic field (E,B) and the electric current
density j.

Modelling of the near field

The heavy–particle flow is modelled by the compressible Navier–Stokes equations
which are extended due to the influence of an arc discharge. They take in cylindrical
coordinates the form

∂w1

∂t
+ div(r,z)F(W1) = div(r,z)R(w1,∇(r,z)w1) + G(W1) in Ω1 × [0, T ]. (1)

The function F contains the convective part of the Navier–Stokes equations (here,
with the pressure field p = pH + pe), and, in addition, an electromagnetic pressure
term derived from the source terms. We represent F as

F = (Fr,Fz)(W) = (fr, fz)(w,we) + (gr,gz)(wEB),

where, with the purely azimuthal magnetic field B = (0, B, 0)� and with the magnetic
permeability of vacuum µ0 > 0,

fr(w,we) :=
(
ρvr, ρv2

r + (pH + pe), ρvrvz, [EH + (pH + pe)] vr

)�
,

fz(w,we) :=
(
ρvz , ρvzvr, ρv2

z + (pH + pe), [EH + (pH + pe)] vz

)�
,

gr(wEB) :=
(
0, B2, 0, B2vr

)�/(2µ0), gz(wEB) :=
(
0, 0, B2, B2vz

)�/(2µ0).
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The viscous terms are collected in the function R = (Rr,Rz)(w,∇(r,z)w) where

Rr(w,∇(r,z)w) :=
(
0, τrr, τrz, τrrvr +τrzvz +λH ∂TH/∂r

)�
,

Rz(w,∇(r,z)w) :=
(
0, τzr, τzz, τzrvr+τzzvz +λH ∂TH/∂z

)�
,

with the heat conductivity λH > 0 of the heavy–particle flow, and with

τrr = µ

[
2
∂vr

∂r
− 2

3
div v

]
, τrz = τzr = µ

[
∂vr

∂z
+

∂vz

∂r

]
, τzz = µ

[
2
∂vz

∂z
− 2

3
div v

]

defining the components of the viscous part of the stress tensor; µ > 0 represents
the viscosity coefficient. The function G contains the electromagnetic force and heat
terms as well as quantities describing the heat transfer due to the collisions between
the plasma components:

G(W) :=
(

0,
1
r

[
pH + pe − 2

3
µ
(

2
vr

r
− ∂vr

∂r
− ∂vz

∂z

)
− B2

2µ0

]
, 0,

(
pe +

B2

2µ0

)
div v − vr

r

B2

µ0
+

2∑
ν=0

nνneαeν(Te − TH)
)�

.

Here, nν (ν =0, 1, 2) and ne are the densities of the heavy particles and of the electrons,
respectively, and αeν are heat transfer coefficients. Note that, by including the Lorentz
terms j×B as B2/(2µ0) in the fluxes, our formulation observes as much conservation
as possible. Consequently, conservative numerical methods (as e.g. the finite volume
method) are good candidates to be used for the numerical treatment of the problem.
The conservation of the electron and ionization energy is given in Ω1 × [0, T ] by

∂eei

∂t
+ div (eeiv) − div (λei∇Te) = −pe div v +

5
2

k

e
j · ∇Te − 1

nee
j · ∇pe

+
2∑

ν=0

nνneαeν(TH−Te)+
|j|2
σ

. (2)

Here, λei denotes the heat conductivity for the electron component of the flow, k is
the Boltzmann constant, and σ is the electric conductivity. The Maxwell equations
and Ohm’s law for plasmas read

rotB = µ0j, rotE = −∂B
∂t

, div B = 0; E =
j
σ
− v × B + β j × B− β ∇pe

(β – Hall parameter), leading to the discharge equation

∂2B

∂r2
+

∂2B

∂z2
+

[
1
r
− µ0σvr

]
∂B

∂r
− µ0σvz

∂B

∂z
−

[
1
r2

+ µ0σ
(∂vr

∂r
+

∂vz

∂z

)]
B = FB ,

(3)

where FB = FB(σ, pe, µ0) denotes a source term. Additional equilibrium reactions are
incorporated into our model but, for brevity, they are not given here explicitly (for
more details, see e.g. [Sle99]).
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In order to get a more profound understanding of the complex physical processes in-
volved, theoretical and numerical investigations have been performed [Sle99, WKAK98].
Continuing this work, the mathematical formulations of the conservation equations
have been extended in [HAKE+99], where an advanced numerical finite–volume code
has been written in order to capture the plasma flow physics accurately.

