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Preface

This volume represents the Proceedings of the 12th International Conference on Do-
main Decomposition Methods held at Chiba University, Chiba, Japan, October 25th
– 29th, 1999.

Domain Decomposition (DD) has served as an organizing principle for many con-
cepts and methodologies in mathematics, computer science, and computational science
and engineering. And also DD will contribute to originate new concepts and method-
ologies in related fields mentioned above, which will give a clue to understand and solve
complex problems existing in our real world. The objective of DD12 was to promote
understanding and use of DD for the solution of problems arising in various fields of
science and engineering and to promote interaction between researchers throughout
the above-mentioned disciplines. These proceedings include invited plenary talks by
leading experts in the field from academia, research institutions, and industry, as well
as mini-symposia and contributed papers. The papers included are divided into three
parts, theory, algorithm and application.

The conference was organized by I. Hagiwara (TIT), T. Ikeda (Ryukoku Univ.), H.
Imai (Tokushima Univ.), T. Kako (UEC), H. Kawarada (Chairperson, Chiba Univ.),
H. Koshigoe (Chiba Univ.), M. Mori (Kyoto Univ.), M. Nakamura (Nihon Univ.),
H. Okamoto (Kyoto Univ.), H. Suito (Chiba Univ.), M. Tabata (Kyushu Univ.), T.
Takeda (UEC) and G. Yagawa (Univ. of Tokyo). The conference received support
from Chiba Convention Bureau, Chiba University, GAMNI, Inoue Foundation for
Science, Iwaki city and the Japanese Ministry of Education.

We wish to thank the conference secretary, Mrs. A. Tonomura, for her hard work
towards the success of the conference. We are also grateful to the organizers of mini-
symposia for attracting high quality presentations.

Finally, we wish to express sincere gratitude to Dr. Hiroshi Suito (Chiba University,
Japan) for technical editing of this proceedings and to Dr. Martin Gander (McGill
University, Canada) for preparing LATEX2e environment.

Tony Chan,
UCLA, U.S.A.

Takashi Kako,
The University of Electro-Communications, Japan

Hideo Kawarada,
Chiba University, Japan
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Université Paris 6, France
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1. Analysis of a Multigrid Algorithm for the Mortar
Finite Element Method

Dietrich Braess1

Introduction

The mortar method has attracted much interest as a special domain decomposition
method. It has been analysed in a series of papers (see e. g. [BM97, BMP94, BDW00,
Woh99a]) in particular for second order elliptic boundary value problems

− div a(x) grad u(x) = f(x) in Ω,

a(x)
∂u

∂n
= g(x) on ΓN ⊂ ∂Ω, (1)

u = 0 on ΓD := ∂Ω \ ΓN .

Here a(x) is a (sufficiently smooth) uniformly positive definite matrix in the bounded
domain Ω ⊂ Rd, ΓD is a subset of the boundary Γ of Ω, and ΓN := Γ \ ΓD.

Let Ω be decomposed into non-overlapping subdomains Ωk, k = 1, . . . ,K,

Ω̄ =
K⋃
k=1

Ω̄k, Ωk ∩ Ωl = ∅ for k �= l. (2)

Let Hs(Ω) denote the usual Sobolev spaces endowed with the Sobolev norms ‖ · ‖s,Ω,
and H1

0,D(Ω) be the closure in H1 of all C∞-functions vanishing on ΓD. The natural
space associated to the domain decomposition (2) is the product space

Xδ := {v ∈ L2(Ω) : v|Ωk ∈ H1(Ωk), k = 1, . . . ,K, v|ΓD = 0}, (3)

endowed with the (broken) norm

‖v‖1,δ :=
(
K∑
k=1

‖v‖21,Ωk

)1/2

. (4)

The spaceH1
0,D(Ω) is determined as a subspace ofXδ by appropriate linear constraints.

Corresponding discretizations lead to saddle point problems. In this paper we present
a multigrid method for the efficient solution of such indefinite systems of equations.
According to standard multigrid convergence theory the main tasks are to establish
appropriate approximation properties in terms of direct estimates as well as to design
suitable smoothing procedures which give rise to corresponding inverse estimates.

The discretization error of the mortar finite elements can be analyzed either by
the theory of nonconforming elements and the lemma of Berger, Scott, and Strang

1Faculty of Mathematics, Ruhr-University, 44780 Bochum, Germany,
braess@num.ruhr-uni-bochum.de
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(Strang’s second lemma), or by the theory of saddle point problems. Up to now most
investigations have used the first approach. It has the advantage that the analysis can
be performed with standard Sobolev spaces.

On the other hand, the framework of mixed methods is more appropriate when
the computions are performed for the saddle point formulation and fast solvers are
to be developed. It seems to be necessary to use mesh-dependent norms if Brezzi’s
theory is applied. Ellipticity of the variational form, boundedness of the functional in
the definition of the constraints, and the inf-sup condition have to be guaranted. We
will follow this scheme.

We note that there is also an alternative which can be found in [BB99] and
[Woh99a]. The finite element spaces for the direct variables and the Lagrange multi-
pliers need not be balanced so strictly if the error estimates are derived in a two-stage
process. First, the direct variables are treated as nonconforming elements. Having an
error estimate for them, only the inf-sup condition and no ellipticity assumption is
required when the error of the Lagrange multipliers are treated; cf. Remark 1.

There is a correspondence between all the approaches. Roughly speaking, the
terms in the formula of the lemma of Berger, Scott, and Strang are obtained by
arguments which are refound in the analysis of the mixed method and vice versa;
there are, however, some tiny but very sophisticated differences. Although we admit
that the finite element functions are not continuous at the cross points, the subset of
the functions without jumps at cross points is responsible for the stability of the mortar
elements.

A suitable smoothing procedure for the multigrid algorithm that is consistent with
the approximation properties above is obtained by a method known from the Stokes
problem. The paper concludes with a numerical example.

The Continuous Problem

For convenience, we assume that the domain Ω ⊂ Rd and the subdomains Ωk in (2)
are polygonal. If Ωk and Ωl share a common interface, we set Γ̄kl := Ω̄k ∩ Ω̄l. The
interior faces form the skeleton

S :=
⋃
k,l

Γkl. (5)

Γkl, ΓN , and ΓD will always be assumed to be the union of polygonal subsets of the
boundaries of the Ωk. Often such a decomposition is called geometrically conforming.

In order to characterizeH1
0,D(Ω) as a subspace ofXδ, recall that for any (sufficiently

regular) manifold Γ the Sobolev spaces Hs(Γ) can be defined by their intrinsic norms
(see [LM72, Section 7.3]), or alternatively, when Γ is part of a boundary, as a trace
space. In fact, whenever s− 1/2 is not an integer,

‖v‖s−1/2,Γ := inf
w∈Hs(Ω),w|Γ=v

‖w‖s,Ω

is an equivalent norm for Hs−1/2(∂Ω). Moreover, if Γ′ is a smooth subset of Γ, Hs
00(Γ

′)
consists of those elements v ∈ Hs(Γ′) whose extension ṽ of v by zero to all of Γ belongs
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to Hs(Γ), cf. [LM72, p. 66], in particular,

H
1/2
00 (Γkl) = {v ∈ H1/2(Γkl) : ṽ ∈ H1/2(∂Ωk), ṽ|Γkl = v; ṽ = 0 on ∂Ωk\Γkl},

‖v‖
H

1/2
00 (Γkl)

:= ‖ṽ‖1/2,∂Ωk . (6)

We note that H
1/2
00 (Γkl) is an interpolation space between L2(Γkl) and H1

0 (Γkl)

H
1/2
00 (Γkl) = [H1

0 (Γkl), L2(Γkl)]1/2,

while
H1/2(Γkl) = [H1(Γkl), L2(Γkl)]1/2.

This can be realized, e. g., by the K-method [LM72, pp. 64–66, pp. 98–99].
It is appropriate to characterize H1

0,D(Ω) as a subspace of

X00 := {v ∈ Xδ : [v] |Γkl∈ H
1/2
00 (Γkl) ∀Γkl ⊂ S}, (7)

endowed with the norm

‖v‖2X :=
∑
k

‖v‖21,Ωk +
∑

Γkl⊂S
‖[v]‖2

H
1/2
00 (Γkl)

. (8)

The trace terms in (8) arise from the fact that X00 is a proper subspace of Xδ, and
they motivate our later treatment of the finite element discretization. Specifically we
have

H1
0,D(Ω) = {v ∈ X00 : (µ, [v])0,Γkl = 0 ∀µ ∈ H

−1/2
00 (Γkl), Γkl ⊂ S}. (9)

Here and in the sequel we write H
−1/2
00 and H−1/2 for the dual of H

1/2
00 and H1/2,

respectively.
We now turn the problem (1) into a weak form based on the above characterization

of H1
0,D(Ω). Let

a(u, v) :=
∑
k

∫
Ωk

(a(x)∇u(x)) · ∇v(x)dx, (10)

b(v, µ) :=
∑

Γkl⊂S
(µ, [v])0,Γkl . (11)

Setting
M :=

∏
Γkl⊂S

H
−1/2
00 (Γkl),

we consider the variational problem: find (u, λ) ∈ X00 ×M such that

a(u, v) + b(v, λ) = (f, v)0,Ω + (g, v)0,ΓN , v ∈ X00,

b(u, µ) = 0, µ ∈ M.
(12)

From the definition of the trace spaces it follows that the operator B : X00 →∏
Γkl

H
1/2
00 (Γkl), v �→ Bv defined by (Bv, µ)0,S =

∑
Γkl⊂S(µ, [v])0,Γkl for any µ ∈ M ,

is bounded.
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Moreover, the saddle point problem (12) satisfies the inf-sup condition. A straight
forward proof can be found in [BDW00]. The crucial point is that the jump on Γkl
belongs to H

1/2
00 (Γkl), and it can be extended without interference to other parts of

the skeleton.
Furthermore, we know from (9) that H1

0,D(Ω) = V := kerB. Since ‖v‖X = ‖v‖1,Ω
for v ∈ H1

0,D, the bilinear form a(·, ·) is V -elliptic, i.e., elliptic on the kernel of B.

The discrete problem

In the discussion of the finite element discretization of (12), we will restrict ourselves to
the bivariate case, d = 2. For each subdomain Ωk we choose a family of (conforming)
triangulations Tk,h independently of the neighboring subdomains; i.e., the nodes in
Tk,h that belong to Γkl need not match the nodes of Tl,h. The corresponding spaces
of piecewise linear finite elements on Tk,h are denoted by Sh(Tk,h). Following [BB99,
BM97, BMP94] we set

Xh := Xδ ∩
K∏
k=1

Sh(Tk,h), (13)

i.e., the functions in Xh are not required to be continuous at the cross-points of the
polygonal subdomains Ωk and Xh �⊂ X00. We associate with each interface Γkl the
nonmortar side which, by the usual convention, is Ωk while Ωl is the mortar side.
Let Mkl,h be the space of all continuous piecewise linear functions on Γkl on that
partition induced by the triangulation Tk,h on the nonmortar side, under the additional
constraint that the elements in Mkl,h are constant on the two intervals containing
the end points of Γkl. Thus the dimension of Mkl,h agrees with the dimension of
T̃kl,h := Sh(Tk,h) ∩H1

0 (Γkl) ⊆ H
1/2
00 (Γkl). The space of discrete multipliers is defined

as

Mh :=
∏

Γkl⊂S
Mkl,h. (14)

The kernel of the restriction operator is

Vh := {vh ∈ Xh : b(vh, µh) = 0 for µh ∈ Mh}. (15)

As already anounced in the introduction we will employ mesh-dependent norms as
in [AT95, Woh99b]. Setting

‖w‖1/2,h,Γkl := h−1/2‖w‖0,Γkl ,

let

‖vh‖21,h := ‖vh‖21,δ +
∑

Γkl⊂S
‖[vh]‖21/2,h,Γkl

= ‖vh‖21,δ +
∑

Γkl⊂S
h−1‖[vh]‖20,Γkl , (16)

‖µ‖2−1/2,h :=
∑

Γkl⊂S
‖µ‖2−1/2,h,Γkl =

∑
Γkl⊂S

h‖µ‖20,Γkl. (17)
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Obviously, (16) corresponds to (8). Whenever a distinction of local mesh sizes matters,
the global h in (16)–(17) has to be replaced by the mesh size hk of the non-mortar
side in the summands for Γkl. In this framework,

a(uh, vh) + b(vh, λh) = (f, vh)0,Ω + (g, vh)0,ΓN , vh ∈ Xh,

b(uh, µh) = 0, µh ∈ Mh,
(18)

is a stable discretization of (12).
When verifying this, one crucial point of the analysis is the proof of the inf-sup

condition. This is well-known for the saddle point formulation, but the reader may
wonder that we find the arguments for the inf-sup condition (often very concealed) also
in the analysis by the theory of nonconforming elements. It is done for the following
reason. Given u ∈ H2(Ωk), by the classical theory there is a finite element function
vh ∈ Xδ such that ‖u − vh‖1,δ can be easily estimated. The lemma of Berger, Scott,
and Strang, however, requires a good approximation by an element that satisfies the
mortaring condition. Now Fortin’s theory (see [BF91] or [Bra97, p. 130]) yields this
property whenever the inf-sup condition holds.

There is one more point that is found in all treatments of mortar elements which we
know. Although the analysis in the papers aim at different norms (the usual Sobolev
norms or mesh-dependent norms), they start with an inf-sup condition for the L2 inner
product on the skeleton. We will exemplify a simple proof. Here the inf-sup condition
is stated in terms of a projection operator.

To this end we consider the trace space on an interface Γkl and let

ξ0 < ξ1 < . . . < ξp−1 < ξp

be a partition of the interval [ξ0, ξp] which represents Γkl. Motivated by the setting
(14) of T̃kl,h and Mkl,h we consider two subspaces of the space of continuous piecewise
linear functions on [ξ0, ξp]. Let T̃kl,h be the subspace of those functions that vanish
at the endpoints ξ0 and ξp, and let Mkl,h be the subspace of those functions that
are constant on the first and on the last interval. So T̃kl,h and Mkl,h have the same
dimension p− 1.

Lemma 1 The projectors Qh : L2[ξ0, ξp] → T̃kl,h defined by

(Qhf, v)0 = (f, v)0 for v ∈ Mkl,h, (19)

are uniformly bounded in L2, specifically

‖Qhf‖0 ≤
4
3
‖f‖0 for f ∈ L2[ξ0, ξp]. (20)

Proof: For uh := Qhf ∈ T̃kl,h let vh ∈ Mkl,h be defined by vh(ξi) = uh(ξi), i =
1, . . . , ξp−1. The two functions are determined by these p− 1 values. Thus uh and vh

agree on [ξ1, ξp−1], and
∫ ξp−1

ξ1
uhvhdx = 1

2

∫ ξp−1

ξ1
(u2h + v2h)dx. On the other hand, one

obtains for the first (and last) interval

ξ1∫
ξ0

uhvhdx =
1
2
D,

ξ1∫
ξ0

u2hdx =
1
3
D,

ξ1∫
ξ0

v2hdx = D,
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where D := (ξ1 − ξ0)uh(ξ1)2. Hence,

ξ1∫
ξ0

uhvhdx =
3
8

ξ1∫
ξ0

(u2h + v2h)dx.

Summing over all intervals and using Young’s inequality yields

‖f‖0‖vh‖0 ≥ (f, vh)0 = (uh, vh)0 ≥
3
8
(
‖uh‖20 + ‖vh‖20

)
≥ 3

4
‖uh‖0‖vh‖0, (21)

which proves (20).
Let µh ∈ Mh and Γkl be an interface. It follows from the lemma that (µh, wkl)0,Γkl

is large if wkl := Qh,kl µh. Specifically we conclude that

inf
µh∈Mh

sup
vh∈Xh

b(vh, µh)
‖vh‖0,S ‖µh‖0,S

≥ 3
4
.

The proof of the Brezzi condition for the correct norms usually proceeds in a standard
way. Interpolation theory yields an inverse estimate

‖wkl‖H1/2
00

≤ ch−1/2‖wkl‖0,Γkl = c‖wkl‖1/2,h,Γkl. (22)

There is an extension v such that

[v] = wkl on Γkl ,

and the ‖ · ‖1-norm of the extension is bounded by the H
1/2
00 norm above. Thus the

same construction is good for the proof of the Brezzi condition for the mesh-dependent
norms or for the Sobolev norms.

Theorem 1 Assume that the triangulation in each subdomain Ωk is quasiuniform.
The discretizations (18) based on the spaces Xh,Mh defined by (13) and (14), respec-
tively, satisfy the LBB-condition, i.e., there exists some β > 0 such that

inf
µh∈Mh

sup
vh∈Xh

b(vh, µh)
‖vh‖1,h‖µh‖−1/2,h

≥ β, (23)

and

inf
µh∈Mh

sup
vh∈Xh

b(vh, µh)
‖vh‖X ‖µh‖H−1/2

00

≥ β (24)

holds uniformly in h.

We want to stress one point. Since we admit that the finite element functions in Xh
can be discontinuous at the cross points, their jumps on the interface Γkl are only in
H1/2(Γkl). Nevertheless, the construction for the proof of the inf-sup condition yielded
finite element functions with jumps in the subspaces H

1/2
00 (Γkl), and we conclude that

the subspace of finite elements with this property is thick enough. Therefore it is
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natural that the Lagrange multipliers are equipped with the norms ‖µh‖H−1/2
00 (Γkl)

in those investigations in which norms of the classical Sobolev spaces rather than
mesh-dependent norms are preferred.

After the inf-sup condition has been established, only approximation properties are
required for the proof of the error estimate. Assume that the problem is H2-regular,
i.e., u ∈ H2. Let wh ∈ Xh be finite element function with ‖u− wh‖1,δ ≤ ch‖u‖2 that
need not satisfy the mortar condition. Similarly, we have ‖ ∂u∂n −µh‖0,Γkl ≤ ch1/2‖u‖2,
for some µh ∈ Mh and all Γkl, (and this term appear also in the usual bounds of
the consistency error of the second Strang lemma). The regularity assumption and
a density argument assert that the first equation in (12) holds for all v ∈ X00 + Xh.
Hence,

a(uh − wh, vh) + b(vh, λh − µh) = 〈l, v〉 ∀vh ∈ Xh,

b(uh − wh, µ) = 0, ∀µ ∈ Mh,
(25)

where 〈l, v〉 := a(u − wh, v) + b(v, λ − µh). By construction |〈l, v〉| ≤ ch ‖u‖2 ‖v‖1,h.
From this bound and the stability of (25) we obtain the error estimate

‖u− uh‖1,h + ‖λ− λh‖−1/2,h ≤ ch‖u‖2 (26)

and by a duality argument

‖u− uh‖0 + h‖λ− λh‖−1/2,h ≤ ch2‖u‖2. (27)

For details the reader is refered to [BDW00].

Remark 1 We have provided the well-known arguments in the derivation of the er-
ror estimates since we want to be more specific about the remark at the end of the
introduction.

In establishing (25) we have used ellipticity of a(·, ·), boundedness of b(·, ·), and the
inf-sup condition. On the other hand, if a bound for ‖u− uh‖1,δ has been determined
elsewhere, following [BB99, Woh99a] the first equation in (25) may be rewritten

b(vh, λh − µh) = b(vh, λ− µh)− a(uh − u, vh) ∀vh ∈ Xh. (28)

From (24) we know that we obtain ‖λh−µh‖H1/2
00

≤ β−1b(vh, λh−µh)/‖vh‖X with an
appropriate test function vh. Specifically, the right test function has its jumps on the
interfaces in H

1/2
00 , and it is not an obstacle that b(·, ·) is not bounded on H1/2×H

−1/2
00 .

After applying the triangle inequality the error of the Lagrange multipliers is established
in the H

−1/2
00 norm. This technique circumvents the fact that the bilinear form b is

not bounded on H1/2 × H
−1/2
00 . – The unboundedness is an obstacle for the direct

application of Brezzi’s theory.

Finally, we note that recently other finite elements for the Lagrange multipliers
have been suggested. Computations are easier if they are obtained from a dual basis
[Woh99c].
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Multigrid Convergence Analysis

The saddle point problem (18) gives rise to a linear system of the form(
A BT

B

)(
uh
λh

)
=
(
f

0

)
, (29)

where the dimension of the vectors coincides with the dimension of the finite element
spaces Xh and Mh, respectively. For convenience, the same symbol is taken for the
finite element functions and their vector representations, and the index h is suppressed
whenever no confusion is possible.

The finite element basis functions are assumed to be normalized such that the
Euclidean norm of the vectors ‖ · ‖�2 is equivalent to the L2-norm of the functions, i.e.

‖vh‖�2 ≈ ‖vh‖0,Ω for vh ∈ Xh. (30)

When the equations (29) are solved by a multigrid algorithm, the design of the smooth-
ing procedure is the crucial point. Motivated by [BS97] our smoothing procedure will
be based on the following concept. Let C be a preconditioner for A which, in partic-
ular, is normalized so that

vTAv ≤ vTCv, v ∈ Xh, (31)

and for which the linear system(
C BT

B

)(
v

µ

)
=
(
d

e

)
(32)

is easily solvable. In actual computations the vectors v, µ are obtained by imple-
menting Sµ = BC−1d − e, v = C−1(d − BTµ), where S := BC−1BT is the Schur
complement of C in (32).

Then the iteration that will serve as a smoother in our multigrid scheme has the
form (

uj+1
h

λj+1
h

)
:=

(
ujh
λjh

)
−
(

C BT

B

)−1{(
A BT

B

)(
ujh
λjh

)
−
(
f

0

)}
(33)

=
(

ujh
0

)
−
(

C BT

B

)−1(
Aujh − f

Bujh

)
, (34)

where superscripts will denote iteration indices. It is important to note that uj+1
h

always satisfies the constraint, i.e.,

Buj+1
h = 0, (35)

see [BS97]. Specifically the implementations are based on (33) in order to have aux-
iliary problems with small (correction) vectors, while the representation (34) shows
that the next iterate is independent of the old Lagrange multiplier λjh.

Now we assume that the reader is familiar with the general concept of multigrid
algorithms [Hac85] and knows some simple application. This is sufficient since the
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finite element spaces Xh ⊂ Xδ and Mh ⊂ M are nested and the coarse grid correction
of the multigrid scheme can be performed in the standard manner, see e.g. [BS97] or
[Hac85, p. 235].

As usually, the analysis of the multigrid method will be based on two different
norms. The fine topology will be defined by the norm

|||vh, µh|||2 := ‖Avh +BTµh‖�2 , (36)

i.e., by a discrete analogon of the H2-norm, and the coarse one by the L2-norm

‖vh‖0,Ω.

The latter expression is independent of the Lagrange multiplier since the iteration
(34) is independent of the multiplier in the previous step. We recall that λmax(A) =
O(h−2).

Smoothing property: Assume that λmax(A) ≤ α ≤ cλmax(A). If m smoothing
steps of the relaxation (34) with C := αI are performed, then

|||umh − uh, λ
m
h − λh|||2 ≤

ch−2

m
‖u0h − uh‖0,Ω. (37)

Approximation property: For the coarse grid correction u2h one has

‖uh − u2h‖0,Ω ≤ ch2|||uh, λh|||2. (38)

The proof of the two properties are now quite standard. The verification of the
smoothing property is performed by purely algebraic manipulations [BDW00, BS97].
The approximation property looks very much like the L2-error estimate (27). Indeed,
it is derived from the latter by a duality argument; cf. [BDW00] or [Bra97, Lemma
V.2.8].

Recently, a version was implemented as a cascadic multigrid algorithm; see [BDL99].
In that context it is shown that the Lagrange multipliers must be treated in a different
way than the u-variables if the iteration (33) is built into a conjugate gradient method.

Numerical Example

We report on one of the examples in [BDW00] with big jumps of coefficients and
several cross points. The equation (1.1) is considered with scalar diffusion coefficients
that are constant on each subdomain. In Figure 1 large bricks are separated by thin
channels. Fixing the diffusion constant for the bricks to a0 = 1, we test the cases where
the channels have higher or lower permeability (a1 = 106 or a1 = 10−6, resp.). We
perform the cg-method with V(1,1)-cycle and two inner iterations. The convergence
rates are stable if the mortar side is on the side with the smaller diffusion constant
and large step size, resp.; otherwise the method may fail. The results in Figure 1 for
the case a1 = 106 show clearly that the diffusion is faster in the small channels.
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level elements a0 = 1, a1 = 1 a0 = 1, a1 = 106 a0 = 1, a1 = 10−6

3 6784 0.21 0.12 0.08
4 27136 0.21 0.14 0.07
5 108544 0.21 0.14 0.08

inner iterations 1–2 1–2 1–2

Table 1: Convergence for the example with several cross-points for MG with V(1,1)-
cycle

Figure 1: Example with several cross-points
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2. Optimized Schwarz Methods

Martin J. Gander 1, Laurence Halpern 2, Frederic Nataf 3

Introduction

Schwarz methods lead to parallel preconditioners for large linear systems of equations
arising in the solution process of partial differential equations [SBG96]. Optimal con-
vergence results for the Schwarz method are known in the sense that the condition
number of the preconditioned system is independent of (or only weakly dependent on)
the mesh parameter and the number of subdomains. Thus asymptotically Schwarz
methods have optimal scalability.

This optimality result contains however constants which remain unknown in the
analysis. Thus it does not imply that the current Schwarz methods have optimal
performance. It does not guarantee either that Schwarz methods are competitive to
other parallel methods. Thus the word ”optimal” can be misleading.

We analyze the performance of the classical Schwarz method for two model prob-
lems, Laplace’s equation and the Helmholtz equation. Our analysis is performed at
the continuous level which seems natural for the Schwarz method since the method
itself is defined at the continuous level. Our investigation reveals that the convergence
rate of the Schwarz methods depends intrinsicly on the transmission conditions em-
ployed between subdomains. The classical transmission conditions used by Schwarz
are Dirichlet transmission conditions [Sch70]. These transmission conditions lead to
convergence rates which are not uniform with respect to frequency: high frequency
components converge rapidly whereas low frequency components converge only slowly.
Motivated by the analysis of Overlapping Schwarz Waveform Relaxation in [GHN99]
we construct optimal transmission conditions for the Laplace and Helmholtz equation
in two dimensions. These conditions are global in nature and thus not ideal for im-
plementations. We therefore introduce local approximations of the optimal conditions
and optimize them for performance, which leads to the optimized Schwarz methods.

Other people have looked at different transmission conditions before. Generalized
Schwarz splittings with Robin transmission conditions have been analyzed by Tang
[Tan92] and led to an over-determined Schwarz algorithm in [ST96]. The main diffi-
culty remaining in this approach is the determination of the relaxation parameter in
the Robin conditions, like for SOR methods. For Helmholtz problems radiation condi-
tions for overlapping Schwarz have been proposed by [CCEW98]. For non-overlapping
versions of the Schwarz algorithms Dirichlet transmission conditions are not effec-
tive and Lions proposed to use Robin conditions to obtain a convergent algorithm in
[Lio90]. Through the work by Charton, Nataf and Rogier [CNR91], Nataf and Rogier
[NR95] and Japhet [Jap98] new types of transmission conditions for convection diffu-

1Department of Mathematics and Statistics, McGill University, Montreal, Canada. mgan-
der@math.mcgill.ca

2Département de Mathématiques, Université Paris XIII, 93430 Villetaneuse and CMAP, Ecole
Polytechnique, 91128 Palaiseau, France. halpern@math.univ-paris13.fr

3CMAP, Ecole Polytechnique, 91128 Palaiseau, France. nataf@cmap.polytechnique.fr
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sion problems have been introduced which are optimal in a physical sense and contain
the Robin conditions as a first order approximation. A similar approach was devel-
oped for the Helmholtz equation in [DJR92] and [CN98]. An overlapping version for
Laplace’s equation was analyzed in [EZ98]. The same type of analysis was applied to
overlapping Schwarz waveform relaxation algorithms in [GHN99] and led to optimized
Schwarz algorithms for evolution problems where one can easily visualize that the
optimal transmission conditions are absorbing boundary conditions. The key is that
a simple optimization procedure leads to local transmission conditions with optimized
performance for the Schwarz algorithm. We derive optimized Schwarz methods for
elliptic definite and indefinite problems in this note.

Optimized Schwarz Method for Laplace’s Equation

We consider Laplace’s equation in the domain Ω = R2,

∆u = f(x, y), x, y ∈ Ω, u bounded at infinity. (1)

We decompose the domain Ω into two overlapping half planes Ω1 = (−∞, L]×R and
Ω2 = [0,∞)×R where L > 0 is the overlap parameter. The classical Schwarz method
to solve (1) solves iteratively Laplace’s equation on Ω1 and Ω2 and exchanges Dirichlet
values on the interfaces at 0 and L,

∆vn+1 = f(x, y), x, y ∈ Ω1,
vn+1(L, y) = wn(L, y),

∆wn+1 = f(x, y), x, y ∈ Ω2,
wn+1(L, y) = vn(L, y).

(2)

To analyze the convergence of the classical Schwarz method, it suffices by linearity to
consider the homogeneous problem, f(x, y) = 0 in (2), and to analyze convergence to
zero.

Fourier Analysis of the Classical Schwarz Method

Our results are based on Fourier analysis. We denote the Fourier transform f̂(k) of
f(x) : R −→ R by

f̂(k) = Fx(f)(k) :=
∫ ∞

−∞
e−ikxf(x)dx

and the inverse Fourier transform of f̂(k) by

f(x) = F−1
x (f̂)(x) :=

1
2π

∫ ∞

−∞
eikxf̂(k)dk.

Taking a Fourier transform in y of (2) for f(x, y) = 0 we obtain

v̂n+1
xx (x, k)− k2v̂n+1(x, k) = 0, x ∈ (−∞, L), k ∈ R, (3)

v̂n+1(L, k) = ŵn(L, k),
ŵn+1
xx (x, k) − k2ŵn+1(x, k) = 0, x ∈ (0,∞), k ∈ R, (4)

ŵn+1(0, k) = v̂n(0, k)
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where a subscript x denotes a partial derivative with respect to x. Solving the ordinary
differential equation (4) using the boundedness condition at infinity and inserting the
result into the boundary condition of (3) we find the solution of (3) at x = 0 to be

v̂n+1(0, k) = e−2|k|Lv̂n−1(0, k).

Similarly we obtain for the solution of (4) at x = L

ŵn+1(L, k) = e−2|k|Lŵn−1(L, k).

Defining the convergence rate

ρ(k, L) := e−2|k|L (5)

we see that the classical Schwarz method converges for all k �= 0 if there is overlap,
L > 0. The convergence rate is linear and depends on the size of the overlap L as well
as the frequency k. High frequency components converge fast, whereas low frequency
components converge only slowly. Note that for |k| → 0 the convergence rate ρ tends
to 1.

Optimal Transmission Conditions

The preceding analysis shows that the Schwarz method is slowed down by the low
frequency components. They are dictating the convergence rate and thus the perfor-
mance of the Schwarz method. For better performance, one would like to improve
the convergence rate for the low frequency components. This can be achieved by
changing the transmission conditions to become more transparent for low frequency
components. Following the approach in [GHN99] for evolution problems, we introduce
new transmission conditions into the classical Schwarz method (2). Instead of using
Dirichlet transmission conditions, we impose at the artificial boundaries

vn+1
x (L, y) + Λv(vn+1(L, y)) = wnx (L, y) + Λv(wn(L, y))

wn+1
x (0, y) + Λw(wn+1(0, y)) = vnx (0, y) + Λw(vn(0, y)),

(6)

where the linear operators Λv and Λw are degrees of freedom we can use to optimize
the performance of the algorithm. Note that the Schwarz method itself remains the
same, only the transmission conditions have been changed. We have the following

Theorem 1 (Optimal Convergence) Choosing Λv to have the symbol λv(k) := |k|
and Λw to have the symbol λw(k) := −|k| the Schwarz method with transmission
conditions (6) converges in two iterations independently of the overlap L ≥ 0.

Proof Applying a Fourier transform in y to (3), (4) with transmission conditions (6)
we obtain

v̂n+1
xx (x, k)− k2v̂n+1(x, k) = 0, x ∈ (−∞, L), k ∈ R, (7)

v̂n+1
x (L, k) + λv(k)v̂n+1(L, k)) = ŵnx (L, k) + λv(k)ŵn(L, k),

ˆ̂w
n+1

xx (x, k)− k2 ˆ̂w
n+1

(x, k) = 0, x ∈ (0,∞), k ∈ R, (8)
ŵn+1
x (0, k) + λw(k)ŵn+1(0, k) = v̂nx (0, k) + λw(k)v̂n(0, k).
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Solving (8) at iteration step n for ŵn and inserting the result into the transmission
conditions of (7) we find for v̂n+1 at x = 0

v̂n+1(0, k) = ρlv̂
n−1(0, k)

and by a similar computation for ŵn+1 at x = L

ŵn+1(L, k) = ρlŵ
n−1(L, k)

where the convergence rate ρl is given by

ρl(k,L) :=
−|k|+ λv(k)
|k|+ λv(k)

· |k|+ λw(k)
−|k|+ λw(k)

e−2|k|L. (9)

Hence choosing λv(k) := |k| and λw(k) := −|k| the convergence rate vanishes, ρl ≡ 0
and thus, independently of the initial guess, after two steps of the Schwarz iteration the
iterates are zero on x = 0 and x = L respectively. To see that they vanish identically,
it suffices to note that by the boundedness condition at infinity, v̂2(x, k) = Ae|k|x and
ŵ2(x, k) = Be−|k|x for some constants A and B. But v̂2(0, k) = 0 then implies A = 0
and ŵ2(L, k) = 0 implies B = 0 and the result follows.
Note that the new convergence rate (9) still contains the exponential factor like the
classical one (5), but the new transmission conditions (6) introduced an additional
factor with the degrees of freedom λv(k) and λv(k). Theorem 1 shows what the
optimal choice is for the transmission conditions in theory. One can show that with
this choice and N subdomains in strips the Schwarz algorithm converges in N steps,
see [NRdS94]. This is an optimal result since the solution of Laplace’s equation in
one subdomain depends on the source term f in every other subdomain and when
only a local mechanism of communication is employed one has to communicate at
least N steps to get the information from the left most subdomain across all the other
subdomains to the rightmost subdomain.

However to use the algorithm in practice, one either needs to work in Fourier
space or one has to back-transform the optimal transmission conditions to the real
space. The inverse Fourier transform of λvw = ±|k| leads to the optimal transmission
operators Λvw which are non local in y and thus harder to implement. Note that the
optimal transmission operators correspond to the Dirichlet to Neumann map at the
artificial interfaces and thus the optimal transmission conditions are the absorbing
boundary conditions as in the case of the evolution problems [GHN99].

Optimized Local Transmission Conditions

For a real implementation of the Schwarz algorithm, it is desirable to have local
transmission conditions. We therefore approximate the nonlocal optimal transmission
conditions found in the previous subsection by local ones. Local operators are repre-
sented by polynomials in Fourier space and we analyze in the sequel the performance
of the zeroth and second order approximation of the optimal transmission conditions,

λvw = ±p or λvw = ±(p+ qk2). (10)

The parameters p, q > 0 are free parameters and they can be used to optimize the
performance of the new Schwarz method which leads to the optimized Schwarz method.
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Figure 1: Dependence of the convergence rate on the frequency k and the optimization
parameter p for Laplace’s equation.

Since real computations are performed on bounded domains and discretized operators,
the range of the frequency parameter k is not arbitrary. It is bounded from below by a
lowest frequency dependent on the size of the domain in y direction and the boundary
conditions imposed, k2 > k2min and from above, k is bounded by the mesh size h in y
direction, k2 < k2max := (π/h)2. Thus to obtain optimal performance of the Schwarz
method, we have to solve the min-max problem

min
p>0

(
max

kmin<k<kmax

(|k| − p)2

(|k|+ p)2
e−2|k|L

)
in the case of the zeroth order approximation. Figure 1 shows the dependence of
the convergence rate on the frequency k and the free parameter p. Note that the
convergence rate is symmetric in k and only the part for kmin < k < kmax is shown in
the figure. One can clearly identify that for a certain parameter value p the convergence
rate will become small for all values of k, kmin < k < kmax. For large p however the
low frequencies will dominate again the convergence rate and in the limit as p goes to
infinity, we recover the classical Schwarz method.

For the second order approximation of the optimal transmission conditions, we
find the min-max problem

min
p,q>0

(
max

kmin<k<kmax

(|k| − p− qk2)2

(|k|+ p+ qk2)2
e−2|k|L

)
.

Both min-max problems can be solved analytically and we show in Figure 2 the conver-
gence rates obtained for the classical Schwarz method and the two optimized Schwarz
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Figure 2: Convergence rates in Fourier space for Laplace’s equation. The classical
Schwarz method on the left, zeroth order optimized Schwarz method in the middle
and second order optimized Schwarz method on the right. Note the scaling factor of
10 in the right most figure.

methods for the model problem (11) with mesh parameter h = 1/80. Note how the
zeroth order approximation, which leads to a Robin condition instead of a Dirich-
let one in the Schwarz algorithm, reduces the convergence rate already from 0.82 to
0.05 and the second order approximation reduces it further to 0.006. The numerical
experiments in the following subsections confirm the enormous improvement of the
optimized Schwarz algorithm over the classical one.

Numerical Experiments for Laplace’s Equation

We solve Laplace’s equation on the rectangular domain Ω = [0, 2]× [0, 1],

∆u = 0, x, y ∈ Ω (11)

with given Dirichlet boundary conditions. We decompose Ω into two subdomains
Ω1 = [0, 1 + δ]× [0, 1] and Ω2 = [1− δ, 2]× [0, 1] and apply the Schwarz algorithm as
an iterative solver. Figure 3 shows the performance of the classical Schwarz method
compared to the zeroth order optimized one and the second order optimized one for
an overlap of 2δ = 1/40. Clearly the optimized Schwarz method perform much better
than the classical one. The convergence rate improvement due to the new transmission
conditions manifests itself in the numerical experiments. While the classical Schwarz
method only reduces the error by a few percent in 8 iterations, the zeroth order
optimized Schwarz method reduces the error by a factor of 105 and the second order
optimized Schwarz method reduces the error by a factor of 1013. Note that these
contraction rates are comparable to multi-grid, and we have not used a Krylov method
yet, just classical Schwarz as an iterative solver.

To accelerate convergence, one usually uses the Schwarz method as a precondi-
tioner, which greatly improves the performance of the classical Schwarz method. Fig-
ure 4 shows the decay of the error in the same experiment as above, but now the
Schwarz methods are used as preconditioners. Clearly the classical Schwarz method is
improved a great deal by the Krylov method, but the optimized Schwarz methods are
accelerated as well and still converge much faster than the classical Schwarz method.
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Figure 3: The performance of the optimized Schwarz methods for Laplace’s equation
compared to the classical Schwarz method as an iterative solver.
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Figure 4: Optimized Schwarz methods used as preconditioners for Laplace’s equation.
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Figure 5: Comparison of the optimal parameters found by Fourier analysis and the
best parameters in numerical experiments for Laplace’s equation.

Note again that with the second order optimized Schwarz method, we observe a sim-
ilar phenomenon like with multi grid: the acceleration with the Krylov method is not
really necessary, it only brings a small improvement, since the basic iterative solver is
already converging at an extremely fast rate.

Finally we investigate how close the optimal parameters obtained by Fourier anal-
ysis are to the the really optimal parameters we obtained from numerical experiments.
Note that the optimal discrete parameters could also be obtained for regular rectangu-
lar meshes by a discrete Fourier analysis, but such an analysis would have to be redone
for every mesh, whereas our continuous analysis is valid independently of the mesh. It
is more important to have results at the continuous level for a method defined at the
continuous level, since then these results remain relevant once the problem is solved
on a mesh which resolves the continuous properties, independently of the particular
mesh. Figure 5 shows on the left the error reduction obtained after 4 iterations of the
zeroth order optimized Schwarz method for various parameters p and also indicated
by a star the optimal parameter obtained by Fourier analysis. Clearly the Fourier
analysis indicates where the discrete optimum lies. On the right we show a level set
plot of the error after four iterations for the second order optimized Schwarz method.
Again the star indicates the optimum found by the Fourier analysis. This shows that
Fourier analysis is a viable tool to compute optimized Schwarz methods and the fig-
ures also show that optimized Schwarz methods are rather robust with respect to the
optimization parameters.

Optimized Schwarz Method for the Helmholtz Equa-
tion

We consider the Helmholtz equation in the domain Ω = R2,

(∆ + ω2)(u) = f(x, y), x, y ∈ Ω (12)



OPTIMIZED SCHWARZ METHODS 23

with Sommerfeld radiation conditions at infinity. We decompose Ω into two overlap-
ping half planes Ω1 = (−∞, L] × R and Ω2 = [0,∞) × R where L > 0 is the overlap
parameter. The classical Schwarz method to for (12) is given by

(∆ + ω2)(vn+1) = f(x, y) x, y ∈ Ω1,
vn+1(L, y) = wn(L, y),

(∆ + ω2)(wn+1) = f(x, y) x, y ∈ Ω2,
wn+1(L, y) = vn(L, y).

(13)

To analyze if the classical Schwarz method converges for the Helmholtz equation, it
suffices by linearity to consider again the homogeneous problem, f(x, y) = 0 in (13)
and to analyze convergence to zero.

Fourier Analysis of the Classical Schwarz Method

Taking a Fourier transform in y of (13) for f(x, y) = 0 we obtain

v̂n+1
xx (x, k) + (ω2 − k2)v̂n+1(x, k) = 0, x ∈ (−∞, L), k ∈ R, (14)

v̂n+1(L, k) = ŵn(L, k),
ŵn+1
xx (x, k) + (ω2 − k2)ŵn+1(x, k) = 0, x ∈ (0,∞), k ∈ R, (15)

ŵn+1(0, k) = v̂n(0, k).

Solving the ordinary differential equation (15) using the radiation condition at infinity
and inserting the result into the boundary condition of (14) we find the solution of
(14) at x = 0 to be

v̂n+1(0, k) = e−2
√
k2−ω2Lv̂n−1(0, k)

and similarly for (15)

ŵn+1(L, k) = e−2
√
k2−ω2Lŵn−1(L, k).

Defining the convergence rate

ρ(k, ω, L) := e−2
√
k2−ω2L (16)

we have now two cases to distinguish: if k2 > ω2 then |ρ(k, ω, L)| < 1 and the
algorithm converges as in the case of Laplace’s equation. If however k2 < ω2 then

|ρ(k, ω, L)| =
∣∣∣e−2i√ω2−k2L

∣∣∣ = 1

and convergence is lost. Therefore the classical Schwarz algorithm for the Helmholtz
equation does not converge in general, the low frequencies in the error are not damped.
Often it is precisely the low frequencies which are important in Helmholtz problems,
since they correspond to the propagating frequencies. Thus for Helmholtz problems
one is obliged to modify the Schwarz algorithm to make it work. In [CW92] a coarse
mesh is introduced, fine enough to carry all the propagating modes, and in [CCEW98]
the classical radiation conditions of Robin type are employed at the interfaces to obtain
damping of the propagating modes. In [DJR92] and [CN98] non-overlapping variants
of the Schwarz algorithm are analyzed with approximately absorbing transmission
conditions. Following our analysis for Laplace’s equation, we first compute the optimal
transmission conditions for the Helmholtz case.
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Optimal Transmission Conditions

Imposing the new transmission conditions (6) in the Schwarz algorithm for the Helmholtz
equation we obtain the analog to Theorem 1 in the case of Laplace’s equation:

Theorem 2 (Optimal Convergence) Choosing Λv to have the symbol λv(k) :=√
k2 − ω2 and Λw to have the symbol λw(k) := −

√
k2 − ω2 the Schwarz method with

transmission conditions (6) for the Helmholtz equation converges in two iterations
independently of the overlap L ≥ 0 and the frequency parameter k.

Proof A Fourier transform in y and a similar calculation as in the case of Laplace’s
equation leads to

v̂n+1(0, k) = ρhv̂
n−1(0, k)

and similarly for ŵn+1

ŵn+1(L, k) = ρhŵ
n−1(L, k)

where the convergence rate ρh is given by

ρh(k,L) :=
−
√
k2 − ω2 + λv(k)√
k2 − ω2 + λv(k)

·
√
k2 − ω2 + λw(k)

−
√
k2 − ω2 + λw(k)

e−2
√
k2−ω2L. (17)

Hence for λv =
√
k2 − ω2 and λw = −

√
k2 − ω2 the convergence rate (17) vanishes,

ρh ≡ 0 and thus, independently of the initial guess, after two steps of the Schwarz
iteration the iterates are zero. Again
the optimal transmission conditions involve the Dirichlet to Neumann map, as in the
case of Laplace’s equation, and to avoid a nonlocal implementation, we propose local
approximations of the optimal transmission conditions.

Optimized Local Transmission Conditions

Using a zeroth and second order approximation as given in (10), we are led to the
optimization problems

min
p>0

(
max

kmin<k<kmax

∣∣∣∣∣ (
√
k2 − ω2 − p)2

(
√
k2 − ω2 + p)2

e−2
√
k2−ω2L

∣∣∣∣∣
)

(18)

in the zeroth order approximation case and to

min
p,q>0

(
max

kmin<k<kmax

∣∣∣∣∣ (
√
k2 − ω2 − p− qk2)2

(
√
k2 − ω2 + p+ qk2)2

e−2
√
k2−ω2L

∣∣∣∣∣
)

(19)

in the second order approximation case. But these optimization problems have an
intrinsic difficulty in the Helmholtz case: for k2 = ω2 we obtain 1, independently of
the choice of the parameter p in (18) and the parameters p and q in (19). Thus there
is no hope to minimize the convergence rate uniformly in k and even the optimized
Schwarz method might not converge when applied in an iterative way to the Helmholtz
problem. When used as a preconditioner however, the Krylov method can easily cope
with outliers in the spectrum and thus we optimize the convergence rates for all k
relevant to the discrete spectrum except k = ω. This leads to the convergence rates
shown in Figure 6 for the model problem (20).
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Figure 6: Convergence rates in Fourier space for a Helmholtz problem. The classical
Schwarz method on the left, zeroth order optimized Schwarz method in the middle
and second order optimized Schwarz method on the right.

Numerical Experiments for the Helmholtz Equation

We solve the Helmholtz equation on a rectangular domain Ω = [0, 2]× [0, 1]

(∆ + ω2)(u) = 0, x, y ∈ Ω, (20)

Robin conditions on the left and the right and homogeneous Dirichlet conditions on
top and bottom. We decompose Ω into two subdomains Ω1 = [0, 1 + δ] × [0, 1] and
Ω2 = [1− δ, 2]× [0, 1] and apply the Schwarz algorithm as preconditioner for GMRES.
Figure 7 shows the performance of the classical Schwarz method compared to the
zeroth order optimized one and the second order optimized one for an overlap of
2δ = 1/10 with mesh parameter h = 1/80 and ω = 10. Clearly the optimized Schwarz
method shows a much better performance than the classical one.

Conclusions

We have introduced a small modification to the classical Schwarz method with a
big impact. Exchanging the classical transmission conditions of Dirichlet type with
transmission conditions involving local approximations of the Dirichlet to Neumann
operator, the Schwarz algorithm converges orders of magnitudes faster, both when
used as an iterative solver and as a preconditioner for symmetric definite and indefinite
model problems.
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1870.

[ST96]H. Sun and W.-P. Tang. An overdetermined Schwarz alternating method. SIAM
Journal on Scientific Computing, 17(4):884–905, Jul. 1996.

[Tan92]Wei Pai Tang. Generalized Schwarz splittings. SIAM J. Sci. Stat. Comp.,
13(2):573–595, 1992.





12th International Conference on Domain Decomposition Methods
Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c©2001 DDM.org

3. Dual and Dual-Primal FETI Methods for Elliptic
Problems with Discontinuous Coefficients in Three
Dimensions

Axel Klawonn1, Olof B. Widlund2

Introduction

The Finite Element Tearing and Interconnecting (FETI) methods were first introduced
by Farhat and Roux [FMR94]. An important advance, making the rate of convergence
of the iteration less sensitive to the number of unknowns of the local problems, was
made by Farhat, Mandel, and Roux a few years later [FMR94]. For a detailed intro-
duction, see [FR94] and we also refer to our own papers for many additional references.
Our own work, cf. [KW01, KW00b], owes a great deal to the pioneering theoretical
work by Mandel and Tezaur [MT96, MT00].

The principal purpose of this paper is to survey some recent results developed by
the authors. We introduce new one-parameter families of one-level FETI as well as of
dual–primal FETI preconditioners which have a rate of convergence which is bounded
independently of possible jumps of the coefficients of an elliptic model problem often
considered in the theory of Neumann–Neumann and other iterative substructuring
algorithms; see, e.g., [DW95, DSW94, MB96] and the references therein. Our new
results become possible because of special scalings. One of them, for the precondi-
tioner, is closely related to an important algorithmic idea used in the best of the
Neumann–Neumann methods. The other scaling affects the choice of the projection
which is used in each step of the one–level FETI iteration, whether preconditioned
or not. For a certain choice of the two scalings, our preconditioner for the one–level
FETI methods results in a method that is identical to one recently tested successfully
for very difficult and large problems by Bhardwaj et al. [BDF+00]. The scaling used
in the preconditioner was originally introduced by Rixen and Farhat; see [RF99]. We
note that, by now, many variants of the FETI algorithms have been designed and that
a number of them have been tested extensively; see in particular [RFTM99]. Some of
our results have also already been extended to Maxwell’s equation in two dimensions
by Toselli and Klawonn [TK99].

Recently, Farhat et al. [FLLT+99] introduced a dual–primal FETI algorithm suit-
able for second order elliptic problems in the plane and for plate problems. A con-
vergence analysis in the case of benign coefficients is given by Mandel and Tezaur
[MT00]. Numerical experiments show a poor performance for this algorithm in three

1SCAI - Institute for Algorithms and Scientific Computing, GMD – German National Research
Center for Information Technology, Schloss Birlinghoven, D–53754 Sankt Augustin, Germany. E-
mail: klawonn@gmd.de, URL: http://www.gmd.de/SCAI/people/klawonn. This work was supported
in part by the National Science Foundation under Grants NSF-CCR-9732208.

2Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
NY 10012, USA. E-mail: widlund@cs.nyu.edu, URL: http://www.cs.nyu.edu/cs/faculty/widlund.
This work was supported in part by the National Science Foundation under Grants NSF-CCR-9732208
and in part by the US Department of Energy under Contract DE-FG02-92ER25127.
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dimensions; cf. [FLLT+99]. Recent experiments with alternative algorithms are re-
ported in [FLP00, Pie00]. We give a brief description of our own recent work in the
final section; see [KW00b] for many more details.

The remainder of this paper is organized as follows. In the next, the second section,
we introduce our elliptic problems and the basic geometry of the decomposition. In
the following section, we give a short introduction to one–level FETI methods. In
the fourth section, we introduce our family of preconditioners and formulate one of
our main results; our results could also be extended to certain other elliptic problems
as in [KW00a]. Finally, we present results on a new dual–primal FETI method for
problems with discontinuous coefficient in three dimensions; see [KW00b].

A model problem, finite elements, and geometry

Let Ω ⊂ R3, be a bounded, polyhedral region, let ∂ΩD ⊂ ∂Ω be a closed set of positive
measure, and let ∂ΩN := ∂Ω \ ∂ΩD be its complement. We impose homogeneous
Dirichlet and general Neumann boundary conditions, respectively, on these two subsets
and introduce the Sobolev space H1

0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}.
For simplicity, we will only consider a piecewise linear, conforming finite element

approximation of the following scalar, second order model problem:
Find u ∈ H1

0 (Ω, ∂ΩD), such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂ΩD), (1)

where

a(u, v) :=
∫
Ω

ρ(x)∇u · ∇vdx, f(v) :=
∫
Ω

fvdx +
∫
∂ΩN

gNvds, (2)

where gN is the Neumann boundary data defined on ∂ΩN ; it provides a contribution
to the load vector of the finite element problem. The coefficient ρ(x) > 0 for x ∈ Ω.

We decompose Ω into non-overlapping subdomains Ωi, i = 1, . . . , N, also known
as substructures, and each of which is the union of shape-regular elements with the
finite element nodes on the boundaries of neighboring subdomains matching across the

interface Γ :=
(⋃N

i=1 ∂Ωi
)
\ ∂Ω. The interface Γ is decomposed into subdomain faces,

regarded as open sets, which are shared by two subregions, edges which are shared
by more than two subregions and the vertices which form the endpoints of edges. We
denote faces of Ωi by F ij , edges by E ik, and vertices by V i�.

We denote the standard finite element space of continuous, piecewise linear func-
tions on Ωi by Wh(Ωi). For simplicity, we assume that the triangulation of each
subdomain is quasi uniform. The diameter of Ωi is Hi, or generically, H . We denote
the corresponding finite element trace spaces by Wi := Wh(∂Ωi), i = 1, . . . , N, and
by W :=

∏N
i=1 Wi the associated product space. We will often consider elements of

W which are discontinuous across the interface.
The finite element approximation of the elliptic problem is continuous across Γ and

we denote the corresponding subspace of W by Ŵ . We note that while the stiffness
matrix K and Schur complement S which correspond to the product space W generally
are singular those of Ŵ are not.
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For the dual–primal FETI methods, we will also use an additional, intermediate
subspace W̃ of W for which a relatively small number of continuity constraints are
enforced across the interface throughout the iteration. In our dual–primal FETI meth-
ods, the selection of these constraints will be closely related to the coarse spaces of
certain primal iterative substructuring methods. One of the benefits of working in W̃ ,
rather than in W , is that certain related Schur complements S̃ and S∆ are positive
definite.

We assume that possible jumps of ρ(x) are aligned with the subdomain boundaries
and, for simplicity, that on each subregion Ωi, ρ(x) has the constant value ρi > 0. Our
bilinear form and load vector can then be written, in terms of contributions from
individual subregions, as

a(u, v) =
N∑
i=1

ρi

∫
Ωi

∇u · ∇vdx, f(v) =
N∑
i=1

( ∫
Ωi

fvdx +
∫
∂Ωi∩∂ΩN

gNvds
)
. (3)

In our theoretical analysis, we assume that the subregions Ωi are tetrahedra or hex-
ahedra and that they are shape regular, i.e., not very thin. We also make a number
of technical assumptions on the intersection of the boundary of the substructures and
∂ΩD; see [KW01]. We assume that Hi and Hj are comparable if the subdomains Ωi
and Ωj are neighbors. The sets of nodes in Ωi, on ∂Ωi, and on Γ are denoted by
Ωi,h, ∂Ωi,h, and Γh, respectively.

As in previous work on Neumann–Neumann algorithms, a crucial role is played
by the weighted counting functions µi ∈ Ŵ , which are associated with the individual
subdomain boundaries ∂Ωi; cf., e.g., [DSW96, DW95]. In this paper they will be used
primarily in the definition of certain diagonal scaling matrices. These functions are
defined, for γ ∈ [1/2,∞), and for x ∈ Γh ∪ ∂Ωh, by a sum of contributions from Ωi,
and its relevant next neighbors

µi(x) =


∑
j∈Nx

ργj (x) x ∈ ∂Ωi,h ∩ ∂Ωj,h,

ργi (x) x ∈ ∂Ωi,h ∩ (∂Ωh \ Γh),
0 x ∈ (Γh ∪ ∂Ωh) \ ∂Ωi,h.

(4)

Here, Nx is the set of indices of the subregions which have x on its boundary. We
note that any node of Γh belongs either to two faces, more than two edges, or to the
vertices of several substructures.

The pseudo inverses µ†i are defined, for x ∈ Γh ∪ ∂Ωh, by

µ†i (x) =
{

µ−1i (x) if µi(x) �= 0,
0 if µi(x) = 0.

A review of one–level FETI methods

In this section, we give a brief review of the original FETI method of Farhat and Roux
[FMR94, FR94] and the variant with a Dirichlet preconditioner introduced in Farhat,
Mandel, and Roux [FMR94]. The more general projection operators, described in
this section, were first introduced for heterogeneous problems in [FR94] and they have
been tested in very large scale numerical experiments; see [BDF+00].
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For a chosen finite element method and for each subdomain Ωi, we assemble the
local stiffness matrix K(i) and the local load vector corresponding to a single, ap-
propriate term in the sums of (3). Any nodal variable, not associated with Γh, is
called interior and it only belongs to one substructure. The interior variables of any
subdomain can be eliminated by a step of block Gaussian elimination; this work can
clearly be parallelized across the subdomains. The resulting matrices are the Schur
complements

S(i) = K
(i)
ΓΓ −K

(i)
ΓI (K

(i)
II )

−1K
(i)
IΓ , i = 1, . . . , N.

Here, Γ and I represent the interface and interior, respectively. We note that the S(i)

are only needed in terms of matrix-vector products and that therefore the elements of
these matrices need not be explicitly computed.

The values of the right hand vectors also change when the interior variables are
eliminated. We denote the resulting vectors, representing the modified load originating
in Ωi, by fi and the local vectors of interface nodal values by ui.

We can now reformulate the finite element problem, reduced to the interface Γ,
as a minimization problem with constraints given by the requirement of continuity
across Γ :

Find u ∈ W , such that

J(u) := 1
2 〈Su, u〉 − 〈f, u〉 → min

Bu = 0

}
(5)

where u = [u1 . . . uN ]t, f = [f1 . . . fN ]t, and S = diagNi=1(S
(i)) is block–diagonal.

The matrix B = [B(1), . . . , B(N)] is constructed from {0, 1,−1} such that the values
of the solution u, associated with more than one subdomain, coincide when Bu = 0.
We note that the choice of B is far from unique. The local Schur complements S(i)

are positive semidefinite and they are singular for any subregion with a boundary
which does not intersect ∂ΩD. The problem (5) is uniquely solvable if and only if
ker (S) ∩ ker (B) = {0}, i.e., if and only if S is invertible on ker (B).

By introducing a vector of Lagrange multipliers λ, to enforce the constraints Bu =
0, we obtain a saddle point formulation of (5):

Find (u, λ) ∈ W × U , such that

Su + Btλ = f
Bu = 0

}
. (6)

We note that the solution λ of (6) is unique only up to an additive vector of ker (Bt).
The space of Lagrange multipliers U is therefore chosen as range (B).

We will also use a full column rank matrix built from all of the null space elements
of S; these elements are associated with individual subdomains (the rigid body motions
in the case of elasticity),

R = [R(1) . . . R(N)].

Thus, range (R) = ker (S). We note that no subdomain with a boundary which inter-
sects ∂ΩD contributes to R.

The solution of the first equation in (6) exists if and only if f − Btλ ∈ range (S);
this constraint will lead to the introduction of a projection P . We obtain,

u = S†(f −Btλ) +Rα if f −Btλ ⊥ ker (S),
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where S† is a pseudoinverse of S. The value of α can be determined easily once λ has
been found.

Substituting u into the second equation of (6) gives

BS†Btλ = BS†f +BRα. (7)

We now introduce a symmetric, positive definite matrix Q which induces an inner
product on U ; it is defined by 〈λ, µ〉Q := 〈λ,Qµ〉. By considering the component
which is Q−1−orthogonal to G := BR, we find that

P tFλ = P td
Gtλ = e

}
(8)

with F := BS†Bt, d := BS†f, P := I −QG(GtQG)−1Gt, and e := Rtf . We note that
P is an orthogonal projection, from U onto ker (Gt), in the Q−1−inner product, i.e.,
the inner product defined by 〈λ,Q−1µ〉.

There are different good choices for Q. In the case of homogeneous coefficients,
it is sufficient to use Q = I, while for problems with jumps in the coefficients, we
have to make a more elaborate choice to make our proofs work satisfactorily. In our
analysis, Q will be a diagonal scaling matrix or we will use the preconditioner; other
alternatives are discussed in [BDF+00, FR94].

By multiplying (7) by (GtQG)−1GtQ, we find that α := (GtQG)−1GtQ(Fλ − d)
which then fully determines the primal variables in terms of λ.

We introduce the space

V := {µ ∈ U : 〈µ,Bz〉 = 0 ∀z ∈ ker (S)} = ker (Gt) = range (P ),

and a space that is isomorphic to its dual,

V ′ := {λ ∈ U : 〈λ,Bz〉Q = 0 ∀z ∈ ker (S)} = range (P t).

As is usual in the literature on FETI methods, we can call V the space of admissible
increments. The original FETI method is a conjugate gradient method in the space
V applied to

P tFλ = P td, λ ∈ λ0 + V, (9)

with an initial approximation λ0 chosen such that Gtλ0 = e. The most basic FETI
preconditioner, as introduced in Farhat, Mandel, and Roux [FMR94], is of the form

M−1 := BSBt.

To apply M−1 to a vector, N independent Dirichlet problems have to be solved, one
on each subregion; it is therefore called the Dirichlet preconditioner.

To keep the search directions of the resulting preconditioned conjugate gradient
method in the space V , the application of the preconditioner M−1 is followed by an
application of the projection P . Hence, the Dirichlet variant of the FETI method is
the conjugate gradient algorithm applied to the equation

PM−1P tF λ = PM−1P t d, λ ∈ λ0 + V. (10)
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We note that for λ ∈ V , PM−1P tFλ = PM−1P tP tFPλ, and that we can therefore
view the operator on left hand side of (10) as the product of two symmetric matrices.

It is well known that an appropriate norm of the iteration error of the conjugate
gradient method will decrease at least by a factor

2(
√
κ− 1√
κ+ 1

)k,

in k steps. Here κ is the ratio of the largest and smallest eigenvalues of the iteration
operator. The main task in the theory is therefore always to obtain a good bound for
the condition number κ.

We note that several different possibilities of improving the FETI preconditioner
M−1 have already been explored. Some interesting variants are discussed by Rixen
and Farhat [RF99], in a framework of mechanically consistent preconditioners, in the
case of redundant Lagrange multipliers; see also Klawonn andWidlund [KW01, section
5] for an analysis.

New one-level FETI preconditioners with non-redundant
Lagrange multipliers

In this section, we outline some of our results on a family of new FETI preconditioners
with an improved condition number estimate compared to that of Mandel and Tezaur
[MT96]. Most importantly, we obtain a uniform bound for arbitrary positive values of
the ρi if the scaling matrix Q, which enters the definition of P , is chosen carefully. In
our proofs, we use several arguments developed in [MT96], but our presentation also
differs considerably in several respects.

We now assume that B has full row rank, i.e., the constraints are linearly inde-
pendent and there are no redundant Lagrange multipliers.

Our new preconditioner is defined, for any diagonal matrix D with positive ele-
ments, as

M̂−1 := (BD−1Bt)−1BD−1SD−1Bt(BD−1Bt)−1. (11)

To obtain a method, which converges at a rate which is independent of the coefficient
jumps, we now choose a special family of matrices D; a careful choice of the scaling
Q, introduced in the definition of the operator P , will also be required. As in previous
work on Neumann–Neumann algorithms, a crucial role is played by the weighted
counting functions µi, associated with the individual ∂Ωi, and already introduced in
(4). The diagonal matrix D(i) has the diagonal entry ργi (x)µ

†
i (x) corresponding to the

point x ∈ ∂Ωi,h. Finally, we set D := diagNi=1(D
(i)). We note that this matrix is a

block–diagonal matrix which operates on elements in the product space W.

We now give a condition number estimate for the preconditioned FETI operator
PM̂−1P tF ; cf. [KW01]. The result holds for Q = M̂−1 and also for a special choice
of B and a special diagonal Q; in the case of continuous coefficients, it is sufficient to
choose Q as a multiple of the identity matrix for the next theorem to be valid.
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Theorem 1 The condition number of the FETI method, with the new preconditioner
M̂, satisfies

κ(PM̂−1P tF ) ≤ C (1 + log(H/h))2.

Here, κ(PM̂−1P tF ) is the spectral condition number of PM̂−1P tF , and C is inde-
pendent of h,H, γ, and the values of the ρi.

A New Dual–Primal FETI method

In previous studies of dual–primal FETI methods for problems in two dimensions, see
Farhat, Lesoinne, Le Tallec, Pierson, and Rixen [FLLT+99] and Mandel and Tezaur
[MT00], the constraints on the degrees of freedom associated with the vertices of the
substructures are enforced, i.e., the corresponding degrees of freedom have been added
to the global set of variables, while all the constraints associated with the edge nodes
are enforced only at the convergence of the iterative method. In each step of the
iteration a fully assembled linear subsystem is solved. In a simple two–dimensional
case, this subsystem corresponds to all the interior and cross point variables; these
variables can be eliminated at a modest expense since we can first eliminate all the
interior variables, in parallel across the subdomains, resulting in a Schur complement
for the cross point variables which can be shown to be sparse. It has a dimension
which equals the number of subdomain vertices which do not belong to ∂ΩD.

In their recent paper, Mandel and Tezaur [MT00] established a condition number
bound of the form C(1 + log(H/h))2 for the resulting FETI method equipped with a
Dirichlet preconditioner which is very similar to those used for the older FETI methods
and which is built from local solvers on the subregions with zero Dirichlet conditions
at the vertices of the subregions. They also established a corresponding result for a
fourth-order elliptic problem in the plane. Their elegant proof in [MT00] relies, for
the second order equation, on linear algebra arguments and a lemma from a classical
paper by Bramble, Pasciak, and Schatz [BPS86, Lemma 3.5].