However, due to the high complexity of the model and the tremendous computational
costs, the system has been discretized only in the vicinity Ω1 of the MPD thruster,
identified here as the near field. Γ is there considered as outflow (freestream) boundary
and characteristic boundary conditions, using data obtained from measurements, are
used. In that model one faces the problem that a certain amount of ambient (cold)
far–field gas recirculates into the hot plasma jet in the near field. Consequently, parts
of the outflow boundary Γ get “inflow” properties and require additional information
about the flow quantities. This makes the numerical treatment of the plasma flow
in the far field Ω2 necessary. We consider in Ω2 a simplified model which takes into
account the physical properties of the flow, and couple this model to the complete
system in Ω1. Our coupling procedure extends previous work on heterogeneous do-
main decomposition in aerodynamics (see, e.g. [QS95, Coc98, CW01]) to the case of
compressible magneto–plasma flows.

Simplified modelling of the far field

In a first approximation we assume that far away from the MPD accelerator the shear
stresses τrr, .., τzz and the heat conduction terms λH∂r(z)TH , defining the quantity R,
are strongly dominated by the convective part. Hence, we assume the heavy–particles
flow to be inviscid in Ω2. At the moment, we also assume that the magnetic field B
vanishes identically in Ω2. The system of conservation laws takes the simplified form

∂w2

∂t
+ div(r,z)(fr , fz)(w2,we,2) = H(w2,we,2) in Ω2 × [0, T ], (4)

with the simplified source term

H(w2,we,2) :=
(

0,
pH + pe

r
, 0, pe div v +

2∑
ν=0

nνneαeν(Te − TH)
)�

.

Furthermore, as a consequence of j = rotB/µ0 ≡ 0 in Ω2, the equation of conservation
of electron and the ionization energy (2) becomes in Ω2 × [0, T ]

∂eei

∂t
+ div (eeiv) − div (λei∇Te) = −pe div v+

2∑
ν=0

nνneαeν(TH−Te). (5)

Transmission conditions

These conditions should be chosen in such a way, that on one hand, the fundamental
physical laws are respected, and on the other hand, the resulting coupled problem
is well–posed and consistent with the full original problem. The continuity of the
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characteristic variables could be chosen as transmission condition, but according to
the theory of hyperbolic equations, this can be required only across that part of the
interface, where the corresponding characteristics enter the hyperbolic region, see e.g.
[Hir88]. We also refer to [QS95, Coc98, CW01], where the continuity of the Riemann
invariants across the inflow part and compatibility conditions across the outflow part
of the boundary are used. In accordance with the conservation laws, the continuity
of the normal flux yields a transmission condition on the complete interface Γ: the
total flux associated with the full model in Ω1 (containing the inviscid as well as the
viscous contributions) is set equal to the normal inviscid flux, that results from the
simplified equations in Ω2:

−[
Rr(w1,∇w1)nr + Rz(w1,∇w1)nz

]
+

[
fr(w1,we,1) + gr(wEB,1)

]
nr

+
[
fz(w1,we,1) + gz(wEB,1)

]
nz = fr(w2,we,2) nr + fz(w2,we,2) nz (6)

across Γ. The flux condition has successfully been used for pure flow problems (see, for
example, [QS95, CW01]). However, it implies that the solutions of the coupled problem
may exhibit jumps at the interface, depending on the magnitude of the viscosity and
heat transfer terms neglected in the far field (for more details, see [Coc98]). Since the
solution of the original problem should satisfy the natural transmission conditions at
the artificial interface (i.e. continuity of the solution and of the total normal flux),
the approximate extended Navier–Stokes / extended Euler solution can only be a
first approximation and needs to be corrected by special terms accounting for the
loss of continuity and maintaining the continuity of the normal flux. A boundary
layer correction for a simplified transmission problem is presented in [CW00] in the
framework of singular perturbation theory. This analysis is extended for the problem
under consideration in [CMW00].
In order to assure the electron heat transfer across the interface, we impose the con-
tinuity of the co–normal derivative of the electron temperature Te:

[
λei, 1

∂Te, 1

∂n

]
(r, z) =

[
λei, 2

∂Te, 2

∂n

]
(r, z) for all (r, z) ∈ Γ. (7)

Finally, we impose B ≡ 0 on Γ.

Numerical aspects and results

In the numerical code, the extended conservation laws (1) and (4), describing the
heavy–particle motion, as well as the electron and the ionization energy equations
(2) and (5) are solved on an unstructured, dual mesh by using a second–order finite
volume upwind scheme based on explicit Euler time–stepping. The discharge equation
(3) is currently solved by triangular finite elements with linear ansatz functions using
an SOR scheme. For a detailed description we refer to [HAKE+99]. A finite volume
formulation is in preparation for this conservation equation.

The full computational domain including the near field of the MPD accelerator and
the far field corresponding to the tank, are shown in Figure 3. The area of the far
field is about 80 times larger than that of the near field, emphasizing the necessity of
simplifying the mathematical model in the far field.
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Figure 3: Full computational domain

Figure 4: Isolines of vz

The isolines of the axial velocity component vz give an overall impression of the plasma
flow: The plasma is accelerated in the MPD accelerator, then it is expanded into the
tank, and finally it flows out of the tank at the far right.

The coupling domain, where dual cells on both sides of the coupling boundary touch
each other, is shown in Figure 5 (left). Both meshes are produced with an advancing
front algorithm. The mesh generator enforces the global mesh to be conforming at
the artificial coupling boundary.
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Figure 5: Computational domain for the coupling (left); isolines of vz (right)

The isolines of the longitudinal velocity vz for the coupled solution are presented on
the right. Obviously, the coupling method works very well for the central, hot plasma
jet. Up to one nozzle radius above the centerline, vz passes smoothly the coupling
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boundary Γ. However, farther away from the centerline, the isolines become slightly
discontinuous and do not cross the interface smoothly.

It turns out that the neglection of the heat conduction terms corresponding to the
heavy–particle flow is significant, see Figure 6 (left). While the isolines of the heavy–
particle temperature TH behave smoothly across the part of the interface Γ contained
in the central plasma jet, we can see the discontinuities of the solution in the region
above very clearly. The explanation for this is that the heavy–particle heat conduction
is still physically relevant with respect to the inviscid Euler energy flux, such that the
heavy particle heat conduction cannot be neglected in this geometrical decomposition.
The local discontinuity of TH also causes a slight discontinuity and non–smoothness
of vz in the critical region. Therefore, the far field domain will be further decomposed
into a small intermediate domain attached to the near field and the complementary
far–field region. In the intermediate field, the heavy–particle heat conduction will be
considered, while the components of the viscous stress tensor will be neglected. Also
a rigorous dimension analysis of the flow quantities is necessary to justify the use of
the intermediate model.
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Figure 6: Isolines of the heavy–particles temperature TH (left) and of the electron
temperature Te (right)

The approximate coupled solution also shows that the electron temperature Te passes
the artificial interface smoothly, as can be seen in Figure 6 (right). Thus, the natural
transmission condition (7), used for the coupling of the equations (2) and (5) is justified
also numerically.

Finally, we outline that by using the heterogeneous domain decomposition, the very
complex compressible magneto–plasma flow has been computed for the first time
within the whole MPD accelerator plus tank configuration, and that the influence of
the far field through the recirculating amount of gas has been simulated numerically.
Our investigation shows that the heterogeneous domain decomposition method is an
excellent tool which can be efficiently used in the numerical treatment of nonlinear
boundary value problems of high complexity.
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