The same algorithm is also defined for three dimensions but it does not perform
well. This is undoubtedly related to the poor performance of many vertex-based it-
erative substructuring methods; see [DSW94, Section 6.1] and [KW00b]. Recently,
Farhat et al. added constraints to this basic algorithm, see [FLP00], and improved the
performance.

In our approach, we first carry out a change of variables prior to dividing the
variables into a primal and a dual subspace. The number of constraints enforced in
each iteration will now be larger, but we will still be able to work with a number of
constraints which is uniformly bounded for each substructure.

One of our new algorithms is given in terms of a space W̃ ⊂ W for which we have
continuity at the subdomain vertices, and also common values of the averages over all
edges and all faces of the interface. This space can naturally be written as a direct
sum of two subspaces, corresponding to a primal and a dual part of the problem, i.e.,

W̃ = ŴΠ ⊕ W̃∆.

The first subspace, ŴΠ ⊂ Ŵ , which together with the interior subspaces, defines
the subsystem which is fully assembled, factored, and solved in each iteration step.
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It is defined as the range of the following interpolation operator IhB defined, for any
uh ∈ W̃ , by

IhBuh(x) =
∑
Vi�∈Γ

uh(Vi�)ϕVi�(x) +
∑
Eik⊂Γ

ūhEikθEik(x) +
∑
Fij⊂Γ

ūhFijθFij (x). (12)

Here,

ūhEik =

∫
Eik Ih(θEikuh)ds∫

Eik θEikds
and ūhFij =

∫
Fij I

h(θFijuh)dx∫
Fij θFikdx

,

ϕVi� are the standard nodal basis function, and θEik and θFij the discrete harmonic
functions which equal 1 on E ikh and F ijh , respectively, and vanish elsewhere on Γh. The
operator IhB, introduced in [DSW94, p. 1690], has almost optimal stability properties.
Let us note that several cheaper algorithm, based on different interpolation operators,
are also discussed in [KW00b].

The subspace ŴΠ is thus given in terms of the vertex variables, the averages of
the values over the individual edges of the set of interface nodes Γh, and the averages
over the individual faces of substructures.

We note that the dimension of this first subspace is relatively small; in the case of
hexahedral substructures there are seven global variables for each interior substructure
since there are eight vertices, each shared by eight hexahedra, twelve edges, each shared
by four, and six faces each shared by a pair of substructures. We note that the count is
smaller, relative to the number of substructures, in the case of tetrahedral subregions.
We can demonstrate that the resulting system can be assembled and solved at an
acceptable cost which only exceeds that for the more primitive algorithm in which we
enforce only the vertex constraints in each step, by a constant factor. We note that we
have also developed a second method with only four global variables per subdomain;
our theoretical results for that method involves a third power of the logarithm. We
have no doubts that a number of other promising alternatives could be developed
given the rich choice of coarse spaces for the primal iterative substructuring methods.

The second subspace, denoted by W̃∆, is associated with the nodal points on the
edges and faces of the interface Γ. It is the direct sum of local subspaces of W̃ . For each
subdomain Ωi, the local subspace consists of functions that vanish at the subdomain
vertices and have zero average on each individual edge and face. They are extended
by zero on all of the ∂Ωj, j �= i; it is easy to see that these functions satisfies the
continuity requirements associated with W̃ .

The linear systems solved in the preconditioning step of our FETI–DP algorithm,
which is directly related to W̃∆, have zero Dirichlet boundary conditions at the vertices
and also satisfy the constraints that the averages over individual edges and faces
vanish. The nodal values represent the original nodal values minus the average over
the edge or face to which the node belongs. This construction makes the local solvers
well defined and the resulting set of variables represent a subspace complementary to
the first subspace; together with the interior spaces they represent the variables of the
entire linear space of the partially subassembled system.

We can now formulate one of our FETI–DP algorithms; for details on its imple-
mentation, we refer to Klawonn and Widlund [KW00b].
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We first eliminate, after a partial change of variables, all unknowns of the first
subspace as well as the interior variables, and obtain a Schur complement S̃.

Analogously, we get from the load vectors associated with each subdomain a re-
duced right hand side f̃∆. We can now reformulate the original finite element problem,
reduced to the degrees of freedom of the second subspace W̃∆, as a minimization prob-
lem with constraints given by the requirement of continuity across Γh:

Find u∆ ∈ W̃∆, such that

J(u∆) := 1
2 〈S̃u∆, u∆〉 − 〈f̃∆, ud〉 → min

B∆u∆ = 0

}
. (13)

The matrix B∆ is constructed from {0, 1,−1} in the same fashion as B. Since we
already have imposed a constraint on the averages over each edge and each face, we
may drop one of the point constraints for each edge and each face when constructing
the matrix B∆. By introducing a set of Lagrange multipliers λ ∈ V := range (B∆),
to enforce the constraints B∆u∆ = 0, we obtain a saddle point formulation of (13),
which is similar to (6). We use that S̃ is invertible and eliminate the subvector u∆,
and obtain the following system for the dual variable:

F∆λ = d∆, (14)

where
F∆ := B∆S̃−1Bt∆

and the right hand side
d∆ := B∆S̃−1f̃∆.

To define the FETI–DP Dirichlet preconditioner, we need to introduce an additional,
third set of Schur complement matrices,

S
(i)
∆∆ := K

(i)
∆∆ −K

(i)
∆I(K

(i)
II )

−1K
(i)
I∆, i = 1, . . . , N,

which can also be obtained from S(i) by removing the rows and columns that corre-
spond to the vertices and the edge and face averages, i.e., all the variables of the first
subspace ŴΠ. Here, K(i)

∆∆ is the principal minor of the stiffness matrix after the change
of variables and it is related to the variables of W̃∆. The associated block–diagonal
matrix is denoted by

S∆∆ := diagNi=1(S
(i)
∆∆).

We can compute the action of S∆∆ on a vector from the second subspace W̃∆ by
solving local problems with solutions that are constrained to vanish at the cross points
and to have zero edge and face averages; these constraints can be enforced by using
Lagrange multipliers or a partial change of basis.

As in the fourth section, cf. (11), we solve the dual system (14) using the precon-
ditioned conjugate gradient algorithm with the preconditioner

M−1
B := (B∆D−1

∆ Bt∆)
−1B∆D−1

∆ S∆∆D−1
∆ Bt∆(B∆D−1

∆ Bt∆)
−1. (15)

Here, D∆ is a diagonal matrix with positive elements on the diagonal. It can be easily
seen that B∆D−1

∆ Bt∆ is a block-diagonal matrix and thus its inverse can be computed
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at essentially no extra cost; the block sizes are nx, where nx is the number of Lagrange
multipliers employed to enforce continuity at the point x. In order to obtain a method
that converges at a rate which is independent of the coefficient jumps, we now choose
a special family of matrices D∆, cf. also Klawonn and Widlund [KW01, sect. 4]. We
first define the contributions of each subdomain boundary ∂Ωi in terms of a diagonal
matrix D

(i)
∆ . For any point x on an edge or a face of Ωi, there is an entry on the

diagonal of D(i)
∆ equal to ργi (x)µ

†
i (x). We now set

D∆ := diagNj=1(D
(j)
∆ ).

The dual–primal FETI method is now the standard preconditioned conjugate gra-
dient algorithm for solving the preconditioned system

M−1
B F∆λ = M−1

B d∆.

A proof of the following theorem can be found in Klawonn and Widlund [KW00b].

Theorem 2 The condition number of the FETI–DP method with the preconditioner
MB satisfies

κ(M−1
B F∆) ≤ C (1 + log(H/h))2.

Here, C is independent of h,H, γ, and the values of the ρi.
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4. Decomposition of Energy Space and Virtual
Control for Parabolic Systems

J.L. Lions 1

Introduction

Methods of choice for attempting the control of distributed systems (i.e. systems mod-
elled by Partial Differential Equations, PDE’s in short) are decomposition meth-
ods.

Given the state equation -i.e. PDE’s containing control (should it be distributed
or on the boundary)- one can decompose (i) the operator, or (ii) the geometrical
domain, or (iii) the spaces describing the domain of the operator.

Method (i), based on splitting up ideas has been used in a paper by A. Bensous-
san, J.L. Lions and R. Temam[BLT94]. At the end of this paper, some remarks were
made concerning domain decomposition. New methods (also based on virtual control)
are given in a note of J.L. Lions and O. Pironneau[LP99a] and in the paper of J.L.
Lions[Lio00].

DDM (Domain Decomposition Methods) are now absolutely essential for theAnal-
ysis of problems (i.e. PDE’s without control). As observed by J.E. Lagnese and G.
Leugering[LL00] while there is an extensive literature on DDM for direct simulation,
the literature is much more scarse concerning DDM and optimal control.

The first contributions were due to B. Despres[Des91], J.D. Benamou and B.
Despres[JD97], J.D. Benamou[Ben97, Ben98], and the paper just quoted by J. Lagnese
and G. Leugering.

Another set of ideas has been introduced by J.L. Lions and O. Pironneau in 3
notes[LP98a, LP98b, LP99b] where one introduces for all problems (i.e. problems
with or without control functions) so called virtual controls with the goal to have
all problems entering in one model.

First numerical results are reported in these notes.

We want here to study the possibility (iii), namely the decomposition of spaces
describing the domain of the operator. In a (slightly) more precise manner, if A is
the main symmetric part of the stationary operator contained in the model, then we
consider the “energy space” D(A1/2) (the domain of A1/2) - a space that we denote
by V . It is this space that we decompose in the present paper.

For stationary problems without control, this technique has been introduced in R.
Glowinski, J.L. Lions and O. Pironneau[GLP99] .

We show here how it can be applied for the control of parabolic systems.

1Collège de France, jacques-louis.lions@college-de-france.fr
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Elliptic regularization of parabolic equations

Let V and H be two real Hilbert spaces, such that

(2.1) V ⊂ H ,V dense in H, V → H continuous.

We shall identify H with its dual, so that

(2.2) V ⊂ H ⊂ V ′

where V ′ denotes the dual of V .
Let a(ϕ, ϕ̂) be a continuous bilinear form on V , such that

(2.3) a(ϕ,ϕ) ≥ α‖ϕ‖2 ∀ ϕ ∈ V , α > 0 ,

where ‖ϕ‖ denotes the norm of ϕ in V .
Let f be given such that

(2.4) f ∈ L2(0, T ;V ′).

We are looking for a function u such that

(2.5)

∣∣∣∣∣∣∣∣∣
u ∈ L2(0, T ;V ),

∂u

∂t
∈ L2(0, T ;V ′),

(
∂u

∂t
, û) + a(u, û) = (f, û) ∀ û ∈ V ,

u|t=0 = 0

(in (2.5) (f, ϕ) denotes the duality between V ′ and V ). It follows from (2.5)1 that
(after possible change on a set of measure 0) the function t → u(t) is continuous from
[0, T ] → H .

It is known that problem (2.5) admits a unique solution (cf. J.L. Lions[Lio61]
where considerably more general situations are considered), the mapping f → u being
continuous from L2(0, T ;V ′) into the space of functions u satisfying to (2.5)1.

For reasons that will appear later on, we are going to use an elliptic regulariza-
tion (J.L. Lions[Lio63]) of problem (2.5).

We define

(2.6) W = {u| u ∈ L2(0, T ;V ),
∂u

∂t
∈ L2(0, T ;H), u(0) = 0} .

For u, û ∈ W , we define

(2.7) Aγ(u, û) = γ

∫ T

0

(
∂u

∂t
,
∂û

∂t
)dt+

∫ T

0

[(
∂u

∂t
, û) + a(u, û)]dt ,

where γ is given > 0.
The bilinear form u, û → Aγ(u, û) is continuous on W . Moreover

(2.8) Aγ(u, u) = γ

∫ T

0

‖u(t)‖2Hdt+
1
2
‖u(T )‖2H +

∫ T

0

a(u) dt ,
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where ‖u‖H = (u, u)1/2 , a(u) = a(u, u).
By virtue of (2.3) it follows that

(2.9) Aγ(u, u) ≥ γ

∫ T

0

‖∂u
∂t

(t)‖2Hdt+ α

∫ T

0

‖u‖2 dt ,

so that in particular

(2.10)

∣∣∣∣∣∣
Aγ(u, u) ≥ inf(γ, α) ‖ u ‖2W where

‖ u ‖2W =
∫ T

0

(‖ u(t) ‖2 + ‖∂u
∂t

(t) ‖2H)dt .

It then immediately follows (LAX-MILGRAM’s Lemma) that there exists a unique
element uγ solution of

(2.11)
∣∣∣∣ Aγ(uγ , û) =

∫ T
0 (f, û)dt ∀ û ∈ W ,

uγ ∈ W .

Equation (2.11) is called an elliptic regularization of (2.5).
One has the following property (J.L. Lions[Lio63]) :

(2.12)

∣∣∣∣∣∣∣∣∣
as γ → 0, the solution uγ of (2.11) converges toward the solution
u of (2.5) in the sense that
uγ → u in L2(0, T ;V ) weakly,
∂uγ
∂t

→ ∂u

∂t
in L2(0, T ;V ′) weakly .

Before briefly recalling the (simple) proof of (2.12), a few remarks are in order.
Remark 2.1.

Let’s give an interpretation of the above equations in non-variational terms. We
define A ∈ L(V ;V ′) by

(Aϕ,ψ) = a(ϕ,ψ) ∀ ϕ,ψ ∈ V .

Then (2.5) reads

(2.13)
∂u

∂t
+Au = f , u|t=0 = 0 , u ∈ L2(0, T ;V ) ,

and (2.11) is equivalent to

(2.14)

∣∣∣∣∣∣∣∣∣∣
−γ

∂2uγ
∂t2

+
∂uγ
∂t

+Auγ = f ,

uγ |t=0 = 0 ,
∂uγ
∂t

(T ) = 0 ,

uγ ∈ L2(0, T ;V ),
∂uγ
∂t

∈ L2(0, T ;H).

Remark 2.2.
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If A is a second order elliptic operator, then the operator

(2.15) −γ
∂2

∂t2
+

∂

∂t
+A

is indeed an elliptic operator. We are dealing with elliptic regularization. But if
A is, say, a 4th order elliptic operator, then the operator (2.15) is quasi elliptic. We
nevertheless keep the term of elliptic regularization.

Let us now sketch the proof of (2.12). It follows from (2.9) that as γ → 0 ,

uγ(resp.
√
γ

∂uγ
∂t

) remains in a bounded set of L2(0, T ;V ) (resp. L2(0, T ;H)). We can
therefore extract a subsequence still denoted by uγ such that

uγ → w in L2(0, T ;V ) weakly

and
√
γ

∂uγ
∂t

→ ξ in L2(0, T ;H) weakly. But
√
γ

∂uγ
∂t

→ 0 in the space of distribu-
tions in t with values in V , so that ξ = 0.

We rewrite (2.11) as

(2.16) γ

∫ T

0

(
∂uγ
∂t

,
∂û

∂t
)
H
dt−

∫ T

0

(uγ ,
∂û

∂t
)
H
dt+

∫ T

0

a(u, û)dt =
∫ T

0

(f, û)dt

where we have taken û ∈ W such that

(2.17) û(T ) = 0 .

We can pass now to the limit in (2.16). We obtain

−
∫ T

0

(w,
∂û

∂t
)Hdt+

∫ T

0

a(w, û)dt =
∫ T

0

(f, û)dt

∀û ∈ W such that (2.17) is satisfied.
Hence w = u.

Remark 2.3.
We could also use a different elliptic regularization, namely

(2.18)
∫ T

0

(γ, (
∂u

∂t
,
∂û

∂t
)
V ′dt+

∫ T

0

[(
∂u

∂t
, û) + a(v, û)]dt

defined on the space of functions u such that u ∈ L2(0, T ;V ) and
∂u

∂t
∈ L2(0, T ;V ′)

(instead of L2(0, T ;H)). In a sense (2.18) is more natural but (2.7) avoids the use of
V ′.

Remark 2.4.
One has also (cf. J.L. Lions[Lio63])

(2.19)
∂uγ
∂t

→ ∂u

∂t
in L2(0, T ;V ′) weakly .
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A Control problem and its elliptic regularization

We introduce now the space of controls v

(3.1)
∣∣∣∣ v ∈ L2(0, T ;U),
U = real Hilbert space .

If B is an operator such that

(3.2) B ∈ L(U ;V ′),

the state equation is given by

(3.3)

∣∣∣∣∣∣∣∣∣
(
∂y

∂t
, ŷ) + a(y, ŷ) = (Bv, ŷ) ∀ ŷ ∈ V ,

y ∈ L2(0, T ;V ),
∂y

∂t
∈ L2(0, T ;V ′),

y|t=0 = 0 .

The cost function is given by

(3.4) J(v) =
1
2

∫ T

0

‖v‖2Udt+
β

2
‖y(T ; v)− yT ‖2

H

where β is given > 0 and where yT is a given element of H .
The problem of control is now to find

(3.5) inf
v∈L2(0,T ;U)

J(v)

This problem admits a unique solution vopt, i.e. there exists a unique vopt such
that

(3.6) J(vopt) = inf
v∈L2(0,T ;U)

J(v) .

We consider now the “elliptic regularization” of problem (3.3) (3.6).
With the notations of previous section , we define the state yγ ∈ W by

(3.7) Aγ(yγ , ŷ) =
∫ T

0

(Bv, ŷ)dt ∀ŷ ∈ W .

This problem admits a unique solution yγ = yγ(v), and we can introduce

(3.8) Jγ(v) =
1
2

∫ T

0

‖v‖2Udt+
β

2
‖yγ(T ; v)− yT ‖2

H

Of course, there exists a unique element vγ in L2(0, T ;U) such that

(3.9) Jγ(vγ) = inf .Jγ(v), v ∈ L2(0, T ;U) .
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Let us briefly sketch the (easy) proof of

(3.10)
∣∣∣∣ as γ → 0 , Jγ(vγ) → J(vopt), vγ → vopt in
L2(0, T ;U) weakly and yγ(vγ) → y(vopt) in L2(0, T ;V ) weakly .

For v fixed in L2(0, T ;U), one knows that yγ(v) → y(v) in L2(0, T ;V ) weakly, and
(cf. J.L. Lions[Lio63]) yγ(T ; v) → y(T ; v) in H strongly. Therefore Jγ(v) → J(v) so
that

(3.11) lim . sup .Jγ(vγ) ≤ inf J(v) , v ∈ L2(0, T ;U).

It follows from (3.11) that vγ remains in a bounded subset of L2(0, T ;U . By
extracting a subsequence, we can assume that

(3.12) vγ → w in L2(0, T ;U) faible

and one verifies that yγ(T ; vγ) → y(T ;w) in H weakly.
Therefore

(3.13) lim inf .Jγ(vγ) ≥ J(w).

Comparing (3.11) (3.13) and using (3.12) gives (3.10).

Remark 3.1.
Everything which has been said above readily extends to similar problems with

constraints on v :

(3.14)
∣∣∣∣ v ∈ L2(0, T ;Uad)
Uad closed convex subset of U .

Remark 3.2.
One can write, for all the problems considered, the necessary and sufficient condi-

tions (the so called “Optimality System”) for v to be optimal. Cf. J.L. Lions[Lio68].

Orientation.
We want now to “decompose” problem (3.5) based on
(i) a decomposition of the energy space V ;
(ii) the elliptic-regularized problem (3.9).

Decomposition of the energy space

We assume that

(4.1) V = V1 + V2

where

(4.2) Vi = closed subspace of V ,
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(4.3) V1 ∩ V2 = {0} or not.

In other words, every ϕ in V admits at least a decomposition

ϕ = ϕ1 + ϕ2

and actually an infinite number of them if V1 ∩ V2 �= {0}.
Remark 4.1.

Everything we are going to say readily extends to the case when

(4.4) V = V1 + · · ·+ Vm ,m > 2 .

Remark 4.2.
Examples (for a stationnary situation without control) are given in R. Glowinski,

J.L. Lions and O. Pironneau[GLP99].

We introduce now the natural decomposition of W (defined in (2.6) attached to
(4.1), namely

(4.5)

∣∣∣∣∣ W = W1 +W2 ,

Wi = {ϕ|ϕ ∈ L2(0, T ;Vi),
∂ϕ

∂t
∈ L2(0, T ;H), ϕ(0) = 0} .

Let si (i = 1, 2) be a continuous bilinear form on V (or on Vi) such that

(4.6)
∣∣∣∣ si is symmetric and si(ϕi, ϕi) ≥ s0i‖ϕi‖2 ∀ ϕi ∈ Vi ,
s0i > 0.

We then define ∀ ϕ, ϕ̂ ∈ Wi,

(4.7) σi(ϕ, ϕ̂) = γ

∫ T

0

(
∂ϕ

∂t
,
∂ϕ̂

∂t
)dt+

∫ T

0

si(ϕ, ϕ̂)dt .

Given the virtual controls λ1, λ2 ∈ W1 ×W2, we define y1, y2 ∈ W1 ×W2 as the
solution of

(4.8)

∣∣∣∣∣∣∣∣
σ1(y1 − λ1, ŷ1) +Aγ(λ1 + λ2, ŷ1) =

∫ T

0

(Bv, ŷ1)dt ∀ ŷ1 ∈ W1 ,

σ2(y2 − λ2, ŷ2) +Aγ(λ1 + λ2, ŷ1) =
∫ T

0

(Bv, ŷ2)dt ∀ ŷ2 ∈ W2 .

Remark 4.3.
It is obvious that, given v and λ1, λ2, the system (4.8) admits a unique solution.

For instance y1 is given by the solution of

σ1(y1, ŷ1) = σ1(λ1, ŷ1)−Aγ(λ1 + λ2, ŷ1) +
∫ T

0

(Bv, ŷ1)dt ∀ ŷ1 ∈ W1 .

Remark 4.4.
The equations (4.8) can be solved in parallel.
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Remark 4.5.
If one can choose λ1, λ2 such that

(4.9) yi = λi

then (4.8) is equivalent to

Aγ(y1 + y2, ŷ1) =
∫ T

0

(Bv, ŷ1)dt

Aγ(y1 + y2, ŷ2) =
∫ T

0

(Bv, ŷ2)dt

so that y1 + y2 = y(= yγ) the solution of (3.7).

We now define the new cost function

(4.10)

∣∣∣∣∣ J (v, λ) =
1
2
∫ T
0 ‖v‖2U dt+

β

2
‖y1(T ) + y2(T )− yT ‖2H ,

yi solution of (4.8), λ = {λ1, λ2} .

According to Remark 4.5., we have

(4.11) inf
yi=λi

.J (v, λ) = inf Jγ(v) .

It is therefore natural to introduce a penalty term (in order to take care of
“yi = λi”) as follows :

(4.12)

∣∣∣∣∣∣∣
Jε(v, λ) =

1
2

∫ T

0

‖v‖2U dt+
β

2
‖y1(T ) + y2(T )− yT ‖2H+

+
1
2ε

[σ1(y1 − λ1) + σ2(y2 − λ2)] , λ = {λ1, λ2}

and to consider the problem

(4.13) inf .Jε(v, λ),

v ∈ L2(0, T ;U), λ = {λ1, λ2} ∈ W1 ×W2 .

We study now (4.13) and we show it gives an approximation of (3.9), which
is itself an approximation (as γ → 0) of (3.6).

Approximation results

We are going to show
Theorem 5.1. - We assume that (2.3), (4.6), (4.1), (4.2), (4.3) hold true. The

elliptic regularization parameter γ is fixed (arbitrarily small).
(i) For ε > 0 fixed, problem (4.13) admits a unique solution vε, yiε−λiε, i = 1, 2.
(ii) As ε → 0, one has

inf Jε(v, λ) → inf Jγ(v) = Jγ(vγ)
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vε → vγ in L2(0, T ;U) weakly

(in fact vε = vε,γ).

We prove Theorem 5.1. in several steps.
Step 1. - The existence of a solution of (4.13) is straightforward, provided we

notice that we have informations on yi − λi rather that on yi.
Step 2. - Given v, we compute y(v) = yγ(v) and we decompose y(v) in, say,

y(v) = z1 + z2 , zi ∈ L2(0, T ;Vi).
Choosing λi = zi, it follows that yi = zi = λi

so that
inf Jε(v, λ) ≤ Jγ(v) ∀ v, i.e.

(5.1) inf Jε(v, λ) ≤ inf .Jγ(v) v ∈ L2(0, T ;U).

Step 3. - It follows from (5.1) that, as ε → 0,

(5.2) vε remains in a bounded subset of L2(0, T ;U),

(5.3) σi(yiε − λiε) ≤ c
√
ε.

Step 4. - We use (4.8) with yiε, λiε but we do not write for a moment the indices
“ε”. Let η1 + η2 be an arbitrary decomposition of y1 + y2

(5.4) y1 + y2 = η1 + η2, ηi ∈ Wi

(of course ηi = yi if V1 ∩ V2 = {0}).
We choose ŷi = ηi in (4.8) and we add up the results.
We obtain

(5.5) σ1(y1 − λ1, η1) + σ2(y2 − λ2, η2) +A(λ1 + λ2, y2 + y2) =
∫ T

0

(Bv, y1 + y2)dt

We observe that (writing Aγ(ϕ,ϕ) = Aγ(ϕ))

(5.6)

∣∣∣∣∣∣∣
Aγ(λ1 + λ2, y1 + y2) =

1
2
[Aγ(λ1 − y1 + λ2 − y2, y1 + y2) +Aγ(y1 + y2)+

+(Aγ(λ1 + λ2, y1 − λ1 + y2 − λ2) +Aγ(λ1 + λ2)] ≥
≥ c[ ‖y1 + y2‖2W + ‖λ1 + λ2‖2W ]− c

√
ε [ ‖y1 + y2‖W + ‖λ1 + λ2‖W ] ,

(where the c’s denote various constants).
We also observe that

(5.7) | σ1(y1 − λ1, η1) + σ2(y2 − λ2, η2) | ≤ c
√
ε (‖η1‖W1 + ‖η2‖W2).

We can choose η1, η2 in such a way that

‖η1‖W 1 + ‖η2‖W2
≤ c‖η1 + η2‖W
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so that (5.7) implies

(5.8) | σ1(y1 − λ1, η1) + σ2(y2 − λ2, η2) | ≤ c
√
ε ‖y1 + y2‖W .

It follows from (5.5) (5.6) and (5.8) that, as ε → 0,

(5.9) ‖y1ε + y2ε‖W + ‖λ1ε + λ2ε‖W ≤ c .

Step 5. - One verifies that one can then pass to the limit in ε in the equations
(4.8) (where λ1 = λiε, yi = yiε). One extracts a subsequence vε, λiε, yiε such that

vε → w in L2(0, T ;U) weakly ,

y1ε + y2ε → z in W weakly ,
y1ε − λiε → 0 in Wi (like

√
ε),

and one obtains

Aγ(z, ŷ1) =
∫ T

0

(Bw, ŷ1)dt ∀ŷ1 ∈ W1,

Aγ(z, ŷ2) =
∫ T

0

(Bw, ŷ2)dt ∀ŷ2 ∈ W2,

so that z = y(w) = yγ(w).
One can also verify that

y1ε(T ) + y2ε(T ) → z(T ) in H weakly .

Then

Jε(vε, λε) ≥
1
2

∫ T

0

‖vε‖2U dt+
β

2
‖y1ε(T ) + y2ε(T )− yT ‖2H

implies

(5.10) lim inf Jε(vε, λε) ≥ Jγ(w) .

Comparing with (5.1), Theorem 5.1 follows.

Algorithms

We proceed with the computation of the 1st variation of Jε(v, λ), in fact of εJε(v, λ).
We have :
(6.1)∣∣∣∣ δ(εJε(v, λ)) = ε

∫ T
0 (v, δv)U dt+ ε β(y1(T ) + y2(T )− yT , δy1(T ) + δy2(T ))H+

+σ1(y1 − λ1, δy1 − δλ1) + σ2(y2 − λ2, δy2 − δλ2) .

It follows from (4.8) that

(6.2) σ1(δy1 − δλ1, ŷ1) +Aγ(δλ1 + δλ2, ŷ1) =
∫ T

0

(Bδv, ŷ1)dt
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and the analogous equation for σ2(δy2− δλ2, ŷ2). If we take ŷ1 = y1−λ1 in (6.2), and
the analogous choice with the index “2”, we obtain that
(6.3)∣∣∣∣ σ1(y1 − λ1, δy1 − δλ1) + σ2(y2 − λ2, δy2 − δλ2) =

=
∫ T
0
(Bδv, y1 − λ1 + y2 − λ2)dt−Aγ(δλ1 + δλ2, y1 − λ1 + y2 − λ2) .

Let us introduce the adjoint A∗γ of Aγ :

A∗γ(ϕ, ϕ̂) = Aγ(ϕ̂, ϕ)

and let us define p1, p2 ∈ W1 ×W2 by

(6.4)

∣∣∣∣∣∣∣∣
σ1(p1, p̂1) = A∗γ(y1 − λ1 + y2 − λ2, p̂1)− ε β(y1(T ) + y2(T )− yT , p1(T ))

∀ p̂1 ∈ W1

σ2(p2, p̂2) = A∗γ(y1 − λ1 + y2 − λ2, p̂2)− ε β(y1(T ) + y2(T )− yT , p2(T ))
∀ p̂2 ∈ W2 .

Then using (6.3) and (6.4) one obtains

(6.5)

∣∣∣∣∣∣ δ(εJε(v, λ)) =
∫ T

0

(εv +B∗(y1 − λ1 + y2 − λ2), δv)U dt−
−σ1(p1, δλ1)− σ2(p2, δλ2) ,

where B∗ is the adjoint of B defined by

(6.6) (B∗ f, v)U = (f,Bv) ∀ f ∈ V ′ , ∀v ∈ U .

The simplest (if not the most efficient) algorithm one can deduce from (6.5) is then
the following. Assuming that vn, λn1 , λ

n
2 , y

n
1 , y

n
2 have been computed, define

(6.7)

∣∣∣∣∣∣
vn+1 = vn − ρ(εvn +B∗(yn1 − λn1 + yn2 − λn2 )),
λn+1
1 = λn1 + ρ pn1 ,

λn+1
2 = λn2 + ρ pn2 ,

where ρ > 0 is chosen small enough.
Compute yn+1

1 , yn+1
2 (in parallel) by (4.8), where one uses vn+1, λn+1

i . Then com-
pute pn+1

1 , pn+1
2 (in parallel by (6.4) and proceed.

Remark 6.1.
More powerful algorithms (conjugate gradients) are given, for similar situations,

without control, in R. Glowinski, J.L. Lions and O. Pironneau[GLP99].

Remark 6.2.
As we already said, everything extends to the situation when

V = V1 + · · ·+ Vm,m > 2.

Remark 6.3.
The “elliptic regularization parameter” γ is fixed (“small”). What happens to the

above algorithms when γ → 0 is an open question.
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Remarks and extensions

Remark 7.1.
In principle all the methods introduced here apply to problems without control.
But one is led to 2-points Boundary Value Problems (BVP) in time, not a wise

thing to do. Of course the situation is different when effective control is present, since
there 2 points BVP are needed anyway (one way or the other).

Remark 7.2.
In case there are constraints on v then, of course, the algorithms in previous section

should be modified accordingly.

Remark 7.3.
All the methods presented here can apply, with suitable modifications, for systems

modelled by
non linear PDE

or
hyperbolic (or Petrowsky type) models

or
Schroedinger models

or coupled models. We shall return to these questions on other occasions.

Remark 7.4.
A systematic presentation of other decomposition methods for the control of dis-

tributed systems is given in the paper of J.L. Lions[Lio00].
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vernés par des équations d’évolution. C. R. Acad. Sci. Paris, Série I, 324:1065–1070,
1997.

[Ben98]J.D. Benamou. Domain decomposition, optimal control of systems governed by
partial differential equations and synthesis of feedback laws. J. Opt. Theory Appl.,
99, 1998.

[BLT94]A. Bensoussan, J.L. Lions, and R. Temam. Sur les méthodes de déomposition,
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Marchuk, editors, Méthodes Mathématiques de l’Informatique, pages 133–257.
Dunod, Paris, 1994.

[Des91]B. Despres. Méthodes de décomposition de domaine pour les problèmes de
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d’opérateurs. C.R.A.S., 1999.

[LP99b]J.L. Lions and O. Pironneau. Domain decomposition method for CAD.
C.R.A.S., Paris, 328:73–80, 1999.





12th International Conference on Domain Decomposition Methods
Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c©2001 DDM.org

5. On Schwarz Methods for Monotone Elliptic PDEs

S. H. LUI1

Introduction

The Schwarz Alternating Method was devised by H. A. Schwarz more than one hun-
dred years ago to solve linear boundary value problems. It has garnered interest
recently because of its potential as an efficient algorithm for parallel computers. See
[Lio88], and [Lio89], the recent reviews [CM94], [LT94], and [XZ98], and the books
[SBG96] and [QV99]. The literature for nonlinear problems is rather sparse. Be-
sides Lions’ works, see also [Bad91], [ZH92], [CD94], [Tai94], [TE98], [TX01], [Pao95],
[Xu96], [DH97], [Lui00], [Lui01], and references therein. The effectiveness of Schwarz
methods for nonlinear problems (especially those in fluid mechanics) has been demon-
strated in many papers. See proceedings of the annual domain decomposition confer-
ences.

This paper is a continuation of previous works by this author attempting to survey
various classes of nonlinear elliptic PDEs for which Schwarz methods are applicable.
We consider elliptic PDEs amenable to analysis by the monotone method (also known
as the method of subsolutions and supersolutions).

The paper [KC67] was among the first to employ the monotone method to solve
boundary value problems. Subsequent works by these two authors as well as by [Sat72],
[Ama76], and many others have made this method into one of the important tools in
nonlinear analysis. See [Pao92] for a very complete reference with many applications
as well as a good bibliography. [Lio89] shows the convergence of a multiplicative
Schwarz method for the Poisson’s equation using the monotone method. Here, we
prove convergence for an additive Schwarz method on finitely many subdomains for
scalar as well as coupled systems of nonlinear elliptic PDEs. Our results on coupled
systems can be applied to the three types of Lotka-Volterra models in population
biology: competition, cooperation and predator-prey.

In the following section, we indicate convergence of two Schwarz methods for a
class of scalar nonlinear elliptic PDEs. This is followed by a treatment of the so-called
quasi-monotone non-increasing case of a coupled system of PDEs on finitely many
subdomains. In the remaining part of this introduction, we set some notations.

Let Ω be a bounded, connected domain in RN with a smooth boundary. Suppose
Ω is composed of m ≥ 2 subdomains, that is, Ω = Ω1 ∪ · · · ∪ Ωm. The boundary of
each subdomain is also assumed to be smooth. Let X = Cα(Ω) ∩ C2(Ω) for some
0 < α < 1. We shall look for solutions of PDEs lying in this space.

1Department of Mathematics, HKUST, Clear Water Bay, Kowloon, Hong Kong (email:
shlui@ust.hk). This work was supported in part by a grant from the RGC of HKSAR, China
(HKUST6171/99P).
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Scalar Equations

Consider the PDE

−*u = f(x, u) on Ω, u = h on ∂Ω. (1)

A smooth function u ∈ X is a subsolution of the above PDE if

−*u− f(x, u) ≤ 0 on Ω and u ≤ h on ∂Ω.

Similarly, a supersolution is one which satisfies the above with both inequalities re-
versed.

Let us now record the assumptions for the above PDE. Suppose that it has a
subsolution u and a supersolution u which satisfy u ≤ u on Ω. Define the sector of
smooth functions

A ≡ {u ∈ X, u ≤ u ≤ u on Ω}.

Assume f is a smooth (Holder continuous) function defined on Ω × A and h is a
smooth function defined on the boundary. In addition, suppose there exists some
bounded non-negative function c defined on Ω so that

−c(x)(u− v) ≤ f(x, u)− f(x, v), x ∈ Ω, v ≤ u ∈ A.

With these assumptions, it is known (section 3.2 in [Pao92]) that the PDE has a (not
necessarily unique) solution in the sector A.

We begin with a comparison lemma.

Lemma 1 Suppose S is an open set. Let w ∈ H1(S) ∩ C(S) satisfy∫
S

(∇w · ∇φ+ cwφ) ≥ 0, ∀ non-negative φ ∈ H1
0 (S) (2)

and w ≥ 0 on ∂S. Then w ≥ 0 on S.

We now show convergence of a (multiplicative) Schwarz sequence for the PDE (1)
for the two subdomain case. For convenience, we suppress the dependence of f on
x ∈ Ω. Note that each subdomain problem is a linear one. Despite the possibility of
multiple solutions, the Schwarz iteration always converges to a specific solution.

Theorem 1 Let u(0) = u(−
1
2 ) = u on Ω with u = h on ∂Ω. Define the Schwarz

sequence by (n ≥ 0)

−*u(n+
1
2 ) + cu(n+

1
2 ) = f(u(n−

1
2 )) + cu(n−

1
2 ) on Ω1, u(n+

1
2 ) = u(n) on ∂Ω1,

−*u(n+1) + cu(n+1) = f(u(n)) + cu(n) on Ω2, u(n+1) = u(n+
1
2 ) on ∂Ω2.

Here, u(n+
1
2 ) is defined as u(n) on Ω \ Ω1 and u(n+1) is defined as u(n+

1
2 ) on Ω \ Ω2.

Then u(n+
i
2 ) → u in C2(Ωi), i = 1, 2, where u is a solution of (1) in A. If v is any

solution in A, then u ≤ v on Ω.
If u(0) = u(−

1
2 ) = u on Ω with u = h on ∂Ω instead, then the same conclusion

holds except that u ≥ v on Ω.
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Sketch of Proof: We only consider the case u(0) = u with u = h on ∂Ω. The
proof can be divided into four steps. First, we demonstrate that the sequence is
monotone:

u ≤ u(n−
1
2 ) ≤ u(n) ≤ u(n+

1
2 ) ≤ u on Ω, n ≥ 0. (3)

Since the sequences are bounded above, the following limits are well defined on Ω

lim
n→∞

u(n+
1
2 ) = u1, lim

n→∞
u(n) = u2.

In the second step, we prove that the function ui satisfies the same PDE on Ωi using
an elliptic regularity argument (see p. 102 in [Pao92]). We can also infer that the
convergence to ui is in the sense of C2(Ωi). In the third step, we prove that u1 =
u2 on Ω which follows directly from (3). Define u = u1. Then u is a solution of (1).
Finally, if v is any other solution in A, replace u by v in the above steps to obtain
u ≤ v on Ω. This completes the sketch of the proof.

The above Schwarz iteration is an adaptation of the classical Schwarz iteration
for the Poisson’s equation. The next Schwarz method is called an additive Schwarz
method. It generalizes the additive method for linear PDEs first introduced in [DW87].
It is sometimes preferable to the (multiplicative) Schwarz method above because the
subdomain PDEs are independent and hence can be solved in parallel. We consider
the general m-subdomain case.

Theorem 2 Let u(0) = u
(0)
i = u on Ω, i = 1, · · · ,m with u = h on ∂Ω. Define the

additive Schwarz sequence by (n ≥ 1)

−*u
(n)
i + cu

(n)
i = f(u(n−1)i ) + cu

(n−1)
i on Ωi, u

(n)
i = u(n−1) on ∂Ωi, i = 1, · · · ,m.

Here, u(n)i is defined as u(n−1) on Ω \ Ωi and

u(n)(x) = max
1≤i≤m

u
(n)
i (x), x ∈ Ω.

Then u
(n)
i → u in C2(Ωi), i = 1, · · · ,m where u is a solution of (1) in A. If v is any

solution in A, then u ≤ v on Ω.
If u(0) = u

(0)
i = u on Ω with u = h on ∂Ω instead, then the same conclusion holds

except that u ≥ v on Ω.

Sketch of Proof: The details of this proof are quite similar to those of the last
proof. Assume u(0) = u. The following monotone properties hold:

u ≤ u
(n)
i ≤ u

(n+1)
i ≤ u on Ωi, u ≤ u(n) ≤ u(n+1) ≤ u on Ω, (4)

u(n) ≤ u
(n+1)
i on Ω, i = 1, · · · ,m. (5)

The inequalities in (4) can be shown in a straightforward manner by induction
using the maximum principle. To show the second set of inequalities in (4), take a
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fixed n and x ∈ Ω. Then there is some integer i in between 1 and m inclusive so that
u(n)(x) = u

(n)
i (x) ≤ u

(n+1)
i (x) ≤ u(n+1)(x).

The inequality (5) can also be shown by induction. This can be done using the
following (nontrivial) inequality∫
Ωi

(∇u(n) · ∇φ+ cu(n)φ) ≤
∫
Ωi

(
f(u(n−1)) + cu(n−1)

)
φ, ∀ non-negative φ ∈ H1

0 (Ωi).

which says that u(n) is a subsolution in some weak sense.
Next, we define on Ω, for i = 1, · · · ,m,

lim
n→∞

u
(n)
i = ui, lim

n→∞
u(n) = u0

and show using elliptic regularity theory that the limit ui satisfies the same PDE on
Ωi, i = 1, · · · ,m and that the convergence to ui is in the sense of C2(Ωi). We have
ui ≤ u0 on Ω, i = 1, · · · ,m. By (5), we have for any j, u0 ≤ uj ≤ u0 ≤ ui. From
these inequalities, we conclude that ui = uj = u0, 1 ≤ i, j ≤ m. Define u to be this
common function which must be a solution of (1) in A. The proof of u ≤ v for any
solution of (1) in A is the same as before.

Quasi-monotone Non-increasing Coupled Systems

Consider the system

−*u = f(u, v), −*v = g(u, v) on Ω, (6)

u = r, v = s on ∂Ω.

The pairs of smooth functions (u, v) and (u, v) are called subsolution and supersolution
pairs if they satisfy

−*u− f(u, v) ≤ 0 ≤ −*u− f(u, v) on Ω,

−*v − g(u, v) ≤ 0 ≤ −*v − g(u, v) on Ω, and

u ≤ r ≤ u, v ≤ s ≤ v on ∂Ω.

Furthermore, they are said to be ordered if

u ≤ u, v ≤ v on Ω.

Define the sector

A ≡
{[

u
v

]
, u, v ∈ X, u ≤ u ≤ u, v ≤ v ≤ v on Ω

}
.



SCHWARZ METHODS FOR MONOTONE PDES 59

Suppose f, g ∈ C1(A). Our system of PDEs is called quasi-monotone non-increasing
if

∂f

∂v
,

∂g

∂u
≤ 0 on A. (7)

Suppose our system of PDEs is quasi-monotone non-increasing. Then it can be
shown (section 8.4 in [Pao92]) that it has a solution (u, v) in A. Without further
assumptions, it may have more than one solution. Despite this, the following additive
Schwarz sequence converges for an appropriately chosen initial guess. Note that the
subdomain problems at each iteration are independent and are decoupled.

Theorem 3 Suppose the system (6) is quasi-monotone non-increasing and let (u, v)
and (u, v) be ordered subsolution and supersolution pairs. Consider any non-negative
functions c, d ∈ Cα(Ω) so that

∂f(u, v)
∂u

≥ −c,
∂g(u, v)

∂v
≥ −d, (u, v) ∈ A. (8)

For i = 1, · · · ,m, let

u(0) = u
(0)
i = u and v(0) = v

(0)
i = v on Ω with u = r and v = s on ∂Ω. (9)

Define the Schwarz sequence for i = 1, · · · ,m and n ≥ 1

−*u
(n)
i + cu

(n)
i = f(u(n−1)i , v

(n−1)
i ) + cu

(n−1)
i on Ωi, u

(n)
i = u(n−1) on ∂Ωi

−*v
(n)
i + dv

(n)
i = g(u(n−1)i , v

(n−1)
i ) + dv

(n−1)
i on Ωi, v

(n)
i = v(n−1) on ∂Ωi.

Here, u(n)i and v
(n)
i are defined as u(n−1) and v(n−1), respectively, on Ω \ Ωi while

u(n)(x) = max
1≤i≤m

u
(n)
i (x), v(n)(x) = min

1≤i≤m
v
(n)
i (x) on Ω.

Then u
(n)
i → u0 and v

(n)
i → v0 in C2(Ωi), i = 1, · · · ,m, where (u0, v0) is a solution

of (6) in A. If (u, v) is any solution in A, then u0 ≤ u and v ≤ v0.
If u(0) = u

(0)
i = u and v(0) = v

(0)
i = v on Ω with u = r and v = s on ∂Ω replace the

assumption (9), then the above Schwarz sequence satisfies u
(n)
i → u0 and v

(n)
i → v0

in C2(Ωi), i = 1, · · · ,m, where (u0, v0) is also a solution of (6) in A. If (u, v) is any
solution in A, then u ≤ u0 and v ≥ v0.

Sketch of Proof: We only consider the case where u(0) = u and v(0) = v. The
proof can be divided into four steps. We first show that the following monotone
properties hold on Ω for i = 1, · · · ,m,

u ≤ u
(n)
i ≤ u

(n+1)
i ≤ u, u(n) ≤ u(n+1), u(n) ≤ u

(n+1)
i (10)

and

v ≤ v
(n+1)
i ≤ v

(n)
i ≤ v, v(n+1) ≤ v(n), v

(n+1)
i ≤ v(n). (11)
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Since the sequences are bounded, the following limits on Ω are well defined

lim
n→∞

u
(n)
i = ui, lim

n→∞
v
(n)
i = vi i = 1, · · · ,m,

and

lim
n→∞

u(n) = u0, lim
n→∞

v(n) = v0.

In the second step, we prove, using a similar elliptic regularity argument as before,
that the limit functions satisfy the following PDEs on Ωi:

−*ui = f(ui, vi), −*vi = g(ui, vi), i = 1, · · · ,m, (12)

and that convergence to ui and to vi is in the sense of C2(Ωi). Third, we demonstrate
that the functions ui are identical. This follows because from (10) and the definition
of u(n),

u
(n)
i ≤ u(n) ≤ u

(n+1)
j ≤ u(n+1) ≤ u

(n+2)
i , 1 ≤ i, j ≤ m.

Take the limit to obtain ui = uj = u0 on Ω. Similarly, we use (11) to show vi = vj =
v0 on Ω for 1 ≤ i, j ≤ m. From (12), it follows that (u0, v0) is a solution of (6).

Fourth, we prove that any solution (u, v) of (6) in A must satisfy

u0 ≤ u and v ≤ v0 on Ωi. (13)

This follows from the observation that (u, v) and (u, v) form subsolution and superso-
lution pairs. Apply the above result to establish (13).

One example where a quasi-monotone non-increasing system occurs is the Lotka-
Volterra competition model

−*u = u(a1 − b1u− c1v), −*v = v(a2 − b2u− c2v).

Here u, v stand for the population of two species competing for the same food sources
and/or territories and all other variables are positive constants.

Similarly, it can be shown that the additive Schwarz method converges for other
types of coupled systems. For instance, a quasi-monotone non-decreasing system
is one where fv, gu ≥ 0 on A in place of (7). (The definition of subsolution and
supersolution pairs is slightly different though.) One example where a quasi-monotone
non-decreasing system occurs is the Lotka-Volterra cooperating model

−*u = u(a1 − b1u+ c1v), −*v = v(a2 + b2u− c2v).

Here u, v stand for the population of two species which have a symbiotic relationship
and all other variables are positive constants.

A third class of coupled systems, known as mixed quasi-monotone is one where
fv,−gu ≤ 0 on A in place of (7). Using essentially the same technique, one can show
that the additive Schwarz method also works for this class of problems as well. One
example where a mixed quasi-monotone system occurs is the Lotka-Volterra predator-
prey model

−*u = u(a1 − b1u− c1v), −*v = v(a2 + b2u− c2v).

Here u stands for the population of a prey while v denotes the population of a predator
and all other variables are positive constants.
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6. Operator Theoretical Analysis to Domain
Decomposition Methods

Norikazu SAITO1, Hiroshi FUJITA2

Introduction

The purpose of the present paper is to give a brief summary of our recent study on the
domain decomposition method from an operator theoretical point of view. There are
a large number of works devoted to the mathematical analysis of the domain decom-
position methods. Most of these works carry out the convergence analysis without any
assumptions of general nature on the geometry of the decomposition. However, from
the viewpoint of mathematical theory as well as from that of applications in science
and engineering, we are seriously interested in the effect of relationships between the
rate of convergence of iterations and the geometric shape of decomposed domains.
Moreover, the choice of relaxation parameters is of importance. Our method enables
us to get explicit convergence factors under some assumptions on geometric shapes
of decomposed domains. Furthermore, our convergence theorems give information on
the choice of relaxation parameters which guarantees a fast convergence.

The problem considered in this paper is well discussed in the monograph by A.
Quarteroni and A. Valli (Domain Decomposition Methods for Partial Differential
Equations, Oxford, 1999), and the results described here may be said to be par-
ticular cases of theorems presented in their monograph. However, the advantage of
employing our method is already described above.

We shall present a rough sketch of the method of analysis and theorems without
the proofs; for the complete proofs, we refer to [Fuj97], [FKKN96], [FFS98] and [FS97].

Model Problem

In order to fix the idea, let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary
Γ, and consider the Poisson equation:

−*u = f in Ω, u = β on Γ. (1)

We assume that f ∈ L2(Ω) and β ∈ H1/2(Γ). The exact solution of (1) is denoted by
ũ.

We divide the target domain Ω into two disjoint subdomains Ω1 and Ω2 by a
smooth simple curve γ;

Ω = Ω1 ∪ Ω2, Ω1 ∩Ω2 = ∅.

We assume that γ connects transversally two points on Γ. The outer unit normal
vector to the boundary of a domain in consideration is denoted by n. If necessary, by

1International Institute for Advanced Studies. nsaito@kurims.kyoto-u.ac.jp.
2The Research Institute of Educational Development, Tokai University. hfujita@yoyogi.ycc.u-

tokai.ac.jp
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ν we indicate the one to γ outgoing from Ω1. Put Γ1 = ∂Ω1\γ and Γ2 = ∂Ω2\γ. The
curve γ is called the artificial boundary.

We consider the following domain decomposition algorithm which is well-known as
the Dirichlet-Neumann (DN) method. Take a function µ(0) defined on γ as the initial
guess to ũ|γ . Then, we successively generate u

(k)
1 , u(k)2 and µ(k+1), for k = 0, 1, 2, · · · ,

by solving 
−*u

(k)
1 = f in Ω1,

u
(k)
1 = β on Γ1,

u
(k)
1 = µ(k) on γ,

−*u
(k)
2 = f in Ω2,

u
(k)
2 = β on Γ2,

∂u
(k)
2

∂n
= −∂u

(k)
1

∂ν
on γ,

The value of µ(k) is adapted by

µ(k+1) = (1− θ)µ(k) + θu
(k)
2 |γ ,

where θ is the relaxation parameter subject to 0 < θ < 1.

Notation. The basic Hilbert space in our consideration is X = L2(γ). The usual
L2(γ) inner product and norm are denoted by (·, ·)X and ‖·‖X , respectively. The space
V = H

1/2
00 (γ) is familiar (See, for example, [LM72]), and the norm of V is denoted by

‖ · ‖V . For any ξ ∈ V , a solution in H1(Ω1) of the harmonic problem

*w = 0 in Ω1, w = 0 on Γ1, w = ξ on γ

is called the harmonic extension of ξ into Ω1 and is denoted by w = H1ξ. The harmonic
extension H2ξ of ξ into Ω2 is defined in the similar manner. As a consequence of the
trace theorem (Theorem 1.5.2.3, [Gri85]) and the elliptic estimates, we have

C‖ξ‖V ≤ ‖∇Hiξ‖L2(Ωi) ≤ C′‖ξ‖V (∀ξ ∈ V ) (2)

with domain constants C > 0 and C′ > 0, for i = 1, 2.

Amplification Operator for the Error

It is easy to derive that the error ξ(k) = µ(k) − ũ|γ can be expressed as

ξ(k+1) = (1− θ)ξ(k) − θS−12 S1ξ
(k). (3)

Here S1 and S2 stand for the Steklov-Poincaré (SP) operators corresponding to Ω1

and Ω2, respectively. The formal definition of S1 is

S1ξ =
∂(H1ξ)

∂ν

∣∣∣
γ

for ξ ∈ V . S2 is also defined in the similar way. Actually, thought Kato’s represen-
tation theorems concerning unbounded quadratic forms in a Hilbert space ([Kat76]),
we have:
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1. Si is a positive and self-adjoint operator, and S
1/2
i is so too.

2. The domain D(S1/2
i ) of S1/2

i coincides with V .

3. The identity ‖S1/2
i ξ‖X = ‖∇Hiξ‖L2(Ωi) holds for any ξ ∈ V .

4. S−12 S1 with its domain D(S1) admits of a bounded extension H into V . In fact,
H is given by

H = S
−1/2
2 (S1/2

1 S
−1/2
2 )∗S1/2

1 ,

where ∗ means the adjoint in X .

Therefore, the precise meaning of (3) is understood as:

ξ(k+1) = Aθξ
(k), (k = 0, 1, 2, · · · ), ξ(0) ∈ V,

where Aθ is the amplification operator for the error defined by

Aθ = (1− θ)I − θH, (I is the identity).

To treat Aθ as a self-adjoint operator, we employ the following device. Thus, we
introduce a special inner product in V in terms of the SP operator:

((ξ, η)) = (S1/2
2 ξ, S

1/2
2 η)X , (∀ξ, η ∈ V ). (4)

Then V again forms a Hilbert space with the new inner product (4). Moreover, by
virtue of (2), we deduce that the corresponding norm |||·||| = ((·, ·))1/2 is equivalent to
‖ · ‖V in V . Furthermore, under (4), H and therefore Aθ are self-adjoint in V .

Concerning the spectral radius rσ(Aθ) of Aθ, as a direct consequence of the spectral
mapping theorem (See, for example, [Yos80]), we have

rσ(Aθ) = sup
s∈σ(H)

|1− θ − θs|,

where σ(H) denotes the spectrum of H .

Shape Conditions and Convergence Results

Throughout this section, we assume that γ is a line segment on the x2-axis. In order
to evaluate rσ(Aθ), we introduce shape conditions of subdomains under the notation:

• R denotes reflection with respect to the x2-axis defined by

R : (x1, x2) �→ (−x1, x2).

• Tm, m being a positive constant, denotes the contraction mapping along the
x1-axis defined by

Tm : (x1, x2) �→
(x1
m

,x2

)
.
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Conditions (Im) and (Il). Let 1 ≤ m < ∞. We say that Condition (Im) is satisfied
if

RTmΩ2 ⊆ Ω1.

On the other hand, for 1 ≤ l ≤ ∞, we say that Condition (Il) is satisfied if

RTlΩ1 ⊆ Ω2.

In the above definition, we understand that Condition (Il) is not satisfied if l = ∞.
The following lemma is a consequence of Conditions (Im) and (Il).

Lemma 1 Let 1 ≤ m < ∞ and 1 ≤ l ≤ ∞, and suppose that both Conditions (Im)
and (Il) are satisfied. Then we have

1
l
≤ H ≤ m. (5)

That is, 1/l ≤ s ≤ m holds for any s ∈ σ(H).

Therefore, concerning a convergence of the DN method, we obtain the following
theorems:

Theorem 1 Let 1 ≤ m < ∞ and 1 ≤ l ≤ ∞, and suppose that both Conditions (Im)
and (Il) are satisfied. For 0 < θ < 1, we define

r̃(θ) =
{

1− (1 + 1
l )θ for 0 < θ ≤ 2

m+l−1+2 ,

(m+ 1)θ − 1 for 2
m+l−1+2 ≤ θ < 1.

Furthermore, assume that 0 < θ <
2

m+ l−1 + 1
. Then 0 < r̃ < 1 and there exists a

positive constant c0 depending only on Ω2 such that

‖ξ(k)‖V ≤ c0r̃(θ)k‖ξ(0)‖V , (k = 1, 2, 3, · · · ).

Theorem 2 Under the same assumptions of Theorem 1, we have

‖u(k)1 − ũ|Ω1‖H1(Ω1) ≤ c1r̃(θ)k‖u(0)1 − ũ|Ω1‖H1(Ω1),

‖u(k)2 − ũ|Ω2‖H1(Ω2) ≤ c2r̃(θ)k‖u(0)2 − ũ|Ω2‖H1(Ω2),

where c1 and c2 are domain constants.

Theorem 3 Under the same assumptions of Theorem 1, by choosing θ =
2

m+ l−1 + 2
,

we get r̃opt =
m+ l−1

m+ l−1 + 2
as the optimal value of r̃.
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Optimality of (5)

The estimate (5) in Lemma 1 is really optimal in a certain sense. We below explain
this fact with the aid of a simple example. We consider the case where Ω is a rectangle
and γ is a line segment parallel to the lateral sides of the rectangle. Specifically, we
assume that, for 0 < a1 ≤ a2 and b > 0,

Ω1 = {(x1, x2); −a1 < x1 < 0, 0 < x2 < b},
Ω2 = {(x1, x2); 0 < x1 < a2, 0 < x2 < b},
γ = {(0, x2); 0 < x2 < b}.

Let ξ ∈ V and write

ξ =
∞∑
n=1

cnφn, cn = cn(ξ) = (ξ, φn)X ,

where φn are the eigenfunctions of (7) which will appear in Appendix. In this case,
the harmonic extensions w1 = H1ξ and w2 = H2ξ can be expressed explicitly. In
particular, we have

∂w1

∂x1

∣∣∣
x1=0

=
∞∑
n=1

√
λncn coth(

√
λna1)φn(x2),

where
√
λn = nπ/b and coth s = (es + e−s)(es − e−s)−1. Hence

S1φn =
√

λn coth(
√

λna1)φn,

since cj = (φn, φj)X = δn,j (Kronecker’s delta). This means that ζ(1)n =
√
λn coth(

√
λna1)

are the eigenvalues of S1. In the similar way, ζ(2)n =
√
λn coth(

√
λna2) are the eigen-

values of S2. φn is the eigenfunction of S1 and S2 corresponding to ζ
(1)
n and ζ

(2)
n ,

respectively. The operator H is a compact operator in X , since, from Lemma 2 in
Appendix, the imbedding operator from V into X is compact. Therefore, the spec-
trum of H consists of only the set of the eigenvalues {ζ(1)n /ζ

(2)
n }∞n=1. As a result, by

Rayleigh’s principle,

sup
ξ∈V

((Hξ, ξ))
|||ξ|||2 =

ζ
(1)
1

ζ
(2)
1

=
tanh(πa2/b)
tanh(πa1/b)

≡ τ(a1, a2, b).

In addition, we have

inf
ξ∈V

((Hξ, ξ))
|||ξ|||2 = inf

n≥1

ζ
(1)
n

ζ
(2)
n

= 1,

since ζ
(1)
n /ζ

(2)
n is a non-increasing sequence in n and is greater than 1. Therefore we

obtain
1 ≤ H ≤ τ(a1, a2, b).

On the other hand, both Conditions (Im) and (Il) are satisfied with l = 1 and m =
a2/a1;

1 ≤ H ≤ a2
a1

. (6)
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We now note that

1 < τ(a1, a2, b) <
a2
a1

, (b > 0) and τ(a1, a2, b) →
a2
a1

, (b → ∞).

This means that the estimate (6) by Conditions (Im) and (Il) is really optimal when
b is sufficiently large for fixed a1 and a2.

Remarks

1. Numerical results to exemplify our theoretical results are presented in [Fuj97],
[FKKN96], [FFS98] and [FS97].

2. Our method of analysis works for some other domain decomposition algorithms,
for instance, the Neumann-Neumann method proposed in [BGLTV89].

3. The similar problem for the Stokes equations is discussed in [Sai00]. There a
new important role of the inf-sup constant is revealed.

Appendix. An Equivalent Norm to ‖ · ‖V
We assume that γ is a line segment on the x2-axis. Let {λn}∞n=1 be the set of the
eigenvalues of the eigenvalue problem:

− d2

dx22
φ = λφ in γ, φ = 0 on ∂γ (7)

and, let φn = φn(x2) be the eigenfunction corresponding to λn which is normalized
as ‖φn‖X = 1. Then each element ξ ∈ X can be expanded by the Fourier series as
follows:

ξ =
∞∑
n=1

cnφn with cn = (ξ, φn)X .

We introduce

U1/4 =
{
ξ =

∞∑
n=1

cnφn ∈ X ;
∞∑
n=1

c2nλ
1/2
n < ∞

}
with the norm

‖ξ‖
U

1/4 =
( ∞∑
n=1

c2n +
∞∑
n=1

λ1/2n c2n

)1/2
for ξ =

∞∑
n=1

cnφn ∈ U1/4. (8)

The space U1/4 forms a Hilbert space equipped with the norm ‖ · ‖U1/4 . Moreover,
U1/4 coincides with the domain D(L1/4) of the fractional power of L, where L means
a minus Laplacian on γ with the zero boundary condition. Then we have, by virtue
of [Fuj67], V = U1/4 with the equivalent norm (8). This implies, in view of the closed
graph theorem, that

C‖ξ‖V ≤ ‖ξ‖U1/4 ≤ C′‖ξ‖V , (∀ξ ∈ V ).
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Namely, we can employ ‖·‖U1/4 as the norm of V . This sometimes gives a better view-
point of our discussion. For instance, the following proposition is an easy consequence
of (8).

Lemma 2 U1/4 = D(L1/4) is compactly imbedded in X, if γ is a line segment.

Proof We set

iNξ =
N∑
n=1

cnφn for ξ =
∞∑
n=1

cnφn ∈ X.

The operator iN is a degenerate operator from U1/4 into X . Let i be the imbedding
operator from U1/4 into X . Then we can calculate as

‖(i− iN )ξ‖2X =
∞∑

n=N+1

c2n ≤ λ
−1/2
N+1

∞∑
n=1

c2nλ
1/2
n ≤ λ

−1/2
N+1 ‖ξ‖2U1/4 .

Thus we have ‖i− iN‖U1/4,X ≤ λ
−1/4
N+1 → 0 as N → ∞. Since degenerate operators iN

are compact, i is also compact.
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7. The mortar element method with overlapping
subdomains

Yves Achdou1 , Yvon Maday 2

Introduction

The mortar element methods were introduced in [BMP94] for non overlapping domain
decompositions in order to couple different variational approximations in different
subdomains. In the finite element context, one important advantage of the mortar
element methods is that it allows for using structured grids in subdomains thus fast
solvers [AAH+98]. The resulting methods are nonconforming but still yield optimal
approximations. The literature on the mortar element methods is growing numerous
see [AMW99] and reference therein.

In this paper, we shall discuss the case of overlapping subdomains, with meshes
constructed in an independent manner in each subdomain. As pointed by F. Hecht,
J.L. Lions, and O. Pironneau, [LP99, HLP99] such a situation can occur if the domain
of computation is a scene constructed by Constructive Solid Geometry as usual in
Image Synthesis and Virtual Reality : each object of the scene is described by set
operations on primitive shapes like cubes, cylinders, spheres and cones. With VRML
(the language of VR), the objects may be described as unions of more elementary
objects with primitive shapes, which are never intersected, so it is not possible to
construct a global mesh. Each simple object must have its individual mesh. In [LP99,
HLP99], many algorithms (including algorithms from control theory) for this situation
are proposed, and cover more general cases than overlapping subdomains (domain with
holes for example).

We also note that independent of the development of the mortar methods, overlap-
ping domain decomposition with non matching grids has been used for finite difference
discretizations in the engineering community : these methods are often referred to as
the chimera methods see [CH90, SB87],

To our knowledge, mortar methods with overlapping subdomains have been pro-
posed first by Y. Kuznetsov [Kuz97] who focused on iterative solvers with Lagrange
multipliers. For two overlapping subdomains, the mortar method has been analyzed
by X.C. Cai and M. Dryja and M. Sarkis [CDS99] in two dimensions. They have
considered two subdomains, with non matching grids and piecewise linear Lagrange
finite elements. In particular, they have considered the case when the overlapping
parameter is 0, (two rectangular subdomains for a L shaped domain). They have also
proposed iterative solvers and preconditioners for the linear systems arising from the
mortar discretization.

In this paper, we generalize their method in two dimensions, with more than two
subdomains. We shall see that technical difficulties arise when the boundary of two

1laboratoire ASCI, Université Paris Sud and INSA Rennes, 20 Av des Buttes de Coesmes, 35043
Rennes, France

2laboratoire ASCI, Université Paris Sud and Laboratoire d’Analyse numérique, Université Paris 6
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subdomains cross each other. For simplicity, we consider the Laplace equation and we
rule out the case when the overlap may vanish. For such situations, one should mix
the method described in [CDS99] and the one below.

This paper contains the results of a more detailed work, see [YM00] where the
proofs of the results below are given, and where iterative preconditioned solvers are
discussed too.

Description of the method and numerical analysis

First definitions

In all what follows, c or C will stand for various constants, independent from the
geometric parameters.

We consider a polygonal domain Ω of R2 and the model boundary value problem
in Ω

−∆u = f in Ω,
u = 0 on ∂Ω.

(1)

We consider first a family of overlapping subdomains (Ωk)k∈{1,...,K} with polygonal
shapes covering Ω:

Ω =
K
∪
k=1

Ωk. (2)

We denote byHk the diameter of Ωk andH the maximal diameter H = max1≤k≤K Hk.
We assume that there exists a constant c such that for any k, 1 ≤ k ≤ K, cH ≤ Hk ≤
H . We also suppose that there exists a constant τ such that any subdomain Ωk
contains a ball of diameter greater than τH .

For any subdomain Ωk, we denote by δk the minimum distance of overlap between
Ωk and ∪i �=kΩi:

δk = inf
x∈Ωk\∪i�=kΩi

inf
y∈∪i�=kΩi\Ωk

|x− y|.

We also define δ ≡ mink δk.

Assumption 1 We assume that the intersection of two subdomains’ boundaries can
only be isolated points, called crosspoints. We assume that there exists a constant α,
0 < α ≤ π

2 such that the angles (taken not greater than π
2 ) between two subdomains

boundaries crossing each other are all greater than α. For simplicity, we assume
also that a given crosspoint is neither the intersection of more than two subdomains’
boundaries, nor the vertex of a subdomain.

Assumption 2 We assume that there exists a constant number N1 such that, for any
ball B of diameter H, B ∩Ω is covered by at most N1 subdomains.

This assumption yields two important consequences:

Property 1 We denote by ωk the union of the subdomains intersecting Ωk, and by
Ik the set of the integers i such that Ωi ⊂ ωk. There exists a constant n1(N1) such
that, for any k, 1 ≤ k ≤ K, cardinal(Ik) ≤ n1(N1).
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Figure 1: The spaces Z lk and W̃ l
k : nodal bases

Property 2 There exists a constant n2(N1) such that, the number of subdomains
containing a given point in Ω is bounded by n2(N1).

We also make the assumption

Assumption 3 The number of crosspoints lying on ∂Ωk is bounded by a constant N2.

On each subdomain Ωk, we have a family of triangular meshes Tk,hk whose triangles
have maximal diameters hk. The meshes are constructed in an independent manner.
The mesh points on ∂Ωk need not match with the mesh points in the overlapping sub-
domains. We assume that the families (Tk,hk)hk are shape regular and quasi uniform,
see [Cia78]. We agree to simplify the notations by replacing Tk,hk by Tk.

Assumption 4 We call h = max
k

hk and we assume that, for a given positive constant

C,

Ch < δ. (3)

Associated with the mesh Tk, we consider the spaces Zk and Xk of piecewise linear
Lagrange finite elements

Zk =
{

uk is continuous in Ωk,
∀t ∈ Tk, uk|t is linear

}
, Xk ≡ {uk ∈ Zk, uk = 0 on ∂Ω ∩ ∂Ωk} .

Each space Xk and Zk is supplied with its usual nodal basis functions. We define
X = ΠKk=0 Xk. The vectors u = (uk)k∈{1...K} of X are collections of functions defined
in the subdomains, but no continuity constraints are imposed at the subdomains
boundaries. The nodal basis of X can be found by taking the product of the nodal
bases of the spaces Xk.

We denote by (Γlk)l∈{1...Ek} the edges of ∂Ωk. For an edge Γlk of ∂Ωk, we denote
by Zlk the space of functions obtained by taking the trace on Γlk of the functions of
Zk, and by T lk the trace of the mesh Tk on Γlk. The space Z lk is the space of piecewise
linear Lagrange finite elements on T lk .

The matching condition

In order to discretize (1), we need to define a subspace Y of X by imposing weak
continuity constraints at the subdomains boundaries ∂Ωk, 1 ≤ k ≤ K.

For an edge Γlk of ∂Ωk\∂Ω we denote by W̃ l
k the subspace of Z lk of the functions

whose restrictions to the extreme elements of T lk are constant. Such spaces are used
as mortar spaces for the non overlapping case (see [BMP94]). Here, we will have to
additionally modify them locally, near the crosspoints.
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We consider an edge Γlk of ∂Ωk\∂Ω. Let (ji)i∈{1···nlk} be the family of the indices
such that |Γlk ∩Ωji | > 0 and ji �= k. Note that, from assumption 3 , nlk is bounded by
a constant C. For i ∈ {1 · · ·nlk}, we define Γl,ik = Γlk ∩ Ωji . From (2),

Γlk =
nlk∪
i=1

Γl,ik .

Call plk(x) the piecewise constant function defined on Γlk by

plk(x) =
nlk∑
i=1

1Γl,ik (x). (4)

From (2) and property 2, there exists a constant C such that 1 ≤ plk ≤ C.
Given W l

k a space of test functions defined on Γlk, the first possible matching
condition on Γlk will be of the form

∀w ∈ W l
k,

∫
Γlk

1
plk(x) + 1

uk(x)−
1

plk(x)

nlk∑
i=1

1Γl,i
k
(x)uji (x)

w(x)dx = 0. (5)

Basically, the space W l
k will be a subspace of W̃ l

k, and the spaces will differ essentially
due to the presence of crosspoints.

There remains now to define the space W l
k. Suppose that for i ∈ {1, . . . , nlk},

Γlk ∩ ∂Ωji �= ∅. Then, from assumption 1, we know that the intersections do not take
place at a vertex of ∂Ωji and let Γl

′
ji

be the edge of ∂Ωji such that Γlk ∩ Γl
′
ji

is a point
denoted by x . If no special attention is taken for the choices of W l

k and W l′
ji , then

the matching condition on Γlk and Γl
′
ji

will strongly couple the degrees of freedom of
uk and uji near the crosspoint x, and there might be cases when these conditions are
too restrictive i.e. the functions uk and uji must be constant even zero near x. To
avoid such a situation, and also in order to get a solver with good parallel properties,
we have to relax the weak continuity condition near x.

We call (xm)m∈{1,...M l
k
} the nodes of T lk different from the endpoints of Γlk, and

(φm)m∈{1,...M l
k} (resp. (ψm)m∈{0,...M l

k+1} ) the nodal basis functions of W̃ l
k (resp. of

Zlk). Note that φm = ψm for 2 ≤ m ≤ M l
k − 1.

We select the nodes for which the support of the corresponding basis function of Xk
does not intersect Γl

′
ji : we obtain the set of nodes (xm)m∈{1,...m1}∪{m2,...M l

k}. We call

φ̃m1 the continuous function vanishing outside (xm1−1, xm2), linear on (xm1−1, xm1)
and on (xm1 , xm2), and such that φ̃m1(xm1) = 1. Likewise, φ̃m2 is the continuous
function vanishing outside (xm1 , xm2+1), linear on (xm1 , xm2) and on (xm2 , xm2+1),
and such that φ̃m2(xm2) = 1. The space W l,x

k is defined by

W l,x
k ≡ span(φ1, . . . , φm1−1, φ̃m1 , φ̃m2 , φm2+1, . . . φMl

k
). (6)

The space W l,x
k is displayed on Figure 2. For what follows, we also define the space

X l,x
k ≡ {u ∈ X l

k, u = 0 at the endpoints of Γlk and xm1+1, . . . , xm2−1}
= span(ψ1, . . . , ψm1 , ψm2 , . . . ψMl

k
). (7)
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Ωj
i

Ωk

x

Figure 2: The spaces W l,x
k and X l,x

k (only two subdomains have been represented)

Definition 1 For the crosspoint x, we define the zone of influence of x on Γlk as the
interval (xm1−1, xm2+1). We also define the zone of influence of a vertex x of Ωk on
Γlk as the union of the two elements of T lk next to x. From Assumption 1, the zone of
influence of a crosspoint has a size smaller than Ch.

Assumption 5 The zones of influence of two crosspoints on Γlk are disjoint. More-
over, the zones of influence on Γlk of a crosspoint and a vertex of Ωk are disjoint.

Finally, we define X lk the set of crosspoints on Γlk and we set

W l
k ≡ ∩

x∈X l
k

W l,x
k (8)

and, likewise

X l
k ≡ ∩

x∈X l
k

X l,x
k , (9)

and Y is the subspace of X defined by

Y ≡ {u ∈ X ; ∀k ∈ {1 . . .K}, ∀l ∈ {1 . . .Ek}, u satisfies (5) } . (10)

for W l
k defined by (8) and (6).

Remark 1 The functions in W l
k will resemble those of W̃ l

k except at a few nodes
near crosspoints. Furthermore, from assumption 5, these exceptional regions around
crosspoints are disjoint.

Remark 2 The spaces W l
k and X l

k have the same dimension.

Let Vk be the set of the nodes containing

1. the vertices of ∂Ωk.

2. all the other nodes of Tk on ∂Ωk such that the support of the corresponding
nodal basis function of Xk intersects another subdomain’s boundary.
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Lemma 1 For a given crosspoint x on Γlk, let (xm)m∈{1,...m1}∪{m2,...M l
k} be the nodes

of T lk involved in the above construction of W l,x
k . Let δ−−, δ−, δ+ and δ++ be defined

by δ−− = xm1−xm1−1

xm2−xm1
, δ− = xm1+1−xm1

xm2−xm1
< 1, δ+ = xm2−xm2−1

xm2−xm1
< 1 and δ++ =

xm2+1−xm2
xm2−xm1

. Assume that there exists a constant c such that for all crosspoint x,

3
2δ
− + δ−− − (δ+)2 ≥ c,

3
2δ

+ + δ++ − (δ−)2 ≥ c,
(11)

then there exists a constant C independent of h such that

inf
u∈W l

k

sup
0 �=w∈Xl

k

∫
Γlk

1
plk(x)+1

u(x)w(x)dx

‖w‖L2(Γl
k
)

≥ C‖u‖L2(Γl
k
). (12)

Let u be a function in L2(Γlk). As a consequence of lemma 1, and if (11) is satisfied,
the problem : find ulk ∈ Z lk such that :

ulk is given at the nodes of Γlk ∩ Vk,
∀wlk ∈ W l

k,

∫
Γlk

1
plk(x) + 1

ulk(x)w
l
k(x)dx =

∫
Γlk

1
plk(x) + 1

u(x)wlk(x)dx
(13)

is well posed. Furthermore, if we impose that ulk = 0 at the nodes in Γlk ∩Vk, then we
have

‖ulk‖L2(Γl
k
) ≤ C‖u‖L2(Γl

k
). (14)

Likewise, let xi be a given node in Γlk ∩ Vk. Under the same technical assumptions,
the solution of the problem: find ψ̃i ∈ Z lk such that

ψ̃i(xi) = 1,
ψ̃i = 0 at the other nodes of Γlk ∩ Vk,
∀wlk ∈ W l

k,

∫
Γlk

1
plk(x) + 1

ψ̃i(x)wlk(x)dx = 0,
(15)

satisfies

‖ψ̃i‖L2(Γlk)
≤ Ch

1
2 . (16)

The discrete problem

From now on, we shall assume that the conditions (11) are satisfied.
Let σ(x) =

∑K
k=1 1Ωk(x). From Property 2, σ is bounded from above by a constant,

and σ ≥ 1. Consider the discrete problem : find u ∈ Y such that for all v ∈ Y ,

K∑
k=1

∫
Ωk

1
σ
∇uk · ∇vk =

K∑
k=1

∫
Ωk

1
σ
fvk. (17)
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Call a the symmetric bilinear form on Y :

a(u, v) =
K∑
k=1

∫
Ωk

1
σ
∇uk · ∇vk. (18)

Now, we wish to obtain an estimate on the ellipticity constant, under typical but not
necessarily optimal assumptions.

Assumption 6 Let Ωk be a subdomain. We assume that for a positive constant C,
for each i �= k ∈ Ik, there exists an edge Γei and a sub-interval γi of Γei such that

• γi ⊂ Ωk.

• |γi| > CH.

• γi is the union of elements of T ei .

Lemma 2 Under the assumptions 1 to 6 and (11), there exists a constant Ce inde-
pendent on the mesh parameters such that

∀u ∈ Y, a(u, u) ≥ Ce

K∑
k=1

∫
Ωk

(
|∇uk|2 + u2k

)
. (19)

If only assumptions 1 to 5 and (11) are satisfied, we have (19), but we only know that
there exists a constant C independent on the mesh parameters such that

Ce ≤ C
1

maxl(1 + log Hhl )
. (20)

Error analysis

By the Berger-Scott-Strang lemma, see [BSS72, SF73], we know that the error of the
method is the sum of a consistency error plus a best approximation error: calling u∗

be the weak solution of (1),

‖u− u∗‖∗ ≤
1
Ce

(
inf
v∈Y

|u∗ − v|∗ + sup
0 �=v∈Y

|a(u∗, v)−
∑K
k=1

∫
Ωk

1
σfvk|

|v|∗

)
. (21)

where Ce is the ellipticity constant. The first term in the right hand side of (21) is
a best approximation error while the second one is a consistency error due to non
conformity.

Lemma 3 Consistency error. Let u∗ be the weak solution of (1). Assume that
u∗|Ωk belongs to Hσk(Ωk), with σk > 3

2 . Then the consistency error is bounded by

C(1 + max
k

log
H

hk
)

 K∑
k=1

max
i∈Ik

(
1 +

√
hi
hk

)2

h
2(σk−1)
k |u∗|2Hσk (Ωk)


1
2

.
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Lemma 4 Best approximation error. Let v∗ ∈ H1(Ω) be such that for 1 ≤ k ≤ K,
v∗|Ωk ∈ Hσk(Ωk) with 2 ≥ σk > 1. Then there exists v ∈ Y such that

K∑
k=1

1
hk

‖v∗k − vk‖L2(Ωk) + |v∗k − vk|H1(Ωk) ≤ C

K∑
k=1

hσk−1k |v∗k|Hσk (Ωk). (22)

Then the error estimate is given by the following theorem :

Theorem 1 Assume that the solution u∗ of (1) is such that for 1 ≤ k ≤ K, u∗|Ωk ∈
Hσk(Ωk) with 2 ≥ σk > 3

2 . Then there exists a constant C such that, if u ∈ Y is the
solution of (17)∑K

k=1 ‖u∗k − uk‖H1(Ωk)

≤ C

Ce
(1 + max

k
log

H

hk
)

 K∑
k=1

max
i∈Ik

(
1 +

√
hi
hk

)2

h
2(σk−1)
k |u∗|2Hσk (Ωk)

 1
2

,
(23)

where Ce is the ellipticity constant.

Remark 3 It seems possible but not easy to improve the consistency error estimate
and get rid of some logarithmic factors. It will be the topic of a future research.

A strengthened matching condition

We give below an example of stronger matching conditions in the neighborhood of
crosspoints.

With the notations introduced in § 7, it is possible to strengthen the previous
matching condition by supplementing the previous test function space W l,0

k ≡ W l
k

with Q supplementary spaces (W l,q
k )1≤q≤Q (to be defined below) such that dim(W l

k)+∑Q
q=1 dim(W l,q

k ) ≤ dim(W̃ l
k). Typically, each new space will correspond to a cross-

point on Γlk. We define the direct sum : W l
k =

⊕Q
q=0 W

l,q
k , and we introduce a family

of coefficients λ0i = 1 for 1 ≤ i ≤ nlk and λqi ∈ {0, 1} for 1 ≤ q ≤ Q and 1 ≤ i ≤ nlk
(these coefficients will be defined below) and we call pq the function defined on Γlk by

pq(x) =
nlk∑
i=1

λqi1Γl,ik (x). (24)

Then the strengthened matching condition reads

∀w ∈ W l,0
k ,

∫
Γlk

1
plk(x) + 1

uk(x)−
1

p0(x)

nlk∑
i=1

1Γl,ik (x)uji (x)

w(x)dx = 0, (25)

∀q ∈ {1, . . . , Q}, ∀w ∈ W l,q
k ,

∫
Γlk

uk(x)−
1

pq(x)

nlk∑
i=1

λqi1Γl,i
k
(x)uji(x)

w(x)dx = 0.

(26)
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Ωk

x

Ωj
r

q

Figure 3: The spaces W l,0
k and W l,q

k (only two subdomains have been represented).
In the case presented here, the dimension of W l,q

k is two.

Remark 4 Conditions (25, 26) are stronger than (5), since W l,0
k = W l

k.

We have to specify the spaces W l,q
k , for q ≥ 1. Call (xq)1≤q≤Q the crosspoints

xq ∈ X lk. For a crosspoint xq, (assume that {xq} = Γlk ∩ Γl
′
jr ), see Figure 3, we call

{xm1+1, . . . , xm2−1} the nodes of T lk for which the support of the corresponding basis
function of Xk intersects the edge Γl

′
jr .

We call φ̃m1+1 the piecewise linear and continuous (except at xm1+1 ) function,
vanishing outside [xm1+1, xm1+2), linear on [xm1+1, xm1+2), and equal to 1 at xm1+1

and 0 at xm1+2. Likewise, we call φ̃m2−1 the piecewise linear and continuous except
at xm2−1 function, vanishing outside (xm2−2, xm2−1], linear on (xm2−2, xm2−1], and
equal to 1 at xm2−1 and 0 at xm2−2.

We define W l,q
k ≡ span(φ̃m1+1, φm1+2 . . . , φm2−2, φ̃m2−1). The spaces W l,0

k and
W l,q
k are displayed on Figure 3. Note that with this choice of W l,q

k , the supports of
the functions in W l,q

k do not intersect the supports of the functions of X l,xq
k .

We have obviously

dim(W̃ l
k) = dim(

Q⊕
q=0

W l,q
k ).

Now we need to define the coefficients λqi. We set λ0i = 1, for all 1 ≤ i ≤ nlk.
For k ≥ 1, assume that {xq} = Γlk ∩ Γl

′
jr
. Then we set λqr = 0 and λqi = 1, for all

1 ≤ i ≤ nlk, i �= r.
Then Y is the subspace of X defined by

Y ≡ {u ∈ X ; ∀k ∈ {1 . . .K}, ∀l ∈ {1 . . . Ek}, u satisfies (25), (26). } . (27)

Remark 5 Let u = (uk) ∈ Y . Then it is very clear from (25), (26) that all the nodal
values of uk located on ∂Ωk except at the vertices of ∂Ωk can be found from the d.o.f.
in the adjacent subdomains and from the d.o.f. located at the vertices of ∂Ωk. With
this matching condition, all the nodal values located on ∂Ωk except at the vertices of
∂Ωk are slave nodal values.



82 ACHDOU, MADAY

Remark 6 Finding the slave nodal values can be achieved in two steps :

1. find the unknown located at the black nodes on Figure 3, by taking the test func-
tions in the spaces W l,q

k , q > 0. This corresponds to solving a small linear system
with a mass matrix for each crosspoint on Γlk.

2. find the remaining nodal values (located on Γlk\Vk) by solving a problem of the
type (13). We have seen above that this problem is well posed under condi-
tions (11).

It can be proved that Theorem 1 also holds for these strengthened matching conditions.
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8. Mesh adaptivity in the mortar finite element
method

by Christine BERNARDI 1, Frédéric HECHT 2

Introduction

The mortar element method [BMP94, BMP93] becomes an important tool for mesh
adaptivity in finite elements. Indeed, completely independent finite element discretiza-
tions can be used on the subdomains of a nonconforming partition of the initial domain
without overlapping. This solves the contradiction between conformity and regularity
and allows for working on a fully adapted mesh with a much smaller number of degrees
of freedom.

In the case of the Laplace equation in a polygon Ω

 −∆u = f inΩ,

u = 0 on ∂Ω.
(1)

the a priori analysis of the discrete problem obtained at each step of adaptivity is per-
formed in [BM00], and optimal estimates are proved. The first results of a posteriori
analysis [BOV99, Woh99] required saturation assumptions. However, as explained in
[BH00], these assumptions can be avoided for some appropriate residual type error in-
dicators, and fully optimal estimates are derived for the Laplace equation, in the sense
that the error in the energy norm is equivalent to the Hilbertian sum of error indica-
tors, up to some negligible terms related to the data. We recall these estimates and
prove the efficiency of these error indicators thanks to some numerical experiments.

An outline of this paper is as follows. In the second section, we describe the discrete
problem. Next we introduce the error indicators and recall from [BH00] the results
of a posteriori analysis, which consist of a global upper bound for the error and a
local upper bound for each indicator. In the third section, we describe our adaptivity
algorithm and present some numerical experiments that seem in good coherency with
the previous estimates.

The discrete problem and its error indicators

Let (T 0
h )h0 be a family of “coarse” triangulations of the domain Ω, in the usual sense:

each T 0
h is a finite set of triangles such that Ω is the union of these triangles and the

intersection of two different elements of T 0
h , if not empty, is a vertex or a whole edge

of both of them. As usual, h0 denotes the maximal diameter of the elements of T 0
h .

We make the further assumption that this family is regular, i.e. there exists a positive
1C.N.R.S. et Université Pierre et Marie Curie, bernardi@ann.jussieu.fr
2Université Pierre et Marie Curie, hecht@ann.jussieu.fr
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Figure 1: Example of mesh

constant σ such that, for all h0 and for all K in T 0
h , the ratio of the diameter of K to

the diameter of its inscribed circle is smaller than σ.
Starting from this family (T 0

h )h0 , we build iteratively new families of refined trian-
gulations as follows. Assuming that the family (T n−1h )hn−1 is known, for each value
of the parameter hn−1,
• for arbitrary positive integers O, we cut some elements of T n−1h into 22� subtriangles
by iteratively joining the midpoints of the edges of these elements,
• we denote by T n,kh the set of these triangles which have area equal to 2−2k the area
of the triangle K of T 0

h in which they are contained, and by Kn the largest value of
k such that T n,kh is not empty,

• we denote by Ωn,k the open subdomain of Ω such that Ω
n,k

is the union of the
triangles of T n,kh ,
• and we call T nh the union of the T n,kh .
Figure 1 illustrates a triangulation T nh (with Kn = 3). The discretization parameter
δ is now the pair (n, hn), where hn denotes the maximal diameter of the elements of
T nh .

Next, at each step n, we define the skeleton

Sn =
Kn⋃
k=0

∂Ωn,k \ ∂Ω, (2)

and, as standard in the mortar method [BMP94], we fix a decomposition of it into
disjoint (open) mortars

Sn =
Mn⋃
m=1

γm and γm ∩ γm
′
= ∅, 1 ≤ m < m′ ≤ Mn. (3)

We make the final assumption that each γm, 1 ≤ m ≤ Mn, is a whole edge of a
triangle of one of the triangulations T n,kh , located on one side of γm, and that, on the
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other side, it is the union of edges of triangles in T n,k1h ∪ · · · ∪ T n,kph , where all ki are
> k. We agree to denote by k(m), k1(m), . . . , kp(m), the corresponding exponents k,
k1, . . . , kp, and by p(m) the number p. We call Em the set of connected components
of γm ∩ ∂Ωn,ki(m), 1 ≤ i ≤ p(m). For simplicity, we assume from now on that there
exists a constant λ independent of δ such that

∀n, sup
1≤m≤Mn

sup
1≤i≤p(m)

ki(m)− k(m) ≤ λ. (4)

We fix an integer O ≥ 2 and, with each value of δ, we associate the local discrete
spaces, for 0 ≤ k ≤ Kn,

Xn,k =
{
vk ∈ C0(Ωn,k); ∀K ∈ T n,kh , vk |K ∈ P�(K)

}
, (5)

where P�(K) stands for the space of restrictions to K of polynomials with total degree
≤ O.

Remark 1 We refer to [BH00] for the analysis of the case of piecewise affine func-
tions (O = 1), where some restrictions on the decomposition are needed.

Let now γm, 1 ≤ m ≤ Mn, be one of the mortars. With each e in Em, we associate
the space W̃m(e) of continuous functions on e such that their restrictions to each edge
e′ = γm ∩ ∂K for all K in T n,ki(m)

h belongs to P�−1(e′) if e′ contains an endpoint of
e, to P�(e′) if not.

The discrete space Xδ is now defined in the usual way, see [BMP93]. It is the space
of functions vδ such that
• their restrictions to each Ωn,k, 0 ≤ k ≤ Kn, belong to Xn,k,
• they vanish on ∂Ω,
• the following matching condition holds on any γm, 1 ≤ m ≤ Mn,

∀e ∈ Em, ∀χ ∈ W̃m(e),
∫
e

[vδ](τ)χ(τ) dτ = 0, (6)

where [vδ] denotes the jump of vδ through e.

Remark 2 As proposed in the first version of the mortar method [BMP94], some
further matching conditions can be added, more precisely the functions in Xδ can be
enforced to be continuous at the endpoints of all γm. These conditions are satisfied in
the numerical experiments of this paper, but they are not necessary for the analysis.

For fixed data f in L2(Ω), the discrete problem now reads:
Find uδ in Xδ such that

∀vδ ∈ Xδ, aδ(uδ, vδ) =
∫
Ω

f(x)vδ(x) dx, (7)

where the bilinear form aδ(·, ·) is defined by

aδ(uδ, vδ) =
Kn∑
k=0

∫
Ωn,k

graduδ · grad vδ dx. (8)
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Thanks to the matching conditions (6), it is readily checked that this problem has
a unique solution. Moreover, the following a priori error estimate can be proved as
an extension of [BM00, Thm 2.8]: if the solution u of problem (1) is such that each
u|Ωn,k , 0 ≤ k ≤ Kn, belongs to Hsk(Ωn,k), sk > 1,

‖u− uδ‖H1
δ (Ω)

≤ c
(Kn∑
k=0

(2−k h0)2(sk−1) ‖u‖2Hsk(Ωn,k)

) 1
2
, (9)

where the mesh-dependent norm ‖ · ‖H1
δ (Ω)

is defined by

‖v‖H1
δ (Ω)

=
(Kn∑
k=0

‖v‖2H1(Ωn,k)

) 1
2
. (10)

Remark 3 As explained in [BB99], the matching conditions (6) can be enforced
thanks to to the introduction of a Lagrange multiplier. In this case, problem (7) is
equivalent to a saddle-point problem. The corresponding global matrix is symmetric,
so that solving it is not expensive.

However, we are more specifically interested with a posteriori estimates. As usual,
we fix an approximation fδ of the function f in the space

Zδ =
{
gδ ∈ L2(Ω); ∀K ∈ T nh , gδ |K ∈ P�∗(K)

}
. (11)

where O∗ is a nonnegative integer. We consider two types of indicators.
• Error indicators linked to the finite elements

For each K in T nh , we denote by EK the set of edges of K which are not contained
in ∂Ω. In what follows, hK stands for the diameter of K and he for the length of any
e in EK (or in any Em).

The residual error indicator ηK associated with any triangle in T nh is now defined
in a completely standard way, see [Ver96, (1.18)]:

ηK = hK ‖fδ +∆uδ‖L2(K) +
1
2

∑
e∈EK

h
1
2
e ‖ [∂nuδ] ‖L2(e), (12)

where ∂n denotes the normal derivative on e and [ · ] the jump through e. Note that
the term “residual” here means that, when suppressing all the δ in the previous line,
the quantity in the right-hand side is zero.
• Error indicators linked to the edges of the skeleton

Like in [BV96, (3.3)], for 1 ≤ m ≤ Mn, we associate with each e in Em the indicator
ηe defined as

ηe = h
− 1

2
e ‖ [uδ] ‖L2(e). (13)

There also, this quantity vanishes when suppressing the δ.

Remark 4 It is readily checked that, for all m, 1 ≤ m ≤ Mn, and for all e in Em,
the quantity ηe is equivalent to the norm ‖ [uδ] ‖

H
1
2 (e)

. However it is much easier to
compute.
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We sum up in the two following propositions the estimates concerning these indi-
cators, and we refer to [BM00, §3] for their detailed proofs. The first one relies on the
formula, obtained by local integration by parts,

‖u− uδ‖H1
δ (Ω)

≤ c
( ∑
K∈T n

h

(
‖fδ +∆uδ‖L2(K)

‖v − vδ‖L2(K)

‖v‖H1
δ (Ω)

+‖f − fδ‖L2(K)

‖v − vδ‖L2(K)

‖v‖H1
δ
(Ω)

−1
2

∑
e∈EK

‖[∂nuδ]‖L2(e)

‖v − vδ‖L2(e)

‖v‖H1
δ (Ω)

)
+|

Mn∑
m=1

∑
e∈Em

∫
e

∂n(u− uδ) [uδ] dτ |
1
2

)
,

(14)

where v is equal to u− uδ and vδ is any “conforming” approximation of v, i.e. which
belongs to Xδ∩H1

0 (Ω). The first three terms are evaluated by constructing an extension
of Clément’s operator to the present situation, while estimating the last one relies on
conditions (6). The arguments for proving the second proposition are standard for
residual indicators, see [Ver96, Chap.3].

Proposition 1 There exists a constant c independent of δ such the following error
estimate holds between the solutions u of problem (1) and uδ of problem (7):

‖u− uδ‖H1
δ (Ω)

≤ c
( ∑
K∈T n

h

(
η2K + h2K ‖f − fδ‖2L2(K)) +

Mn∑
m=1

∑
e∈Em

η2e

) 1
2
. (15)

Proposition 2 There exists a constant c′ independent of δ such that the following
estimate holds for all K in T nh :

ηK ≤ c′
(
‖u− uδ‖H1

δ (ΞK) + (
∑

K′⊂ΞK

h2K′ ‖f − fδ‖2L2(K′))
1
2
)
, (16)

where ΞK is the union of at most four triangles such that at least an edge of K is
contained in an edge of such triangles. There exists a constant c′′ independent of δ
such that the following estimate holds for all m, 1 ≤ m ≤ Mn, and for all e in Em:

ηe ≤ c′′ ‖u− uδ‖H1
δ (Ξe)

, (17)

where Ξe is the union of the triangle of T n,k(m)
h that intersects γm and a triangle K

contained in an Ω
n,ki(m)

such that e is an edge of K.

Remark 5 The constants c, c′ and c′′ in the previous propositions only depend on
the regularity parameter σ of the initial family of triangulations (T 0

h )h0 and on the
constant λ introduced in (4). Their dependency with respect to λ is explicitly written
in [BH00].
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Proposition 2 states a local version of the upper bounds for the error indicators.
However a global version can be proven by similar arguments. When compared with
(15), this global estimate proves that the error ‖u − uδ‖H1

δ (Ω)
is equivalent to the

Hilbertian sum of the indicators, up to some terms concerning the approximation of
the data f . These terms are most often negligible, so that the combined two types of
indicators lead to an optimal evaluation of the error.

The adaptivity algorithm and numerical experiments

Thanks to the previous choice of the discrete problem, the algorithm for mesh adap-
tivity is now straightforward. Assume that we are given a triangulation T nh and the
corresponding skeleton Sn. We solve the associated problem (7) and compute all the
error indicators ηK and ηe, next the meanvalue ηn of the ηK , K ∈ T nh , and the mean
value ηn∗ of the ηe, e ∈ Em, 1 ≤ m ≤ Mn. The next triangulation T n+1,k

h and skeleton
Sn+1 are then built in two steps.
• Step 1. For all K in T nh , there exists an integer k such that

2k ηn ≤ ηK ≤ 2k+1 ηn. (18)

If k is positive, we cut the triangle K into 22k equal subtriangles by iteratively joining
the middle of the edges. This allows for defining an intermediary skeleton Sn∗ .
• Step 2. We only consider the e in Em, 1 ≤ m ≤ Mn, such that

ηe ≥ 2 ηn∗ . (19)

If this edge remains in Sn∗ after Step 1, we cut the triangles on both sides of e, such
that e becomes “conforming”, i.e. it is no longer contained in the next skeleton Sn+1.

We stop the algorithm either after a finite number of iterations or when the fol-
lowing condition is satisfied for a given tolerance ε:

∑
K∈T n

h

η2K +
Mn∑
m=1

∑
e∈Em

η2e ≤ ε2. (20)

We now present some numerical results in the case where Ω is the L-shaped domain
] − 1, 1[2\[0, 1]2 and the data f is equal to 1. We work with piecewise quadratic
functions (O = 2) and an initial mesh T 0

h made of 64 triangles. The dimension of the
corresponding space Xδ is 105.

Figure 2 presents the initial mesh T 0
h and the first five refined meshes T nh , n = 1,

2, 3, 4, 5, according to the previous algorithm.
Figure 3 presents the isovalue curves of the error indicators ηK , K ∈ T nh , for each

of the previous T nh .
Table 1 presents for each triangulation T nh the number of triangles Nn

T , the total
number of mortars Mn, the dimension dimXδ of the corresponding space Xδ, the
maximal value Kn of the k and finally the Hilbertian sum ηnnorm of all indicators ηK
and ηe. It can be observed that, for a fixed initial mesh, this sum decreases at each
iteration n.
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Figure 2: The sequence of adapted meshes
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Figure 3: Isovalue curves of the indicators
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Figure 4: Isovalue curves of the solution

n 0 1 2 3 4 5
Nn
T 64 88 121 214 301 325

Mn 0 8 18 32 47 59
dimXδ 105 171 256 466 661 730
Kn 0 2 2 4 4 5

ηnnorm 0.3438 0.2187 0.1587 0.0927 0.0677 0.0562

Table 1

The isovalue curves of the discrete solution obtained on the mesh T 5
h are presented

in Figure 4 .
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9. Adaptive ENO-Wavelet Transforms for
Discontinuous Functions

T.F. Chan1 H.M. Zhou2

Introduction

We have desiged an adaptive ENO-wavelet transform for approximating discontinu-
ous functions without oscillations near the discontinuities. Our approach is to apply
the one-side information idea from Essentially Non-Oscillatory (ENO) schemes for nu-
merical shock capturing to standard wavelet transforms. This transform retains the
essential properties and advantages of standard wavelet transforms such as concentrat-
ing the energy to the low frequencies and having a multiresolution framework and fast
algorithms, all without any edge artifacts. Furthermore, we have obtained a rigorous
uniform approximation error bound regardless of the presence of discontinuities. We
will show some numerical examples and some applications to image compression.

It is well known that wavelet linear approximation (i.e. truncating the high fre-
quencies) can approximate smooth functions very efficiently but cannot achieve sim-
ilar results for piecewise continuous functions, especially functions with large jumps.
Several problems arise near jumps, primarily caused by the well-known Gibb’s phe-
nomenon. The jumps generate large high frequency wavelet coefficients and thus
linear approximations cannot get the same high accuracy near discontinuties as in the
smooth region.

To overcome these problems within the standard wavelet transform framework,
non-linear data-dependent approximations, which selectively retain certain high fre-
quency coefficients, are often used, e.g. hard and soft thresholding techniques, see
[Don95],[Mal98]. Another way is to construct orthonormal basis to represent the dis-
continuities, such as Donoho’s wedgelets [Don97], rigdelets [CD99b], and curvelets
[CD99a], and Mallat’s bandelets [Mal00].

A different aproach is to modify the wavelet transform to not generate large
wavelet coefficients near jumps. Claypoole, Davis, Sweldens and Baraniuk [PCB99]
proposed an adaptive lifting scheme which lowers the order of approximation near
jumps, thus minimizing the Gibbs’ effect. We use a different approach in develop-
ing our ENO-wavelet transforms by borrowing the well developed Essentially Non-
Oscillatory (ENO) technique for shock capturing in computational fluid dynamics
(e.g. see [AHC87]) to modify the standard wavelet transform near discontinuities so
that the Gibbs’ phenomenon can be completely removed. ENO schemes are systematic
ways of adaptively defining piecewise polynomial approximations of the given functions
according to their smoothness. A crucial point in designing ENO schemes is to use
one-sided information near jumps, and never differencing across the discontinuities.

Combining the ENO idea with the multiresolution data representation is a natural

1Department of Mathematics, UCLA, chan@ipam.ulca.edu. Research supported in part by grants
ONR-N00017-96-1-0277 and NSF DMS-9973341. The material in this report is patent pending.

2Department of Applied Mathematics, Caltech, hmzhou@acm.caltech.edu
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way to avoid oscillations in the approximations. In fact, it has been explored by
Harten in his general framework of multiresolution [Har94], which is similar to the
lifting scheme of Sweldens [Swe97]. However, his method was not developed to be
directly applied to the widely used pyramidal filtering algorithms which the standard
wavelet transforms are usually implemented in.

The way we accomplish this is to not change the wavelet transforms or the filter
coefficients, which most data dependent multiresolution algorithms do, but instead lo-
cally change the function near the discontinuities in such a way that the standard filters
are only applied to smooth data, and therefore no large high frequency coefficients are
generated. By recording how the changes are make, the original discontinuous func-
tion can be exactly recovered by using the original inverse filters. We show that the
resulting wavelet transform retains all the desirable properties of the standard trans-
form. The extra cost (in floating point operations) required is insignificant, which, in
fact, is of order O(dl) where d is the number of discontinuities and l the filter length.

The arrangement of the paper is as follows. In the next section, we give a general
algorithm to implement the ENO-wavelet transform discretely. And we also state
the rigorous uniform error estimate in this section. In the last section, we give some
numerical examples to illustrate the main advantage of the ENO-wavelet transforms,
including some examples in image compression.

In this short proceeding paper, we are forced to leave out many mathematical
details, and we aim only to give a general idea of the algorithms and the numerical
results. For more details, see [CZ99].

ENO-wavelet Transforms

First, we briefly review the standard discrete wavelet transforms, e.g. see [Dau92],
[Mal98] and [SN96]. In practice, discrete wavelet transforms are often used by starting
with a set of discrete numbers which are the low frequency coefficients of the L2

function f(x) at the finest level. In many applications, this set of numbers are sample
values of the function f(x) on a fine grid (although in [SN96], this is called a ”wavelet
crime”). Let αj,k (βj,k) denote the low (high) frequency coefficients at level j. The
wavelet transform coefficients at a coarser level j − 1 can be computed by:

αj−1,k =
l∑
s=0

csαj,2k+s; βj−1,k =
l∑
s=0

hsαj,2k+s, (1)

where cs (hs) are called low (high) pass filters. It is well known that the inverse
transforms can be easily formed by using orthogonality of the wavelet transforms.
The linear approximation refers to reconstructing αj,k by setting the high frequencies
βj−1,k to zero.

In Fig 1, the left picture is a piecewise continuous function (dotted) and its linear
approximation (solid). The middle one is a zoom-in at a discontinuity. We clearly
see oscillations near discontinuities. The right one is its DB-4 wavelet coefficients.
We see that most of the high frequency coefficients are zero, except for a few large
coefficients which these coefficients are computed near jumps. In this figure, we clearly
see oscillations near discontinuities.
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Figure 1: Left: The initial discontinuous function (dotted) and its linear approxima-
tion (solid). Middle: A zoom-in at a discontinuity. Oscillations are generated near
the discontinuity. Right: its DB4 coefficients. Most of the high frequency coefficients
(right part) are zero except for a few large coefficients computed near the jumps.

To simplify the presentation, we shall assume that the discontinuities in the func-
tions are well-separated in the following sense:

Definition 1 For a given wavelet filter with stencil length l, we say the j-th level
approximation of the function f(x) with spatial step ∆x = 2−j satisfies the Disconti-
nuity Separation Property (DSP) if (l + 2)∆x < t, where f(x) has discontinuous
set D and t is the closest distance between any two discontinuous points.

For any piecewise discontinuous function and a fixed stencil length l, an approx-
imation will satisfy this DSP if j is sufficiently large, i.e. if the discretization is fine
enough. On the other hand, at the place where the DSP is invalid, we will see that
the approximations produced by the ENO-wavelet transforms are comparable to that
by the standard wavelet transforms.

Now, we are ready to introduce the ENO-wavelet transforms. In addition to the
standard wavelet transform computation, ENO-wavelet transforms have two more
phases: locating the jumps and forming the approximations at the discontinuities.
First, assuming knowledge of the location of the jumps, we give the ENO-wavelet
approximations at the discontinuities by using one-sided information to avoid oscilla-
tions. Then, we give the methods to detect the location of the discontinuities. We also
give the approximation error bound at the end of this section. In this short paper, we
only consider Daubechies’ orthonormal wavelets. The idea can be similarly extended
to other wavelets.

The main idea of the ENO schemes for shock capturing is to use one-sided polyno-
mial interpolations for data with large discontinuities. For ENO wavelets, we borrow
this idea of using one-sided information to form the approximation and avoid applying
the wavelet filters crossing the discontinuities.

The first way is to directly extend the function values, or in general the low fre-
quencies on the finer level, at the discontinuity by p-th order extrapolation from both
sides. For example, a straightforward way is to use p-point polynomial extrapola-
tion. Least square can be used too [WA95]. Then one can apply the standard wavelet
transforms on the extended functions by using (1) to compute the coarser level wavelet
coefficients.

There is a storage problem for this direct function extrapolation. Indeed, it doubles
the number of the wavelet coefficients near every discontinuity. To retain the perfect
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Figure 2: The approximation accuracy comparison of ENO-wavelet and standard
wavelet transforms. Both L∞ (left) and L2 (right) order of accuracy show that ENO
transforms maintain the order 1, 2 and 3 for ENO-Haar, ENO-DB4 and ENO-DB6
respectively and they agree with the theoretical results. In contrast, standard trans-
forms do not retain the order.

invertible property, we need to store the ENO-wavelet coefficients from both sides.
Thus, the output sequences are no longer the same size as the input sequences. In many
applications, such as image compression, this extra storage requirement definitely
needs to be avoided.

To keep the size of the output sequences the same as that of the input sequences
without significant extra computation, we introduce the coarse level extrapolation
schemes. The idea is to extrapolate the coarser level wavelet coefficients near the
discontinuities instead of the function values or the finer level wavelet coefficients. Let
us consider the extension from the left side first.

We have two choices: (1) We can extrapolate the low frequency coefficients αj−1,k
first, then determine the corresponding high frequency coefficients βj−1,k . (2) Or we
can first extend high frequency coefficients βj−1,k, for example to zero, then deter-
mine the corresponding low frequency coefficients αj−1,k . By symmetry, we have two
analogous choices for the right side of the jump.

The storage problem can be easily solved in both options. For example, we can
store the high frequency coefficients for choice (1) and the low frequency coefficients
for choice (2). The corresponding low frequency and high frequency coefficients can
be easily recovered.

For each stencil crossing a jump, an extra cost (in floating point operation) is re-
quired in extrapolating low frequency coefficients, and in computing the corresponding
high or low frequency coefficients. Overall, the extra cost over the standard wavelet
transform is of order O(dl). Compared to the cost of the standard transform, which is
of order O(nl) where n is the size of data, the ratio of the extra cost over that of the
standard transform is O( dn ), which is independent of l and negligible when n is large.

Next, we introduce the methods to detect the location of the discontinuities for
noisy and noise free functions. First we consider noise free data.

It is well known that for the smooth functions, we have |βj,i| = |f (p)|O(∆xp). In
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contrast, |βj,i| is at least one order lower than that if it involves a discontinuity So, an
obvious way, also the cheapest way, to identify the discontinuities is to compare the
magnitudes of the high frequency coefficients on the current standard stencils |βj,i|
with that on the previous standard stencils |βj,i−1|. Thus, we can design a method
to detect the discontinuities as follows: If we have |βj,i| ≤ a|βj,i−1|, where a > 1 is
a given thresholding constant, then we treat the current stencil as a smooth stencil.
Otherwise, we conclude that there are discontinuities contained in it.

The above described detection method may not be reliable if the function is pol-
luted by noise, especially when the noise is ”large”. In this situation, we need to
use heuristics to locate the exact position of the essential discontinuities. In many
applications such as in image processing, large discontinuities in function value are
the most significant features. A simple way to detect this kind of discontinuities is to
look for these large magnitude high frequency coefficients and then compare the data
values in the corresponding stencils to locate the exact jump positions.

Finally, we present the following uniform error estimate; the proof can be found in
[CZ99]

Theorem 1 Suppose the wavelets have finite support in [0, l], and p vanishing mo-
ments, f(x) is a piecewise continuous function in [a, b], and fj(x) is its j-th level
ENO-wavelet approximation. If the approximation fj+1(x) satisfies the DSP, then

‖f (x)− fj(x)‖ ≤ C(∆x)p‖f (p)(x)‖(a,b)\D, (2)

where ∆x = 2−j and D is the jump set. The norm ‖ · ‖ can be either L2 or L∞.

This theorem shows that the error in the ENO-wavelet approximation depends
only on the size of the derivative of the function away from the discontinuities. In
contrast, the error estimate for standard wavelet transforms depends on ‖f (p)(x)‖(a,b)
which is unbounded at discontinuities. From an approximation point of view, the
error bound for ENO-wavelets is as if the discontinuities were not there, and this is
the best possible for discontinuous functions.

Numerical Examples

In this section, we give some 1-D and 2-D numerical examples by using the ENO-
wavelet transforms. In particular, we show results for the ENO-Haar, ENO-DB4 and
ENO-DB6 wavelet transforms.

To illustrate the performance of ENO-wavelet transforms, we show picture com-
parisons of the standard wavelet approximations (dash dotted in all figures) and corre-
sponding ENO-wavelet approximations (solid). In addition, we compare their L∞ and
L2 errors at level i: E∞,i and E2,i. Also, we compute the order of accuracy defined
by: Order∞ = log2

E∞,i

E∞,i−1
, Order2 = log2

E2,i
E2,i−1

.

We apply Haar and ENO-Haar, DB4 and ENO-DB4, and DB6 and ENO-DB6 to
this function and compare the approximation errors. Fig 2 shows the comparison of
the order in L∞ and in L2 norm. It is clear that both the L∞ and L2 order of accuracy
for ENO-wavelet transforms are of the order 1, 2 and 3 for ENO-Haar, ENO-DB4 and
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Figure 3: The 4-level ENO-Haar and Haar (left), ENO-DB4 and DB4 (middle), and
ENO-DB6 and DB6 (right) approximation. The second row are corresponding zoom-
ins near a discontinuity. We see the Gibbs’ phenomenon in the standard approximation
but not in the ENO approximation.

ENO-DB6 respectively, agreeing with the results of Theorem 1. In contrast, standard
wavelet transforms do not retain the corresponding order.

To see the Gibbs’ oscillations, we display the 4-level ENO-wavelet and standard
wavelet approximations in the first row of Fig 3, for ENO-Haar (left), ENO-DB4
(middle) and ENO-DB6 (right) respectively. The second row are corresponding zoom-
in at a same discontinuity. We clearly see the Gibbs’ oscillations in the standard
approximations. In contrast, the ENO-wavelet approximations preserve the jumps
accurately.

In Fig 4, we also present the standard DB4 (dotted) and the ENO-DB4 (solid)
wavelet coefficients respectively. There are some large standard high frequency coef-
ficients (right part) related to the discontinuities. On the other hand, no large high
frequency coefficients present in the ENO-wavelet coefficients.

The next 1-D example shows the ENO-DB6 wavelet transform applied to noisy
data (see Fig. 5). Despite the presence of noise in the initial data (circles), the level-3
ENO-DB6 approximation (solid line) still retains the sharp edges (see zoom-in in the
right picture) compared to the standard DB6 approximation (dash-dotted line) which
not only has oscillations at the discontinuities but also smears them.

Finally, we give a 2-D image compression example to compare the standard Haar
and the ENO-Haar approximations. Here we use tensor products of 1-D transforms.
The original picture (left), the 3-level standard Haar (middle) and ENO-Haar (right)
approximation are shown in Fig 6. Both approximations use the same number of low
frequencies ( 1

64 of the original data). It is clear that in the standard Haar case, the
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Figure 4: The 4-level ENO-DB4 (solid) and the standard DB4 (dotted) coefficients.
There are large high frequency coefficients (right part) near the discontinuities in the
standard transform but not in the ENO-DB4 transform.
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Figure 5: Left: The comparison of the 3-level ENO-DB6 (solid line) with the standard
DB6 (dash-dotted line) approximation for noisy initial data (circles). Right: A zoom-
in of the left example at a discontinuities. The ENO-DB6 approximation retains the
sharp jumps but the standard DB6 approximation does not.

image becomes fuzzier than the ENO-Haar case. This illustrates that the ENO-Haar
approximation can reduce the edge oscillations for 2-D images.
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10. A Two-Stage Multi-Splitting Method for
Non-Overlapping Domain Decomposition for
Parabolic Equations

Daoud S. Daoud1, Bruce A. Wade2

Domain Decomposition

In domain decomposition for parabolic partial differential equations (PDE) several
approaches have been developed— breaking the domain into multiple subdomains
of either overlapping or non-overlapping type, or using algebraic type splittings—
cf. [CM94] for an overview. An important aspect is how to present the boundary
conditions across interfaces or across common unknown points of subdomains, cf.
[GS98, HT96, Tan92]. Towards parallelism, we divide the domain into subdomains
with one grid point in common, adding an extra unknown at the interface to have
effectively a non-overlapping decomposition.

In the present numerical method we have designed a one gridpoint overlap together
with an extra equation in order to arrive at an effective multi-splitting approach.
The transmission of data at the interface is through a discrete parametrized Robin
boundary condition across interior interface points. A significant part of this report
is the design and experimental study of optimizing boundary parameter coupled with
particular choices of inner and outer splittings. We are interested here in extending
some work of San and Tang [HT96] and Tang [Tan92] to parabolic problems. There
is a parameter γ that acts like a feedback gain across the artificial interfaces. The
primary aspect of this article is to construct and demonstrate effective multi-splitting
methods as depending on the interface boundary condition.

Consider the numerical solution of parabolic problems of form:

∂u

∂t
=

∂2u

∂x2
+ f(x, t), x ∈ (0, L), t > 0, (1)

subject to initial condition u(x, 0) = g(x), x ∈ Ω := (0, L) and boundary conditions
u(0, t) = u(1, t) = 0.

With the usual (∆x,∆t) mesh in (x, t) (∆x = 1/M, xi = i∆x, i=0,· · · ,M,tj=
j∆t, j = 0, · · · , N ), let x̄ be a point of interface by which the domain Ω is decomposed
into two subdomains Ω1 = {x ∈ Ω : x < x̄+∆x} and Ω2 = {x ∈ Ω : x > x̄−∆x} ,
where x̄ = m∆x, for some m with 1 < m < M − 1. We are utilizing just two
subdomains to address the essential issues. Solutions u1 and u2 are restricted versions
of u over the domains.

1Department of Mathematics, Eastern Mediterranean University, Famagusta, North Cyprus, Via
Mersin 10, Turkey. daoud.daoud@emu.edu.tr.

2Department of Mathematical Sciences, University of Wisconsin– Milwaukee, Milwaukee, Wiscon-
sin 53201-0413. wade@uwm.edu.
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We introduce a boundary condition at x̄ as follows

αu1 + (1− α)
∂u1
∂n

∣∣∣∣
x̄−

= αu2 + (1− α)
∂u2
∂n

∣∣∣∣
x̄+

α ∈ [0, 1]. (2)

Then the global problem (1) is split over Ω1 and Ω2 in a natural fashion.
One can employ the method of lines with (1) through a second order central differ-

ence approximation [Smi85]: ∂2u
∂x2

∣∣∣
(xi,tj)

=∆x−2(ui−1,j−2ui,j+ui+1,j)+O(∆x2). The

normal derivative in the boundary condition (2) at (x̄, t) = (xm, t) is approximated
by forward or backward differences for Ω1, and Ω2, respectively, as follows:

αu1|m,j + (1− α)
1
∆x

(u1|m+1,j − u1|m,j) =

αu2|m,j + (1− α)
1
∆x

(u2|m+1,j − u2|m,j) , x̄ = xm ∈ Ω1, (3)

αu2|m,j + (1− α)
1
∆x

(u2|m,j − u2|m−1,j) =

αu1|m,j + (1− α)
1
∆x

(u1|m,j − u1|m−1,j) , x̄ = xm ∈ Ω1. (4)

In equation (3) u2 is considered as given (known), u1|m,j is an unknown, and u1|m+1,j

is a fictitious value for which this equation provides substitution. The situation is sim-
ilar for equation (4). Re-write these equations by introducing a convenient parameter
γ := (1− α(1 + ∆x)) /(1− α) as follows:

u1|m+1,j − u2|m+1,j = γ (u1|m,j − u2|m,j) , (5)

u2|m−1,j − u1|m−1,j = γ (u2|m,j − u1|m,j) . (6)

In equations (5) and (6) the parametrized discrete Robin boundary condition at the
matrix level (below) amounts to a kind of error feedback where γ is the gain. If γ is
first chosen, then α in (3) and (4) becomes α = (γ − 1)/(γ − (1 + ∆x)). We note the
particular choice of γ = 0 (α = 1/(1 + ∆x)), giving a variation on the SAM Dirichlet
condition in which an extra column has been inserted to slide the entries over; we call
this the Sliding Dirichlet Condition.

By substituting (3) and (4) in (2), a couple of first order systems of differential for
u1 and u2 arise:

du1
dt

= B1u1 +


0
...
0

∆x−2(u2,m+1 − γu2,m)

 , (7)

du2
dt

= B2u2 +


∆x−2(u1,m−1 − γu1,m)

0
...
0

 , (8)
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where B1 ∈ Rm×m, and B2 ∈ RM−m×M−m.
The i-th row of B1 has form ∆x−2[0, · · · , 0, 1,−2, 1, 0, · · · , 0], i = 1, · · · ,m − 1,

while the m-th row of B1 is ∆x−2[0, · · · , 1,−2 + γ]. For B2 we retain the number-
ing from the spatial grid, so the i-th row is ∆x−2[0, · · · , 0, 1,−2, 1, 0, · · · ], i = m +
1, · · · ,M − 1, and the m-th row (the first row in actuality) is ∆x−2[−2+ γ, 1, 0, ..., 0].
Then we assemble the matrices B1 and B2 into a block matrix of coefficients A to
represent the global system of ordinary differential equations. There are now M un-
knowns due to the extra unknown u2,m (formerly, there were M−1 unknowns). Setting
u = [u1, u2]T , we arrive at:

du

dt
= Bu. (9)

Here, B ∈ RM×M is given by:

B = ∆x−2



−2 1
. . . . . . . . .
1 −2 1

1 −2 + γ −γ 1
1 −γ −2 + γ 1

1 −2 1
. . . . . . . . .

1 −2


. (10)

The exact solution of the semi-discrete system (9) satisfies the following two-term
recurrence relation, [Smi85, Var62]:

u(t+∆t) = e∆tBu(t). (11)

Several algorithms for the numerical solution of (11) can be generated through an ap-
proximation to the exponential e∆tB; in particular, we shall use rational functions via
implicit Padé approximations, focussing on (1,0) and (1,1) Padé schemes, cf. [Smi85].

The (1,0) and (1,1) Padé approximations are given (respectively) by

e∆tB = (I −∆tB)−1 +O(∆t) & = (I − 0.5∆tB)−1(I + 0.5∆tB) +O(∆t2). (12)

For each scheme of (12) the recurrence relation for u(t+∆t) in (11) gives the following
linear system to solve:

(I − σB)u(t+∆t) = Rm(∆tB)u(t), (13)

where (for (1,0) and (1,1), respectively)

R1(∆tB) = I, σ = ∆t, & R2(∆tB) = I + σB, σ = 0.5∆t.

Let A = I − σB and τ = σ∆x−2. Then A is illustrated as follows:

A = I − σB =
[

A11 A12

A21 A22

]
, (14)
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where

A11 =



1 + 2τ −τ 0 · · · 0

−τ 1 + 2τ −τ
...

0
. . . . . . . . . 0

... −τ 1 + 2τ −τ
0 · · · 0 −τ 1 + (2− γ)τ


,

A12 =


0 0 · · · 0 0
...

...
0 0 · · · 0 0
γτ τ 0 0 0

 ,

A21 =


0 0 · · · τ γτ
0 0 · · · 0 0
...

...
0 0 0 0 0

 ,

A22 =



1 + (2− γ)τ −τ 0 · · · 0

−τ 1 + 2τ −τ
...

0
. . . . . . . . . 0

... −τ 1 + 2τ −τ
0 · · · 0 −τ 1 + 2τ


.

Due to the implicit nature of the finite difference scheme, we desire to avoid undue
restriction on the size of ∆t. Thus, we assume only that ∆t/∆x ≤ 1, so that τ is at
most O(∆x−1) and is expected to be of order ∆x−1. We desire to choose α (or γ)
to assure that A is an M -matrix or an H-matrix. It is easy to check that one must
have γ ≤ 1 for α ∈ [0, 1]; if 0 < γ ≤ 1 and 2γτ ≤ 1, then A is an H-matrix; and if
γ ≤ 0 then A is an M -matrix. Since τ depends on the mesh size, we want to reject
the condition 2γτ ≤ 1. Therefore, we are now concentrating on the situation where
γ ≤ 0, in which case A is an M -matrix. This is easy to check upon consulting [Var62,
p. 85].

The Two-Stage Multi-splitting Algorithm

The main advantage in the proposed boundary condition (3, 4) at interfaces is that
it leads to a partitioning of the global matrix A in (14) into particularly beneficial
submatrix blocks, which are amenable to solution of multi-splitting iterative type.
The parallel multi-splitting method of O’leary and White [OW85] to solve a linear
system Au = b is defined by considering multi-splittings from the decomposition A =
Mk − Nk, k = 1, · · · ,K, such that each Mk is invertible; we can form an iterative
method, as follows:

ui+1 = M−1
k Nku

i +M−1
k b. (15)
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The multi-splitting iterates in (15) can be computed concurrently by introducing the
non-negative diagonal matrices Ek,

∑K
k=1 Ek = I, and using them as follows:

ui+1 = Hui + c, (16)

where H =
∑

EkM
−1
k Nk and c =

∑
EkM

−1
k b.

For the linear system of concern here the first stage of splitting is according to the
subdomains Ωk (cp. [FS97]):

Mi =


D11

. . .
Aii

. . .
DKK

 , (17)

where the matrices Dkk are the diagonals of Akk, respectively, or any dummy diagonal
matrices to make Mk, k = 1, · · · ,K invertible. We take Nk = Mk −A.

To calculate un+1 from un (where u = [u1, u2, · · · , uK ]T ), use:

Mkw
i+1
k = Nku

i + b, k = 1, · · · ,K, (18)

un+1 =
K∑
k=1

Ekw
i+1
k .

This is rewritten as a single splitting with M =diag (Aii) .
With the splitting above one could implement a nice parallel algorithm. There are

a wide variety of iterative schemes to consider. As in [FS94], it is useful to examine the
possibility of introducing a second state of multi-splitting methods, this time splitting
the matrices Mk according to their convenient algebraic struture [OW85].

The second stage of splitting will be considered for the matrices Mk, k = 1, · · · ,K.
For this article, we deal with three rather standard approaches for inner iteration: the
Jacobi, Gauss-Seidel, and SOR. Each subdomain block has been constructed to be of
form only slightly different from a standard type matrix, and it is natural to test these
schemes to gain insight into the proposed boundary treatment.

For brevity, we shall only describe the procedure, assuming the standard version of
each algorithm is well known. The outer iteration (also called the first stage) consists
of splitting the matrix A as diagrammed earlier. Then we split the submatrices Aij to
the right hand side whenever i �= j and on processor i we split all other Ajj submatrices
to the right, leaving only their diagonals.

The Parallel Jacobi (or PJacobi) version of the inner iteration (or second stage)
is to iterate s times on processor i for unknowns corresponding to the ith subdomain,
splitting the upper and lower diagonal parts to the right hand side as well.

The Parallel Gauss-Seidel (or PGauss-Seidel) inner iteration is to iterate s times
on processor i for unknowns corresponding to the ith subdomain, splitting the upper
diagonal parts within that block to the right hand side.

Parallel Successive Over-Relaxation (or PSOR) does s iterations for ith subdomain
unknowns of standard SOR (using ω as the parameter).
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Numerical Experiments

In this section we demonstrate the performance of the algorithms described earlier
and give empirical support to claim of convergence.

Let’s work with the following prototype parabolic (heat) equation:

ut = uxx + x(1− x)π sin(πt)− 2 cos(πt), x ∈ (0, 1), t > 0

u(x, 0) = x(x− 1), x ∈ (0, 1),

with boundary conditions u(0, t) = u(1, t) = 0. The exact solution is x(x− 1) cos(πt).
We will compute approximations to the solution at target time t∗ = 1.0. All iterations
have a halting signal of ||un+1−un|| ≤ 0.5∆t2∆x||un||, which means smaller step sizes
require more iterations.

The first numerical experiment to report, see Figure 1, is with inner splittings of
Jacobi type, different values of K (the number of subdomains), two particular choices
of γ, and s = 1. The computations were done in FORTRAN 90 on a Penitum III (not
in parallel). The case γ = 0.0 is called the Sliding Dirichlet Condition because it looks
like a Dirichlet condition, shifted over by one column. It arises from α = 1/(1 + ∆x)
in the discrete parametrized Robin condition, so it is not the ordinary Schwarz Al-
ternating Method Dirichlet condition. It is observed in Figure 1 that the Sliding
Dirichlet Condition allows the ordinary Jacobi algorithm to be parallelized in an ef-
ficient manner, in that the spectral radius appears to be nearly identical over any
number of domain splittings (the numbers shown are rounded). Thus, our Parallel Ja-
cobi method (PJacobi) would run a factor of K times faster on a parallel machine with
K processors. (Here, communication is neglected because it is relatively insignificant.)

Moreover, there are better choices of γ. As shown in Figure 1, γ = −1.0 speeds
up the PJacobi multi-splitting scheme quite significantly. (The value γ = −1.0 is
not the absolute optimal from experiment, but is nearly so, and this is chosen for
convenience.) This corresponds to a discrete parametrized Robin boundary condition
with α = 2/(2 + ∆x).

Using old values from neighboring domains and a single inner iteration (s = 1),
we want to have a look at the Gauss-Seidel scheme on each subdomain. The Parallel
Gauss-Seidel scheme performs best when γ is zero (or slightly positive); see Figure 2.
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K γ Avg. No. Iter. Avg. No. Iter.
Per Step Per Step

∆x = 0.003125 ∆x = 0.0015625
1 N/A 4407 9856

N/A
2 0.0 4407 9856

-1.0 4058 9436
4 0.0 4407 9856

-1.0 3097 8070
8 0.0 4407 9856

-1.0 1632 5164
16 0.0 4407 9856

-1.0 1468 2935
32 0.0 4407 9856

-1.0 1486 2953

Figure 1: Parallel Jacobi showing the effect of γ and K (s = 1).

K Avg. No. Iter. Avg. No. Iter.
Per Step Per Step

∆x = 0.003125 ∆x = 0.0015625
1 941 1895
2 948 1905
4 948 1905
8 950 1906
16 957 1912
32 971 1927

Figure 2: Parallel Gauss-Seidel showing the effect of K with γ = 0.0 and s = 1.
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K Avg. No. Iter. Avg. No. Iter.
Per Step (ω) Per Step (ω)
∆x = 0.003125 ∆x = 0.0015625

1 108 (1.90) 167 (1.92)
2 118 (1.90) 214 (1.90)
4 142 (1.87) 217 (1.90)
8 170 (1.84) 243 (1.89)
16 231 (1.78) 321 (1.85)
32 365 (1.64) 510 (1.75)

Figure 3: Parallel SOR (at near optimal ω) showing the effect of K with γ = 0.0 and
s = 1.
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11. Domain Decomposition and Splitting Methods
for Mortar Mixed Approximations to Parabolic
Problems

I. Faille1, S. Gaiffe1, R. Glowinski2, P. Lemonnier1, R. Masson1

Introduction

Mixed Finite Element (MFE) methods have become popular for the numerical sim-
ulation of single phase flow in porous media due to their good approximation of the
flux variable and their local and global mass conservation properties. In many situ-
ations such as flow around wells or through conductive faults, the complexity of the
geometry, the heterogeneities of the media, or the singularities of the data may require
the use of flexible meshes including hybrid meshes or local refinements to capture the
spatial behavior of the solution. In that case, non-overlapping domain decomposition
techniques with Mortar elements at the interfaces of the decomposition have proven
to be efficient since they enable to define the grids independently in the subdomains
regions (see [GW88], [Yot96]), [ACWY96]).

On the other hand, the transient behavior of the solution may also warrant the
use of different time steps in the different subdomains.

The idea of the domain decomposition method introduced in this paper is to com-
bine Mortar Mixed Finite Element methods for the space discretization with operator
splitting techniques for the time discretization in order to obtain (1) a fully parallel
algorithm and (2) the possibility to use flexible meshes and local time steppings in the
subdomains.

We consider a domain Ω ⊂ Rd of boundary Γ and the parabolic equation{
∂tp+∇ · u = f, u = −K∇p in Ω,
p = g on Γ, p|t=0 = p0,

(1)

where K is a symmetric matrix, positive definite uniformly in Ω.
Most domain decomposition algorithms for such parabolic problems involve, at

each time step, the solution of an elliptic problem, using classical domain decompo-
sition iterative algorithms for elliptic equations. The present domain decomposition
approach takes advantage of the parabolic structure of the problem to obtain, through
operator splitting, a non-iterative method in the sense that the subdomains problems
are solved only once at each time step. Other related non-iterative domain decompo-
sition and splitting methods for parabolic problems can be found in [MPW98], [CL96],
and [Dry91], and the references therein. The main originality of our method is to allow

1Division Informatique Scientifique et Mathématiques Appliquées, Institut Français du Pétrole,
92852 Rueil Malmaison Cedex, France, e–mail:isabelle.faille@ifp.fr, stephanie.gaiffe@ifp.fr,
patrick.lemonnier@ifp.fr, roland.masson@ifp.fr

2Dept. of Mathematics, University of Houston, 4800 Calhoun Rd, Houston, TX 77204-3476, USA,
e–mail: roland@math.uh.edu
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by construction non-matching grids at the interfaces of the domain decomposition.

Notation: for two positive functions A(v) and B(v), the notation A <∼ B means that
there exists a constant C, independent of the various parameters, such that for all v
one has A(v) ≤ CB(v).

Mixed Finite Element Domain Decomposition Method

Let us consider a domain decomposition of Ω into N non-overlapping subdomains
Ωi, i = 1, . . . , N such that Ωi ∩ Ωj = ∅ for all i �= j, and Ω =

⋃N
i=1 Ωi. We set

Γi := ∂Ωi/Γ. For i, j ∈ I := {i, j s.t. i �= j and mesd−1∂Ωi ∩ ∂Ωj �= 0}, we denote by
Γi,j := ∂Ωi ∩ ∂Ωj the interface between two subdomains, and by γ :=

⋃
i,j∈I Γi,j , the

skeleton of the domain decomposition.

On each subdomain Ωi, we introduce the function spaces Mi := L2(Ωi) and Vi =
H(Ωi; div) := {v ∈ L2(Ωi)d s.t. ∇· v ∈ Mi}, endowed with their usual norms denoted

by ‖qi‖0,i and ‖vi‖Vi :=
(
‖vi‖20,i + ‖∇ · vi‖20,i

)1/2
. On the domain Ω, we define the

product spaces M :=
⊕N
i=1 Mi and V :=

⊕N
i=1 Vi endowed with their Hilbertian

product norms ‖q‖0 and ‖v‖V .
In the non-overlapping domain decomposition framework, the smoothness assump-

tions on the solution will be as usual measured in the broken norms ‖ · ‖Hr(Ω) related
to the product spaces Hr(Ω) :=

⊕N
i=1 H

r(Ωi), r ≥ 0. On the skeleton γ, we define the

norm ‖µ‖ 1
2 ,γ

:= supv∈V
PN

i=1

R
Γi
(v·ni)µdγ

‖v‖V , and we shall denote by H
1
2 (γ), the subspace

of L2(γ) of functions µ such that ‖µ‖ 1
2 ,γ

< ∞.

We consider, on the domain decomposition (Ωi)i=1,...,N , a Mortar Mixed Finite
Element (MMFE) discretization of (1), introduced in [GW88] for matching grids, and
extended in [Yot96], [ACWY96] to the case of non-matching grids at the interfaces
between the subdomains Ωi. In that case, a so called Mortar space Λh ⊂ L2(γ) is
introduced on the skeleton γ. Then, equation (1) is discretized on each subdomain by
a Mixed Finite Element Method, and the matching at the interfaces is written in the
weak sense through the continuity of the orthogonal projection on Λh of the normal
fluxes defined on each sides of Γi,j .

Let Ti,h be a quasi-uniform mesh of Ωi. We consider, on these grids, MFE approx-
imation spaces Vi,h ⊂ Vi, Mi,h ⊂ Mi of order k + 1, that can be either the RTk or
BDFk or BDFMk MFE discretizations (see [RT91] or [BF91]). In addition we shall
assume in the sequel that ∇ · Vi,h = Mi,h.

On the domain Ω, we define the product spaces Mh :=
⊕N
i=1 Mi,h ⊂ M and

Vh :=
⊕N
i=1 Vi,h ⊂ V . The dual space of Vh (resp. Mh) is denoted by V ′

h (resp. M ′
h)

endowed with the dual norm ‖·‖V ′
h
(resp. ‖·‖M ′

h
). We shall denote by 〈·, ·〉 the duality

pairing.

We reproduce the choice of the Mortar space Λh as described in [Yot96]. Let Ti,j,h,
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i, j ∈ I be a quasi-uniform mesh of Γi,j and Λi,j.h a finite element space on Ti,j,h, either
continuous or discontinuous, and of order k + 2. The Mortar space on the skeleton γ
is the product space Λh :=

⊕
i,j∈I Λi,j,h ⊂ L2(γ).

In order to write the MMFE variational formulation of (1), we define the operators
Sh, Ah : Vh → V ′

h, Bth : Λambdah → V ′
h, divh : Vh → M ′

h, T th : H1/2(Γ) → V ′
h such

that for all vh = (vi,h)i=1,...,N , wh = (wi,h)i=1,...,N ∈ Vh, qh = (qi,h)i=1,...,N ∈ Mh,
µh ∈ Λambdah, ϕ ∈ H1/2(Γ):

〈Shvh, wh〉 :=
∑N
i=1

∫
Ωi

K−1vi,h · wi,hdx,
〈Ahvh, wh〉 :=

∑N
i=1

∫
Ωi
(∇ · vi,h)(∇ · wi,h)dx,

〈divhvh, qh〉 :=
∑N
i=1

∫
Ωi
(∇ · vi,h)qi,hdx,

〈Bthµh, vh〉 :=
∑N
i=1

∫
Γi

µh(vi,h · ni)dγ, 〈T thϕ, vh〉 :=
∫
Γ ϕ(vh · n)dσ.

(2)

Then, the MMFE spatial discretization of (1) looks for (ph, uh, pγ,h) ∈ Mh × Vh × Λh
such that 

∂tph + divhuh = itMh
f,

Shuh = divthph −Bthpγ,h − T thg,
Bhuh = 0,
ph|t=0 = p0,h.

(3)

The stationnary MMFE approximation (3) is analysed in [Yot96] and [ACWY96].
In order to obtain a well posed problem, one has to assume that the Mortar space Λh
verifies a compatibility condition with the normal traces on γ of Vh. In particular this
condition ensures that the operator Bth is into as well as the property

{qh, t. q. 〈divhvh, qh〉 = 0, for all vh ∈ Wh := KerBh} = {0},

which all together guarantees existence and uniqueness of the solution. We refer
to [Yot96] for the proof, under this assumption, of optimal error estimates for the
solutions uh, ph, pγ,h of the stationnary problem.

An equivalent flux formulation

As a preliminary step towards the time discretization by an operator splitting tech-
nique, it is useful to introduce an equivalent flux formulation of (3) obtained by elim-
ination of the discrete pressure unknown in (3). This formulation will also be crucial
to analyse the stability and the error estimates of our method.

Proposition 1 Let us define λh := ∂tpγ,h and g0 := g|t=0. Then problem (3) is
equivalent to the following flux formulation: Sh∂tuh +Ahuh +Bthλh + T th∂tg = divthf,

Bhuh = 0,
uh|t=0 = u0h,

(4)

given the initialization{
Shu

0
h = divthp0,h −Bthp

0
γ,h − T thg0,

Bhu
0
h = 0,

(5)
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and the pressure equation
∂tph + divhuh = itMh

f,
∂tpγ,h = λh,
ph|t=0 = p0,h, pγ,h|t=0 = p0γ,h.

(6)

proof: the proof relies on elementary algebra using the assumption on the MFE spaces
that ∇ · Vh = Mh, and assuming enough regularity on the trace g.

Time discretization by operator splitting

The flux formulation (4) is a mixed problem formally equivalent to the Stokes equation.
The idea of the time discretization by operator splitting is then to apply to the flux
formulation (4) a projection scheme introduced by Chorin [Cho68] and analysed in
[Ran92] in the framework of the Navier-Stokes equations.

In the framework of the MMFE method, the projection scheme splits the system
(4) into two successive steps: (i) advance in time with a fixed λh given by the previous
time step, (ii) orthogonal projection (with respect to the scalar product 〈Sh·, ·〉) of
the flux onto Wh, and updating of λh. The initialization of the flux is still given by
equation (5). This scheme requires to be given an approximation λ0h ∈ Λh of λ|t=0. At
first order accuracy in time, we shall see that it is sufficient to set λ0h = 0. However,
in order to expect second order accuracy, a first order accurate approximation of λ0h
has to be obtained by one time step calculation of the fully coupled system.

(i) Sh
ũn+1
h −unh
∆t +Ahũ

n+1
h +Bthλ

n
h + T th

gn+1−gn
∆t = divthf

n+1,

(ii)

{
Sh

un+1
h

−ũn+1
h

∆t +Bth(λ
n+1
h − λnh) = 0,

Bhu
n+1
h = 0,

(7)

The pressures pnh and pnγ,h are obtained by discrete integration in time.{
pn+1
h −pnh
∆t + divhũn+1

h = itMh
fn+1, p0h = p0,h,

pn+1
γ,h −p

n
γ,h

∆t = λn+1
h , p0γ,h given by (5).

(8)

As for the semi-discrete formulation, the space-time discretization (7)-(8) admits an
equivalent mixed pressure-flux formulation which, from elementary algebra, writes:

(i)

{
pn+1
h −pnh
∆t + divhũn+1

h = itMh
fn+1,

Shũ
n+1
h = divthp

n+1
h −Bth(2p

n
γ,h − pn−1γ,h )− T thg

n+1,

(ii)
{

Shu
n+1
h = divthp

n+1
h −Bthp

n+1
γ,h − T thg

n+1,

Bhu
n+1
h = 0,

(9)

with p0h := p0,h and p−1γ,h := p0γ,h−∆tλ0h. We note that (9) corresponds, at step (i), to a
second order linear extrapolation in time of the interface pressure pn+1

γ,h 3 2pnγ,h−pn−1γ,h .
The main advantage of the projection scheme is that the prediction step (i) can be

solved in a fully parallel way on each subdomain independently, while the projection
step (ii) reduces to inverse the interface problem related to the operator BhS

−1
h Bth.
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Let us restrict ourselves to the assumption that only RT0 mixed finite elements are
used in the neighborhood of the skeleton γ. Then, a mass condensation of the matrix
representing the operator Sh in the nodal basis can be locally performed, preserving
the order of approximation of the discretization. It results that the interface operator
matrix in the nodal basis of Λh is diagonal and can be readily inverted in O(NΛh)
operations where NΛh is the dimension of Λh.

More generally, the interface problem can be efficiently solved by a conjugate gra-
dient iterative algorithm preconditioned by the approximate interface matrix obtained
by mass condensation of Sh in the neighborhood of γ.

Stability analysis

Let Zh := BhS
−1
h Bth denote the interface operator related to the projection step (ii).

For any µ ∈ L2(γ), we set ‖µ‖Zh := 〈Zhµ, µ〉
1
2 , which defines a semi-norm on L2(γ) and

a norm on Λh. On the other hand, we define ‖Bthµ‖V ′
h
:= supvh∈Vh

PN
i=1

R
Γi
(vh·ni)µdγ

‖vh‖V ,
semi-norm on L2(γ) (and norm on Λh).

The stability analysis of the incremental scheme is done in its equivalent flux for-
mulation (7)-(8) in order to avoid to deal with the three steps equations (9). It is then
formally similar to the analysis performed for Navier Stokes equations (see [She92],
[GQ98]) with necessary adaptations to the framework of domain decomposition and
MMFE.

Theorem 1 Let tn := n∆t, and assume ∂tg ∈ L2(0, tm;H
1
2 (Γ)),

∑m−1
n=0 ∆t‖fn+1‖20

<∼ 1, then the incremental projection scheme (7)-(8) or (9) is unconditionally stable
in the sense that for all ∆t

‖umh ‖20 +∆t2‖λmh ‖2Zh +
∑m−1
n=0 ∆t‖∇ · ũn+1

h ‖20
<∼ ‖u0h‖20 +∆t2‖λ0h‖2Zh +∆t

∑m−1
n=0 ‖fn+1‖20 +

∫ tm
0

‖∂tg(s)‖2
H

1
2 (Γ)

ds,

‖pmh ‖20 <∼ ‖p0,h‖20 +
∑m−1
n=0 ∆t‖∇ · ũn+1

h ‖20 +∆t
∑m−1
n=0 ‖fn+1‖20,

‖Bthpmγ,h‖V ′
h

<∼ ‖umh ‖0 + ‖pmh ‖0 + ‖gm‖
H

1
2 (Γ)

,

(10)

with constants independent of h, ∆t, N and depending only on tm and K.

Error estimates

We denote by (u, p) ∈ C0(0, tm;H(Ω; div)) × C0(0, tm;M) the weak solution of (1)
on the interval [0, tm]. We shall assume that the pressure p and its derivative ∂tp are
globally in H1(Ω) in order to define the interface pressure pγ := p|γ and its derivative
λ := ∂tp|γ = ∂tpγ in H1/2(γ). We set tn = n∆t and un := u(tn), pn := p(tn),
λn := λ(tn), pnγ := pγ(tn).

The dependence of the semi-norm ‖·‖Zh on the mesh size h, as given by the estimate
‖µ‖Zh <∼ h−

1
2 ‖µ‖L2(γ) ∀µ ∈ L2(γ), deteriorates the convergence of the method. We

can prove the following theorem.

Theorem 2 Let (u, p) ∈ C0(0, tm;H(Ω; div))×C0(0, tm;M), be the weak solution of
(1) such that p ∈ C1(0, tm;H1(Ω)). Pour 1 ≤ r ≤ k + 1 et u ∈ H1(0, tm;Hr(Ω)d),
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Figure 1: Convergence history of the pressure error in l∞(L2(Ω)) norm: (A) first
order incremental and coupled schemes, (B) second order incremental and first order
coupled schemes.

∂t2u ∈ L2(0, tm;V ′), ∂tλ ∈ L2(0, tm;L2(γ)), ∂t2g ∈ L2(0, tm;H
1
2 (Γ)), ∂t2p ∈ L2(0, tm;

L2(Ω)), p ∈ W 1,∞(0, tm;Hr+1(Ω)),
∑m−1
n=0 ∆t‖∇ · un+1‖2Hr(Ω)

<∼ 1, we have

‖um − umh ‖0 + ‖pm − pmh ‖0 + ‖Bth(pmγ − pmγ,h)‖V ′
h

+
(∑m−1

n=0 ∆t‖∇ · (un+1 − ũn+1
h )‖20

) 1
2

<∼ ∆t(1 + h−
1
2 ) + hr,

(11)

with a constant depending only on tm, K. To obtain these estimates, it suffices to
choose for p0,h the orthogonal projection of p0 onto Mh and λ0h = 0.

Numerical example

Let us consider in dimension d = 1, the interval Ω =]− 1, 1[ splitted into two subdo-
mains Ω1 =]− 1, 0[ and Ω2 =]0, 1[, and equation (1) for g = 0 and K = 1 with exact
solution p(x, t) = cos πx2 (cos 6t + 2). This problem is discretized on a uniform mesh
of size h = 2−j, j ∈ N using RT0 MFE with mass condensation. Figure 1 reports the
convergence history of the error pnh − pn in l∞(L2(Ω)) norm for 3 different time dis-
cretizations: (a) the incremental scheme (9), (b) the incremental scheme with second
order Crank-Nicholson time discretization in the subdomains at step (i), (d) the first
order Euler backward fully coupled discretization.

From the numerical results displayed Figures 1, we see that the error behaves like
min( ∆t

h1/2 ,
∆t2

h ) for the incremental projection scheme (a), like min( ∆t
h1/2 ,

∆t2

h ) +∆t for
the incremental projection scheme (b). The same results can be observed for the flux
u and the interface pressure pγ .

These results suggest that the error is the sum of the error produced by the coupled
scheme and the splitting error (between the coupled scheme and the projection scheme)
of order min( ∆t

h1/2 ,
∆t2

h ).
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Conclusion

The method introduced in this paper combines Mortar Mixed Finite Element domain
decomposition spatial discretization with projection schemes, in order to obtain a fully
parallel algorithm for parabolic equations. In addition this method enables the use of
hybrid meshes and local time steppings.

Although the scheme is shown to be unconditionally stable, the convergence is
obtained only if the condition ∆t <∼ h

1
2 is verified. This is the price to pay to decouple

the interface problem from the computation of the subdomain solutions.
This strategy has proven to be efficient to solve single phase Darcy flows around

2D wells and faults with high physical heterogeneities and complex geometries, and
we refer to [Gai00] where such numerical tests are reported.

References

[ACWY96]T. Arbogast, L.C. Cowsar, M.F. Wheeler, and I. Yotov. Mixed finite el-
ement methods on non-matching multiblock grids. SIAM J. Numer. Anal., 1996.
submitted.

[BF91]F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-
Verlag, New-York, 1991.

[Cho68]A.J. Chorin. Numerical solutions of Navier-Stokes equations. Math. Comp.,
22:49–73, 1968.

[CL96]H. Chen and R.D. Lazarov. Domain splitting algorithms for mixed finite ele-
ment. East-West J. Numer. Math., 4:121–135, 1996.

[Dry91]Maksymilian Dryja. Substructuring methods for parabolic problems. In Roland
Glowinski, Yuri A. Kuznetsov, Gérard A. Meurant, Jacques Périaux, and Olof Wid-
lund, editors, Fourth International Symposium on Domain Decomposition Methods
for Partial Differential Equations, Philadelphia, PA, 1991. SIAM.
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12. Mortar Projection in Overlapping Composite
Mesh Difference Methods

Serge Goossens1, Xiao-Chuan Cai2

Introduction

We study experimentally the effect of the mortar projection in an overlapping com-
posite mesh difference method for two-dimensional elliptic problems. In [CDS99], an
overlapping mortar element method was proposed. This method has several desirable
properties. For example, the discretisation is consistent, the accuracy is of optimal
order and the error is independent of the size of the overlap, as well as the ratio of
the mesh sizes. However, a major disadvantage of the method is that it needs weights
in the bilinear form. The artificially introduced piecewise constant weights make the
scheme consistent, but at the same time make it impossible to use fast solvers for
the subdomain problems. On the other hand, the composite mesh difference method
(CMDM) [Sta77, CMS00, GC99] does not need any weights, and its accuracy is also
of optimal order if used with higher order interface interpolations. For example, the
2D bicubic or modified 1D cubic interface interpolation [GC99] is needed if one uses
P1 or Q1 finite elements for the interior of the subdomains. But if the computation-
ally more efficient low order interpolation is used on the interfaces, it may lead to
a local inconsistent discretisation, resulting in an error that depends on the size of
the overlap. The goal of this paper is to take the mortar approach, drop the weights
and compare its results to the non-mortar methods. Of course, in an ideal scheme,
which is yet to be discovered, the accuracy should be of optimal order and the error
be independent of the size of the overlap and the ratio of mesh sizes. In order to be
able to use fast solvers for the subdomain problems, it is also desirable not to have
weights in the discretisation on the overlapping parts of subdomains.

Overlapping Nonmatching Grids Mortar Element
Method

In this section we briefly describe the overlapping nonmatching grid mortar method.
A two-subdomain version was given in [CDS99] and a many subdomain version was
given by Maday et al3. Let Ω = Ω′1 ∪ Ω′2 be the union of two overlapping, polygonal

1Department of Computer Science, K. U. Leuven, Celestijnenlaan 200A, B3001 Leuven, Belgium
(Serge.Goossens@cs.kuleuven.ac.be, http://www.cs.kuleuven.ac.be/∼serge/). Part of this work
was carried out during the visit of the first author to the University of Colorado at Boulder. The
financial support for this visit by the FWO-Vlaanderen is gratefully acknowledged. This research is
financed by a specialisation scholarship of the Flemish Institute for the Promotion of Scientific and
Technological Research in Industry (IWT).

2Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309-0430,
USA (cai@cs.colorado.edu, http://www.cs.colorado.edu/∼cai/).

3Presentation at the 12th International Conference on Domain Decomposition Methods, October
25–29, 1999, Chiba University, Chiba, Japan
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subdomains. On each Ω′i (i = 1, 2), we define a function space for P1 or Q1 finite
elements on a uniform grid with mesh size hi and denote this function space by Vhi .
We denote h = mini{hi}. We define the interface by γi = ∂Ω′i \ ∂Ω and the trace
space Vhi(γj) as the restriction of Vhi on γj . The mortar projection π1 maps the space
Vh2(γ1) into Vh1(γ1): ∫

γ1

(ϕ− π1ϕ)ψ ds = 0 ∀ψ ∈ W̃h1(γ1). (1)

The interface test function space W̃h1(γ1) denotes the space of continuous piecewise
linear functions that are constants in the first and last intervals, see [BMP94, CDS99].
Similarly we can define π2. This projection is used in the definition of the solution
space

Vh = {(u1, u2)|u1 ∈ Vh1 , u2 ∈ Vh2 , u1|γ1 = π1(u2|γ1), u2|γ2 = π2(u1|γ2)}. (2)

With the space Vh the variational form can be defined as:

Find u = (u1, u2) ∈ Vh such that ah(u, v) = fh(v) ∀v = (v1, v2) ∈ Vh, (3)

where the weighted bilinear form is defined as

ah(u, v) =
∫
Ω′

1\Ω′
2

∇u1.∇v1 dx +
1
2

∫
Ω′

1∩Ω′
2

∇u1.∇v1 dx

+
1
2

∫
Ω′

1∩Ω′
2

∇u2.∇v2 dx +
∫
Ω′

2\Ω′
1

∇u2.∇v2 dx (4)

and the right-hand side is given by

fh(v) =
∫
Ω′

1\Ω′
2

fv1 dx +
1
2

∫
Ω′

1∩Ω′
2

fv1 dx+
1
2

∫
Ω′

1∩Ω′
2

fv2 dx +
∫
Ω′

2\Ω′
1

fv2 dx. (5)

Here f ∈ L2(Ω) is given. The theory by Cai et al. [CDS99] shows that the H1 norm
of the error is of order h. Their numerical results confirm this and show further that
the L∞ norm and the L2 norm of the error are both of order h2.

Composite Mesh Difference Method

A CMDM on two subdomains was described by Starius [Sta77], while Cai et al.
[CMS00] studied the case of many subdomains. In [GC99] we outlined a CMDM
for solving the second-order elliptic partial differential equation Lu = f in Ω with a
Dirichlet boundary condition u = g on ∂Ω.

Given a domain Ω consisting of p nonoverlapping subdomains Ωi such that Ω̄ =
∪pi=1Ω̄i, we independently construct a grid of size hi on each extended subdomain Ω′i
of Ωi. Due to the extension of the subdomains these grids overlap. We denote by
Γi = ∂Ω′i ∩ ∂Ω the intersection of the boundaries ∂Ω′i and ∂Ω. The global discretisa-
tion uh = (uh1 , uh2, · · · , uhp) on the composite grid is obtained by coupling the local
discretisations through the requirement that the solution matches the interpolation
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of the discrete solutions from adjacent grids. The system of equations consists of p
subproblems, each having the following form: Lhiuhi = fhi in Ω′i,

uhi = ghi on Γi,
uhi = zhi = Iiuh on ∂Ω′i \ Γi.

(6)

Here Ii is an interface interpolation operator. As shown in [CMS00], the error in the
discrete solution satisfies

p∑
i=1

‖ehi‖∞ ≤
(
1 +

σ

1− τ

)( p∑
i=1

Ki‖αi‖∞ +
p∑
i=1

‖βi‖∞

)
. (7)

In this bound the truncation error αi(x) = (Lhi − L) u(x) is of order pi:

‖αi‖∞ ≤ Cαih
pi
i (8)

and the interpolation error βi(x) = (u− Iiu) (x) is of order qi:

‖βi‖∞ ≤ Cβih
qi
i . (9)

The constants Cαi , Cβi and Ki are independent of the mesh size hi. The interpolation
constant σ = maxi σi is the maximum of the norms σi = ‖Ii‖∞ of the interpolation
matrices. Let uhi be the solution of (6) with fhi = 0 and ghi = 0 restricted to the
nonoverlapping domain Ω̄i. Then, in terms of the data zhi on the interface ∂Ω′i \ Γi,
it can be proved that

‖uhi‖∞,Ω̄i ≤ ρi‖zhi‖∞,∂Ω′
i\Γi . (10)

The convergence theory requires the contraction factor of the mapping to be smaller
than 1, i.e. τ = maxi (ρiσ) < 1. Since ρi generally depends on the size of the overlap,
τ may also depend on the size of the overlap.

Standard P1 Stencil & Bilinear Interpolation

Since both the standard P1 stencil and bilinear interpolation are second order, the
error bound (7) shows that the resulting CMDM is also second order. However this
scheme does not satisfy the consistent interpolation condition, see [GCR98, GC99],
i.e.,

S

h2
− (uxx + uyy) =

γ2k
2

(ξ(1− ξ)uxx + η(1− η)uyy) +O(h), (11)

where S is the stencil, γk = k/h is the ratio of the mesh sizes. The scaled local
coordinates (ξ, η) used in the interpolation and the mesh sizes h and k are shown in
Fig. 1. The scheme is consistent only if ξ and η are either 0 or 1, which implies that
the two meshes match each other on the interface.
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Figure 1: The scaled local coordinates (ξ, η) used in the interpolation.

Mortar Projection in CMDM

We now study a new scheme which takes the mortar approach and drops the weights
in the bilinear form (4). In every subdomain we set up a finite element discretisation
with the classic bilinear form

ahi(ui, vi) =
∫
Ωi

∇ui.∇vi dx (12)

and use the mortar projection (1) to compute the Dirichlet conditions along the in-
terfaces γi = ∂Ω′i \ Γi. Hence we have p local problems of the form (6). The mortar
projection is a second order accurate interpolation and can be used in a CMDM. The
interpolation constant σ can be larger than 1 in the bound ‖πϕ‖∞ ≤ σ‖ϕ‖∞ and we
may need a large overlap to make the contraction factor ρ small enough in order to
have τ < 1.

In Fig. 2 we illustrate that the mortar projection does not, in general, satisfy the
maximum principle, i.e. there exists a function ϕ that satisfies:

‖πϕ‖∞ > ‖ϕ‖∞. (13)

In this special example, the master function is obtained by sampling the function
sin(πx) at the grid points x

(m)
i = ihm for i = 0, 1, . . . , 5 where h−1m = 5. The slave

nodes are x
(s)
i = ihs for i = 0, 1, . . . , 4 where h−1s = 4. The slave function is set to 0 at

the grid points x
(s)
0 and x

(s)
4 and the values at x

(s)
i for i = 1, 2, 3 are determined from

(1). We see that the slave function is larger than the master function at x
(s)
2 = 0.5.

The P1 and Q1 finite element discretisations on a uniform mesh can be considered
as finite difference stencils for which the local truncation error is second order. All
the assumptions for a CMDM are satisfied and the error bound (7) shows that the
resulting scheme is second order.

Due to the fact that the values for the Dirichlet boundary conditions on the interior
subdomain boundaries, obtained by the mortar projection, are only O(h2) accurate,
the discretisations which use these values will be inconsistent, since the discretisation
error contains the interpolation error divided by h2. This leaves a constant term in
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Figure 2: The mortar projection does not satisfy the maximum principle.

the error expansion of the combined discretisation interpolation pair, which does not
tend to zero as the mesh size h tends to zero. Consequently this scheme does not
satisfy the consistent interpolation condition defined in [GCR98] and we expect the
global accuracy to depend on the size of the overlap.

The interpolation from the master to the slave side of the mortar on the interface is
only one part of the interpolation issue. In the case of overlapping nonmatching grids
we also need to compute the master side of the mortar, which requires evaluating the
P1 or Q1 finite element function. This boils down to linear interpolation. As a result
for P1 and Q1 finite elements a linear interpolation is done in the direction normal on
interface.

Based on our experience with bilinear interpolation we can estimate the effect of
doing linear interpolation in the direction normal on interface. Suppose the interface
is at x = xΓ between the grid lines at xi and xi+1. The coefficients for the linear
interpolation in the direction normal on the interface are ξ = (xΓ − xi)/(xi+1 − xi)
and (1 − ξ). We expect this interpolation to give rise to a term ξ(1 − ξ)uxx in the
bound on the error in the extended subdomain just as in the case of the standard P1
stencil with bilinear interpolation. The numerical results in Table 1 clearly show the
influence of the term ξ(1− ξ)uxx in the error bound.

A final point is the dependency on the overlap. We have already pointed out
that a large overlap may be required since the mortar projection does not satisfy the
maximum principle. However this does not imply that the error on the nonoverlapping
subdomain depends on the size of the overlap. The standard stencils with bicubic
interpolation and our modified stencil with 1D cubic interpolation also require some
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Table 1: Effect of inconsistent discretisation: results for P1 stencil with bilinear inter-
polation (columns 3–6) and with mortar projection (columns 7–10).

bilinear interpolation mortar projection
l ξ1 ‖eΩ′

1
‖∞ γe ‖eΩ′

2
‖∞ γe ‖eΩ′

1
‖∞ γe ‖eΩ′

2
‖∞ γe

0 0.6 1.65e-2 1.02e-2 2.95e-2 1.64e-2
1 0.2 2.97e-3 5.57 2.98e-3 3.42 5.02e-3 5.88 5.02e-3 3.26
2 0.4 9.58e-4 3.10 1.55e-4 19.1 1.85e-3 2.71 1.57e-4 32.0
3 0.8 1.60e-4 6.00 2.59e-5 6.00 3.11e-4 5.96 2.59e-5 6.04
4 0.6 5.98e-5 2.67 9.70e-6 2.67 1.17e-4 2.66 9.71e-6 2.67
5 0.2 9.97e-6 6.00 1.62e-6 6.00 1.95e-5 5.99 1.62e-6 6.00
6 0.4 3.74e-6 2.67 6.06e-7 2.67 7.32e-6 2.66 6.06e-7 2.67

overlap in order to make sure that τ < 1 because the interpolation constants are larger
than 1. But the numerical results show that there is no dependency on the amount of
overlap since these schemes are fully consistent.

In this case the error depends on the size of the overlap and this is due to the
inconsistency mentioned above. In Table 2 we show numerical results illustrating the
effect of the size of the overlap. These results also confirm the well known fact that
increasing the size of the overlap results in faster convergence of the additive Schwarz
method.

Numerical results

Our testcase concerns the solution of −∇2u = f on Ω = Ω1 ∪ Ω2, where Ω1 =
[0, 1]×[0, 1] and Ω2 = [1, 2]×[0, 1]. The r.h.s. f and the Dirichlet boundary conditions g
are chosen so that the exact solution is u(x, y) = x2. The overlapping subdomains are
Ω′1 = [0, 1.4]× [0, 1] with h1 = 0.2×2−l and Ω′2 = [0.75, 2]× [0, 1] with h2 = 0.25×2−l.

In Table 1 we list the L∞ norm of the error ‖eΩ′
1
‖∞ and ‖eΩ′

2
‖∞ on the overlapping

extended domains Ω′1 and Ω′2 for the standard P1 stencil with bilinear interpolation
and with mortar projection. Both these combinations satisfy all the assumptions for
a CMDM so the error bound (7) shows that these methods are second order. For a
second order scheme, the ratio between two successive error norms should be 4 when
the mesh sizes are halved.

The discussion here is based on the bound on the error in every extended subdo-
main Ω′i for the standard P1 stencil with bilinear interpolation. The presence of the
inconsistency results in a dependency of the error on ξ(1− ξ), i.e. the relative position
of the interface in the other mesh. For this testcase the dominant term in the error
bound is e ≈ (ξ(1− ξ)c1 + c2)h2, where c1 and c2 are constants independent of ξ and
h. With this expression, we can estimate the ratio γe between two successive error
norms. When the mesh is refined by halving the mesh size, i.e. hi+1 = hi/2, we have

γe =
‖eΩ′

hi
‖∞

‖eΩ′
hi+1

‖∞
=

c1 (ξi(1− ξi) + γc) h2i
c1 (ξi+1(1− ξi+1) + γc)h2i+1

=
ξi(1− ξi) + γc

ξi+1(1− ξi+1) + γc
4 (14)

where γc = c2/c1. The worst case scenario is γc = 0 which results in values of 6.00



MORTAR PROJECTION IN OVERLAPPING CMDM 123

Table 2: Effect of overlap on the convergence rate of the Schwarz method and on the
accuracy for the standard P1 stencil with mortar projection. The same results are
obtained with bilinear interpolation.

m nsolver nprec ‖eΩ1‖∞ ‖eΩ2‖∞
0 587 35 1.00e-4 9.99e-5
1 305 26 4.42e-5 4.47e-5
2 159 19 1.74e-5 1.59e-5
3 83 14 6.01e-6 5.07e-6
4 44 10 4.81e-6 3.41e-6
5 24 8 1.77e-6 8.49e-7
6 13 6 1.31e-6 2.77e-7
7 8 5 2.51e-7 1.04e-8

and 2.67 for γe since in this testcase the term ξ(1 − ξ) alternates between 0.24 and
0.16. For the function u(x, y) = x2 we have γc ≈ 0. The numerical results in Table 1
show ratios γe equal to 6.00 and 2.67, illustrating the effect of the inconsistency due
to linear interpolation in the x-direction.

Apart from this phenomenon both schemes are second order, since fitting a power
of the mesh size ‖eΩ′

1
‖∞ ≈ κhλ yields λ ≈ 2. The second order accuracy can also be

seen when the mesh is refined twice, i.e. the mesh size is divided by 4, in this case
ξ(1− ξ) does not change and we get ratios between two successive error norms, which
are very close to the theoretical value of 16.

A fully consistent scheme such as the standard P1 stencil with bicubic interpolation
or the modified stencil with 1D cubic interpolation by Goossens and Cai [GC99],
computes the exact solution up to machine precision for this testcase on any grid.

In order to see the effect of the overlap, we fix the mesh sizes to be h−11 = 320
and h−12 = 256 and vary the overlap according to δ1 = 2 × 2mh1 and δ2 = 2mh2 for
the values of m listed in Table 2. This table shows the number of additive Schwarz
iterations required to satisfy the convergence criterion of ‖rn‖2 ≤ 10−10‖r0‖2 and the
L∞ norm of the error in the nonoverlapping subdomains Ω1 and Ω2. First we list
the number of iterations (nsolver) the method needs when it is used a solver, i.e. in a
Richardson iteration, in this case the convergence rate is bounded by τ . We also list the
number of iterations (nprec) the method needs when it is used as a right preconditioner
for GMRES. As expected the number of additive Schwarz iterations decreases in both
cases, as the overlap increases. These results clearly show the advantage of using a
Krylov subspace method to accelerate the convergence of the iterative solver. From
the results it is clear that the global accuracy of these two methods increases as the
overlap increases, thus necessitating substantial overlap. The sensitivity to the size
of the overlap is quite high since the error decreases 3 orders of magnitude when
the overlap is increased from m = 0 to m = 7. This is highly undesirable. With a
consistent scheme, this error would be independent of the size of the overlap.
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Concluding remarks

We studied the effect of using a mortar projection as the interface interpolation in a
composite mesh difference method for overlapping nonmatching grids problems. In
this case the results are comparable to using bilinear interpolation for the Dirichlet
boundary conditions on the interfaces. This is due to the fact that a linear interpola-
tion in the direction that is normal to the interface is used to define the values on the
master side of the interface. This results in a dependency of the error on the relative
position of the interface nodes in the other mesh. Also due to the inconsistency, the
global accuracy depends on the size of the overlap.
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13. The direct method of lines for incompressible
material problems on polygon domains

Houde Han1, Zhongyi Huang2

Introduction

In this paper, we discuss the numerical solutions of the incompressible material prob-
lems on a polygon using a semi-discrete method [HH99]. After a suitable transforma-
tion of the coordinates, the original boundary value problem (BVP) is reduced to a
discontinuous coefficients problem on a rectangle, which is semi-discreted to a BVP
of a system of ordinary differential equations (O.D.E’s). After solving the BVP of the
system by a direct method, the semi-discrete approximation of the original problem
is obtained. It’s worth to point out that the semi-discrete approximation in form of
separable variables naturally possesses the singularity of the original problem. Finally,
the numerical examples show that our method is feasible and very effective for solving
the incompressible material problems with singularities numerically.

The use of nearly incompressible materials is common in many engineering appli-
cations, such as tires, building and bridge bearings, engine mounts, gaskets etc. The
natural rubber is the nearly incompressible material, typically the bulk modulus of
rubber is several thousand times of the shear modulus. As the material is undergoing
plastic deformations, it is nearly incompressible too. We can use the Stokes equa-
tions as a model to deal with the incompressible materials. It is also a model for the
incompressible fluids. The stress analysis of incompressible materials becomes very
significant.

The difficulties for solving the incompressible material problems numerically are:
the stress singularity existing at the joint of the interface, the crack-tip or the corner;
the incompressibility and the large deformations. To overcome the above difficulties,
a great deal of research effort by engineers and mathematicians has been devoted
to the development of the FEM(finite element method) for the numerical approxi-
mation of incompressible problems. Herrmann [Her65] presented a mixed variational
formulation for incompressible isotropic materials. Babuska and Brezzi [Bab73, Bre74]
derived the inf-sup condition for the mixed FEM for incompressible problems. Oden
et al [OK82, JTOS82] presented general criteria for stability and convergence of mixed
and penalty methods(with reduced integration) and applied these criteria to the anal-
ysis of elasticity and Stokesian flow problems. Recently, many researchers developed
other methods for incompressible problems [AWS95]. For more references, we refer
to the paper by Gadala [Gad86]. The singularities of incompressible materials have
also been paid attention by researchers [NAHM96]. We know that the singularities at
singular points in the incompressible composite material problems are very complex.
On each singular point, the singularity is different. Therefore, the standard finite
element method and finite difference method can not give satisfied results for incom-

1Tsinghua University, Email: hanwu@sun.ihep.ac.cn
2Tsinghua University, Email: zhuang@math.tsinghua.edu.cn
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pressible material problems. Special consideration is usually needed for the numerical
approaches to improve the results.

In this paper, we deal with the more gen-
eral incompressible material problems on a polygon.
Suppose that Ω =

⋃J
i=1 Ωi ⊂ R2 is a J-material

wedge with a boundary Γ = Oa1
⋃

OaJ+1

⋃
ΓD (see

Fig.(1)), where O is the origin of the coordinate sys-
tem, Oa1 is parallel to the x1-axis, the ith material
occupies Ωi, ΓD =

⋃J
i=1 Γi with Γi = aiai+1, and

{ai = (xi1, x
i
2), i = 1, 2, · · · , J + 1} denote the ver-

texes of the polygon Ω, xi1 = Ri cos θi, xi2 = Ri sin θi
satisfying
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−π = θ1 < θ2 < · · · < θJ+1 ≤ π.

We consider the following problem of Stokes equations on the J-material wedge Ω:

−µi*ui + grad pi = 0, in Ωi, 1 ≤ i ≤ J, (1)
div ui = 0, in Ωi, 1 ≤ i ≤ J, (2)
ui
∣∣
Γi

= f i, 1 ≤ i ≤ J, (3)

ui−1
∣∣
θ=θ−i

= ui
∣∣
θ=θ+i

, σi−1n

∣∣
θ=θ−i

= σin
∣∣
θ=θ+i

, 2 ≤ i ≤ J, (4)

σ1n
∣∣
θ=θ1

= 0, σJn
∣∣
θ=θJ+1

= 0, (5)

where (r, θ) denotes the polar coordinate in the plane; ui = (ui1, u
i
2)
T denotes the

displacement in Ωi; µi > 0 is the Lame constant; f i = (f i1, f i2)T is a given vector
valued function on the polygonal line Γi; σi−1n

∣∣
θ=θ−i

= (sin θi σi−111 − cos θi σi−112 ,

sin θi σ
i−1
21 − cos θi σi−122 )T , σin

∣∣
θ=θ+i

= (sin θi σ
i
11− cos θi σi12, sin θi σ

i
21− cos θi σi22)T

denote the normal stress on Oai, and σi = (σikl)2×2 denote the stress tensor in Ωi
with entries

σikl = −δklp
i + µi

(
∂uik
∂xl

+
∂uil
∂xk

)
, 1 ≤ k, l ≤ 2, 1 ≤ i ≤ J.

The equivalent variational-differential formulation of
problem (1)-(5)

We introduce the transformation of variables on each triangle Ωi:

x1 =
ρiρ cosφ

sin(φ− αi)

x2 =
ρiρ sinφ

sin(φ− αi)

 for θi ≤ φ ≤ θi+1, 0 ≤ ρ ≤ 1; (6)
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with

sinαi =
xi+1
2 − xi2
|aiai+1|

, cosαi =
xi+1
1 − xi1
|aiai+1|

,

|aiai+1| =
√
(xi+1

1 − xi1)2 + (xi+1
2 − xi2)2,

ρi = xi2 cosαi − xi1 sinαi.

 for 1 ≤ i ≤ J. (7)

We can show that ρi < 0 and sin(φ − αi) �= 0 for
θi ≤ φ ≤ θi+1. The transformation (6) maps Ωi
onto the rectangle Ω̃i = {(ρ, φ)| θi < φ < θi+1, 0 <
ρ < 1} and maps segment aiai+1 onto the segment
{ρ = 0, θi ≤ φ ≤ θi+1} as shown in Fig.(2). Hence
the domain Ω is mapped onto Ω̃ = {(ρ, φ)| − π <
φ < θJ+1, 0 < ρ < 1}. In the new coordinate (ρ, φ),
the BVP (1)-(5) is reduced to a discontinuous coeffi-
cients problem on the rectangle Ω̃. Furthermore, we
introduce the following spaces:


✔

✔✔O ai

ai+1

Ωi �

❄

✲

✻

1O
ρ

φ

θi

θi+1
Ω̃i

Fig. (2)

V1 =
{
v1(φ)

∣∣ v1 ∈ H1(θ1, θJ+1), namely v1, v
′
1 ∈ L2(θ1, θJ+1)

}
,

U1 =
{
u1(ρ, φ)

∣∣∣ for fixed 0 < ρ ≤ 1, u1(ρ, ·),
∂u1
∂ρ

(ρ, ·), ∂
2u1
∂ρ2

(ρ, ·) ∈ V1

}
,

V = V1 × V1, U = U1 × U1,

Q =
{
q(φ)

∣∣ q ∈ L2(θ1, θJ+1)
}
,

S =
{
p(ρ, φ)

∣∣ for fixed 0 < ρ ≤ 1, p(ρ, ·) ∈ Q
}
.

Then the BVP (1)–(5) is equivalent to the following variational-differential problem:

Find (u, p) ∈ U × S, such that

−
(

d

dρ
ρ

d

dρ

)
a2(u, v) +

d

dρ
a1(u, v) +

1
ρ
a0(u, v)

−
(

d

dρ
ρ

)
b1(p, v) + b0(p, v) = 0, ∀v ∈ V, 0 < ρ < 1;

ρ
d

dρ
b1(q, u) + b0(q, u) = 0, ∀q ∈ Q, 0 < ρ < 1;

u
∣∣
ρ=1

= f̃ , u is bounded , when ρ → 0;


(8)



128 HAN, HUANG

where

a2(u, v) =
n∑
i=1

∫ θi+1

θi

µi

sin2(φ− αi)
(ui)T Ki1(αi) vi dφ,

a1(u, v) =
n∑
i=1

∫ θi+1

θi

µi

sin(φ− αi)

[(
∂ui

∂φ

)T
Ki2 vi − (ui)T (Ki2)T

dvi

dφ

]
dφ,

a0(u, v) = −
n∑
i=1

∫ θi+1

θi

µi
(
∂ui

∂φ

)T
Ki1(φ)

dvi

dφ
dφ;

b1(q, v) =
n∑
i=1

∫ θi+1

θi

ρiq
i

sin2(φ− αi)
(sinαiv

i
1 − cosαivi2) dφ,

b0(q, v) =
n∑
i=1

∫ θi+1

θi

ρiq
i

sin(φ− αi)

(
sinαi

∂vi1
∂φ

− cosαi
∂vi2
∂φ

)
dφ,

with

Ki1(ψ) =

 1 + sin2 ψ − sin 2ψ
2

− sin 2ψ
2

1 + cos2 ψ

 ,

Ki2 =
(

cos(φ− αi) + sinφ sinαi − sinφ cosαi
− cosφ sinαi cos(φ− αi) + cosφ cosαi

)
;

and vi denotes the restriction of v on [ θi, θi+1].

The numerical solution of the variational-differential

problem (8)

Suppose that

−π = φ1 < φ2 < · · · < φM+1 = θJ+1 (9)

is a partition of the interval I ≡ [−π, θJ+1], such that each of {θi}ni=1 is a node of this
partition, namely for each θi there is a φj = θi. Let h = max

1≤j≤M
(φj+1 − φj),

Qh =
{
qh(φ)

∣∣∣ qh ∈ C0(I), qh
∣∣
[φj ,φj+1]

∈ P1([φj , φj+1]), 1 ≤ j ≤ M
}
,

Sh =
{
ph(ρ, φ) | for the fixed 0 < ρ ≤ 1, ph(ρ, .) ∈ Qh

}
.

Assume that {Φj(φ), j = 1, 2, · · · ,M + 1} is a basis of Qh such that Φj(φi) = δij ,
1 ≤ i, j ≤ M + 1. Furthermore, we refine the partition (9)

−π = φ1 < φ3/2 < φ2 < · · · < φM+1/2 < φM+1 = θJ+1. (10)

We use quadratic elements to construct the space

V h1 =
{
vh1 (φ)

∣∣∣ vh1 ∈ C0(I), vh1
∣∣
[φj,φj+1]

∈ P2([φj , φj+1]), 1 ≤ j ≤ M
}
.
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Let {ψ1(φ), ψ3/2(φ), ψ2(φ), · · · , ψM (φ), ψM+1/2(φ), ψM+1(φ)} is a basis of the
finite dimensional space V h1 such that

ψj(φi) = δij , 1 ≤ i ≤ M + 1, 1 ≤ j ≤ M + 1;
ψj(φi+1/2) = 0, 1 ≤ i ≤ M, 1 ≤ j ≤ M + 1;
ψj+1/2(φi) = 0, 1 ≤ i ≤ M + 1, 1 ≤ j ≤ M ;
ψj+1/2(φi+1/2) = δij , 1 ≤ i ≤ M, 1 ≤ j ≤ M.

In addition, we introduce:

Uh1 =
{
uh1(ρ, φ) | for the fixed 0 < ρ ≤ 1, uh1 (ρ, .) ∈ V h1

}
,

Vh = V h1 × V h1 , Uh = Uh1 × Uh1 .

Φ(φ) =
(
Φ1(φ) Φ2(φ) · · · ΦM+1(φ)

)T
,

Ψ(φ) =
(

ψ1(φ) 0 ψ3/2(φ) 0 · · · · · · ψM+1(φ) 0
0 ψ1(φ) 0 ψ3/2(φ) · · · · · · 0 ψM+1(φ)

)T
.

For ph(ρ, φ) ∈ Sh, uh(ρ, φ) ∈ Uh, and f̃h(φ) ∈ Vh is the interpolating function of f̃ in
space Vh, we have

ph(ρ, φ) = ΦT (φ)
∧
P h (ρ),

uh(ρ, φ) = ΨT (φ)
∧
Uh (ρ),

f̃h(φ) = ΨT (φ)F ,

 (11)

where

∧
P h (ρ) =

(
ph(ρ, φ1), ph(ρ, φ2), · · · , ph(ρ, φM+1)

)T
,

∧
Uh(ρ)=

(
uh1(ρ, φ1), u

h
2 (ρ, φ1), u

h
1(ρ, φ 3

2
), uh2 (ρ, φ 3

2
), · · · , uh1(ρ, φM+1), uh2 (ρ, φM+1)

)T
,

F =
(
f̃1(φ1), f̃2(φ1), f̃1(φ 3

2
), f̃2(φ 3

2
), · · · , f̃1(φM+1), f̃2(φM+1)

)T
.

Then we have the numerical approximation of the problem (8):

Find (uh, ph) ∈ Uh × Sh, such that

−
(

d

dρ
ρ

d

dρ

)
a2(uh, vh) +

d

dρ
a1(uh, vh) +

1
ρ
a0(uh, vh)

−
(

d

dρ
ρ

)
b1(ph, vh) + b0(ph, vh) = 0, ∀vh ∈ Vh, 0 < ρ < 1;

ρ
d

dρ
b1(qh, uh) + b0(qh, uh) = 0, ∀qh ∈ Qh, 0 < ρ < 1;

uh
∣∣
ρ=1

= f̃ h, uh is bounded , when ρ → 0.


(12)

Using (11), the discrete variational-differential problem (12) is equivalent to a BVP of
a system of O.D.E’s. We can reduce the BVP of the system of O.D.E’s to an eigenvalue
problem. After solving the eigenvalue problem numerically, we obtain neither more



130 HAN, HUANG

nor less than 4M+2 eigenvalues λhj (j = 1, 2, · · · , 4M+2) with non-negative real part
corresponding to the eigenvectors (ζj , ξj , ηj)

T
, j = 1, 2, · · · , 4M+2,where λh1 = λh2 = 0,

ξ1 = (1, 0, · · · , 1, 0)T ∈ R4M+2, ζ1 = 0, ξ2 = (0, 1, · · · , 0, 1)T ∈ R4M+2, ζ2 = 0.
Particularly we assume λhj (1 ≤ j ≤ 2m) are real eigenvalues and λhj (2m + 1 ≤
j ≤ 4M+2) are complex eigenvalues with nonzero imaginary parts such that λh2l =
λ
h

2l−1 (m+ 1 ≤ l ≤ 2M+1). Introduce matrices

D(ρ) =
[
ρλ

h
1 ξ1, · · · , ρλ

h
2mξ2m, Re(ρλ

h
2m+2ξ2m+2), Im(ρλ

h
2m+2ξ2m+2),

· · · ,Re(ρλh4M+2ξ4M+2), Im(ρλ
h
4M+2ξ4M+2)

]
,

E(ρ) =
[
ρλ

h
1−1η1, · · · , ρλ

h
2m−1η2m, Re(ρλ

h
2m+2−1η2m+2), Im(ρλ

h
2m+2−1η2m+2),

· · · ,Re(ρλh4M+2−1η4M+2), Im(ρλ
h
4M+2−1η4M+2)

]
.

Finally, we get the semi-discrete approximate solution of problem (12):

uh(ρ, φ) = Ψ(φ)TD(ρ)D(1)−1F, (13)
ph(ρ, φ) = Φ(φ)TE(ρ)D(1)−1F. (14)

Remark: We can deal with the Neumann boundary value problem based on the ex-
pression of the semi-discrete solution of the Dirichlet BVP given in (13)–(14). In
addition, We can similarly define the stress intensity factors (SIFs) KI and KII at
the crack-tip in the incompressible materials.

Numerical examples

In order to demonstrate the effectiveness of the direct method of lines given in this
paper, two numerical examples are discussed. First, we consider the following problem
with a corner.
Example 1. We consider the problem

−µi*ui + grad pi = 0, in Ωi, 1 ≤ i ≤ J, (15)
div ui = 0, in Ωi, 1 ≤ i ≤ J, (16)
ui
∣∣
Γi

= f i, 1 ≤ i ≤ J, (17)

ui−1
∣∣
θ=θ−i

= ui
∣∣
θ=θ+i

, σi−1n

∣∣
θ=θ−i

= σin
∣∣
θ=θ+i

, 2 ≤ i ≤ J, (18)

σ1n
∣∣
θ=θ1

= 0, σJn
∣∣
θ=θJ+1

= 0, (19)

where J = 4 and Ωi (i = 1, 2, · · · , 4) is given in Fig. (3),

ΓD = ∂Ω \
{
x ∈ R2

∣∣ − 1 ≤ x1 ≤ 0, x2 = 0− or 0 ≤ x2 ≤ 1, x1 = 0+
}
,

f =
(

f1
f2

)
=
(

x2
−x1

)
We assume that µi = 2i−1µ, for 1 ≤ i ≤ J . In all examples we let µ = 300. We know
the exact solution is u = (x2, −x1)T , p = 0.
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Let M be an even positive integer, the partition
of [−π, π/2] is given by (10) with θJ = π/2, h = 3π

4M ,

φj = −π + 2(j − 1)h, j = 1, 2, · · · ,M + 1,
φj+1/2 = φj + h, j = 1, 2, · · · ,M.

(20)

Denoting the numerical solution of (15)–(19) by
(uh, ph), the results of the first three eigenvalues for
the one material case of Example 1 are given in Ta-
ble 1 for differentM , which have been compared with
the exact results.

�
�

�
�

�
�

��

❅
❅

❅
❅

(1, 1)(0, 1)

(−1,−1)

(−1, 0)

(1,−1)

O
Ω1

Ω2

Ω3

Ω4

a1

a2 a3

a4a5

Fig.(3)

Table 1: The results of Example 1.

M λh3 λh4 λh5 Error
12 0.550231 0.939503 0.997947 2.9338e-2
24 0.549332 0.937753 0.999883 4.3508e-3
48 0.548838 0.937581 0.999986 1.1345e-3

where Error = ‖u− uh‖1,Ω + ‖p− ph‖0,Ω.

Example 2. We now consider a interface crack problem with Neumann boundary
condition (see Fig. (4)):

−µi*ui + grad pi = 0, in Ωi, 1 ≤ i ≤ J, (21)
div ui = 0, in Ωi, 1 ≤ i ≤ J, (22)
σin
∣∣
Γi

= gi, 1 ≤ i ≤ J, (23)

ui−1
∣∣
θ=θ−i

= ui
∣∣
θ=θ+i

, σi−1n

∣∣
θ=θ−i

= σin
∣∣
θ=θ+i

, 2 ≤ i ≤ J, (24)

σ1n
∣∣
θ=θ1

= 0, σJn
∣∣
θ=θJ+1

= 0, (25)

where

g(x) =
(

g1(x)
g2(x)

)

g1(x) = 0, g2(x) =

 −1, x2 = −1,
1, x2 = 1,
0, otherwise;

µi = 2i−1µ, 1 ≤ i ≤ J.

Here J = 8, c/w = a/w = 0.5. Let M be an
even positive integer, the partition of [−π, π]
is given by (10) with θJ = π, h = 2π/M and

�
�

�
�

�
�

��

❅
❅

❅
❅

❅
❅

❅❅

(w−a, c)(−a, c)

(−a,−c) (w−a,−c)

a1

a2 a3 a4

a5

a6a7a8

a9

✻✻✻ ✻✻✻

❄❄❄ ❄❄❄

σ

σ

O

Fig.(4)

φj = −π + (j − 1)h, j = 1, 2, · · · ,M + 1,
φj+1/2 = φj + h/2, j = 1, 2, · · · ,M.

(26)
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The results for Example 2 are given in Table 2 for different M , where Kh∗ = Kh ·
aλ

h
3−1/σ

√
π = Kh∗

I + iKh∗
II . We can see that our method is effective for solving the

incompressible problems and calculating SIFs.

Table 2: The results of Example 2.

M λh3 λh4 λh5 λh6 Kh∗
I Kh∗

II

16 0.576618 0.600351 0.964218 0.997352 0.481622 0.0336196
32 0.574633 0.598260 0.956448 0.999875 0.479231 0.0320021
64 0.573838 0.597324 0.953956 0.999993 0.477376 0.0313716
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14. The Coupling of Natural BEM and Composite
Grid FEM

Q.Y. Hu1, D.H. Yu2

Introduction

The coupling of boundary elements and finite elements is of great importance for
the numerical treatment of boundary value problems posed on unbounded domains.
It permits us to combine the advantages of boundary elements for treating domains
extended to infinity with those of finite elements in treating the complicated bounded
domains.

The standard procedure of coupling the boundary element and finite element meth-
ods is described as follows. First, the (unbounded) domain is divided into two sub-
regions, a bounded inner region and an unbounded outer one, by introducing an
auxiliary common boundary. Next, the problem is reduced to an equivalent one in the
bounded region. There are many ways to accomplish this reduction (refer to [Cos87],
[FY83], [GHW94], [HZ94], [JN80], [Med98] and [ESH79]). The FEM-BEM coupled
method can be viewed as a domain decomposition method to solve unbounded domain
problems.

The natural boundary reduction method proposed by [FY83] has obvious advan-
tages over the usual boundary reduction methods: the coupled bilinear form preserve
automatically the symmetry and coerciveness of the original bilinear form,so not only
the analysis of the discrete problem is simplified, but also the optimal error estimates
and the numerical stability are restored (see [FY83] and [Yu93]).

It is well known that the analytic solution of the Dirichlet exterior problem is in
general singular at the corner points. The fast adaptive composite grid (iteration)
method advanced by McCormick (refer to [BPWX91], [MT86] and [McC89]) is very
effective in dealing with this kind of local singularity. However, it can not be applied
directly to the case of unbounded domain.

In the present paper we combine the composite grid method with the coupling
method of natural boundary element and finite element to handle the corner singu-
larity of the Dirichlet exterior problems. Under suitable assumptions we obtain the
optimal error estimates of the corresponding approximate solutions. The underlying
linear system is expensive to solve directly due to the complicated structure (which
is neither sparse nor band). Instead, we introduce two iterative methods to solve this
coupled system: (1) a combination algorithm between the inexact two-level multi-
plicative Schwarz method and the steepest descent method; (2) the preconditioning

1Institute of Computational Mathematics and Scientific/ Engineering Computing, Chinese
Academy of Sciences, Beijing 100080, China. The work of the author was supported by the
National Natural Science Foundation and the National Postdoctor Foundation of China (email:
hqy@lsec.cc.ac.cn)

2Institute of Computational Mathematics and Scientific/ Engineering Computing, Chinese
Academy of Sciences, Beijing 100080, China. The work of the author was supported by the State
Major Key Project for Basic Researches of China (email: ydh@lsec.cc.ac.cn)
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conjugate gradient (PCG) method by constructing a kind of simple preconditioner
for the coupled “stiffness” matrix. Both the two algorithms have the fast conver-
gence speed independent of the (coarse and fine) mesh sizes, which has been proved
in [HY99b] and [HY99a]. We give numerical examples to illustrate our theoretical
results.

The FEM-BEM coupling

We consider the following model exterior Dirichlet problem in two dimensions:

−∆u = f in Ωc = R2\(Ω ∪ Γ), (1)
u = g on ∂Ω (2)

with the asymptotic condition:

u(x, y) is bounded as r =
√

x2 + y2 → ∞.

Where Ω is a Lipschitz bounded domain, f and g are given functions satisfying f ∈
L2(Ωc) and g ∈ H

1
2 (∂Ω).

The variational form of the boundary value problem (1) is: to find u ∈ H̄1(Ωc),
such that

D(u, v) = (f, v), ∀ v ∈ H̄1
0 (Ω

c), (3)

where
H̄1(Ωc) = {v :

v√
(r2 + 1) · ln(r2 + 2)

,
∂v

∂x
,
∂v

∂y
∈ L2(Ωc)},

H̄1
0 (Ω

c) = {v : v ∈ H1(Ωc), v|∂Ω = 0},
D(u, v) = (∇u,∇v), ∀ u, v ∈ H̄1(Ωc),

with (·, ·) be the L2 innerproduct on Ωc.
Let Ω0 is a circle disc ( with the radius R ) containing Ω and having a boundary

Γ. Set Ω1 = Ωc ∩Ω0 and Ω2 = Ωc0 = R2\Ω0. We assume that the ratio of the area of
Ω1 over the area of Ω is not small.

Let G(p, p′) denote the Green function of the Laplace operator on the domain Ω2.
Set

∂

∂n
G(p, p′) = G(2)

n (p, p′), p, p′ ∈ Γ,

and

−
∫
Γ

∂2

∂n∂n′
G(p, p′) · u(p′)dp′ = K2u(p), p ∈ Γ.

where n and n′ denote respectively the exterior normal vectors of Γ (which is regarded
as the boundary of Ω2) at the points p and p′.

Define the bilinear form

D1(u, v) =
∫
Ω1

∇u · ∇vds, u, v ∈ H1(Ω1)
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and the Sobolev spaces

H1
g (Ω1) = {v : v ∈ H1(Ω1), v|∂Ω = g}

and
H1

0 (Ω1) = {v : v ∈ H1(Ω1), v|∂Ω = 0}.
Let < ·, · >Γ denote the L2 innerproduct on Γ. Then, it can be verified by the Green
formular that (3) is equivalent to the coupling variational problem (see [Yu93]): to
find u ∈ H1

g (Ω1) such that

D1(u, v)+ < K2u, v >Γ=
∫ ∫

Ω1

fvdxdy− < wf , v >Γ, ∀ v ∈ H1
0 (Ω1), (4)

where
wf (p) =

∫ ∫
Ω2

f(p′)G(2)
n (p, p′)dp′, p ∈ Γ.

The coupling bilinear form

A(u, v) = D1(u, v)+ < K2u, v >Γ

is symmetric, bounded and coercive in H1
0 (Ω1), so (4) has unique solution u ∈ H1

g (Ω1).

Composite grid discretization

Without loss of generality, we assume that: (i) the domain Ω is a polygon; (ii) g ≡ 0.
Let the auxiliary boundary Γ be divided into m circular arcs with the same length.
Moreover, let the domain Ω1 be divided into some quasi-uniform triangular or quari-
lateral elements with the diameter H (≈ 2πR/m), such that the finite element nodes
on Γ coincide with the m dividing points on Γ. The corresponding piecewise linear
finite element space is denoted by SH(Ω1)⊂H1

g (Ω1) = H1
0 (Ω1). Because the analytic

solution u is in general singular nearby the concave angle points of Ω1, even if the
given functions f and g are smooth enough on their definition domains Ωc and ∂Ω,
the finite-dimensional subspace SH(Ω1) can not provide a “good” approximation of
u unless the mesh size H is very small. Let Ω3 is a subdomain of Ω1, such that Ω3

containes the concave angle points of Ω1. We assume that Ω3 is just the union set of
some elements of Ω1. Set

H1
0 (Ω3) = {v : v∈H1(Ω1), supp v ⊂ Ω3}.

We make a refining division to Ω3, such that the diameter of finer elements is h < H .
Let S0

h(Ω3)⊂H1
0 (Ω3) be the corresponding piecewise linear finite element space. We

define the composite grid space Sh,H⊂H1
g (Ω1) = H1

0 (Ω1) by Sh,H = SH(Ω1)+S0
h(Ω3).

The discrete variational problem of (4) is: to find uh,H∈Sh,H such that

A(uh,H , v) =
∫ ∫

Ω1

fvdxdy− < wf , v >Γ, ∀ v∈Sh,H∩H1
0 (Ω1). (5)

For this approximation, we have the following error estimates ( which have been
proved in [HY99b] or [HY99a]).
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Theorem 1 Assume that f∈L2(Ωc) and g∈H 1
2 (∂Ω). Then, there is a decomposition

u = û + ũ, such that û∈H2(Ω1)∩H1
0 (Ω1) and ũ∈H1

0 (Ω3)∩H1+α(Ω3) with 0 < α < 1.
Moreover, we have

(‖uh,H − u‖21,Ω1
+ ‖uh,H − u‖21

2 ,Γ
)

1
2≤C(hα‖ũ‖1+α,Ω3 +H‖û‖2,Ω1) (6)

and

‖uh,H − u‖0,Ω1≤C(h2α‖ũ‖1+α,Ω3 +H2‖û‖2,Ω1). (7)

Remark 1 The above theorem indicates that the fine mesh size h and the coarse mesh
size H should satisfy hα≈H.

It is clear that the stiffness matrix of the bilinear form A(·, ·) is neither sparse nor
band. Thus, it is expensive to solve the discrete problem (5) in the direct way.

A iteration algorithm of the discrete problem

In this section, we introduce an iteration algorithm to solve (5).
For ease of notation, we set

V = Sh,H , V1 = S0
h(Ω3) and V2 = SH(Ω1).

At first, we describe a version of the composite grid iteration algorithm (refer to
[MT86] and [McC89]), which is applied to solving (5).
The standard algorithm Let u0 ∈ V be a initial approximation. When we have
gotten un ∈ V , we look for un+1 ∈ V as follows:
1o Solving u1 ∈ V1 by

A(u1, v1) = Φ(v1)−A(un, v1), ∀v1 ∈ V1,

namely,
D1(u1, v1) = (f, v1)−D1(un, v1), ∀v1 ∈ V1.

Set
un+ 1

2
= un + u1;

2o Solving u2 ∈ V2 by

D1(u2, v2) = Φ(v2)−A(un+ 1
2
, v2), ∀v2 ∈ V2.

Set
un+1 = un+ 1

2
+ θu2,

where θ > 0 is a relaxation parameter (remaining to be determined).
We define the projection-like operator QH : V → V2

D1(QHϕ,ψ) = A(ϕ,ψ), ϕ ∈ V, ∀ψ ∈ V2.
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Here, we have used the fact that D1(·, ·) is symmetric and positive definite in V2. Let
en = uh,H − un denote the error function. It can be verified directly that the error
propagation relation is

en+1 = (I − θQH)(I − Ph)en.

It can be shown (refer to [HY99b]) that there is a constant C̃ > 1, such that

D1(ϕ,ϕ) ≤ A(ϕ,ϕ) ≤ C̃D1(ϕ,ϕ), ∀ϕ ∈ V.

Thus, from the convergence theory of the multiplicative Schwarz iteration (see [SBG96]
and [Xu92]), we know that the above iteration algorithm is convergent, provided the
relaxation parameter θ is chosen as 0 < θ < 2/C̃. However, there is no simple way to
estimate the value of the constant C̃.

We discuss how to choose the relaxation parameter θ when we do not know the
value of the constant C̃.

Set e0(θ0−1) = uh,H − u0. If we have determined value of positive number θ0n−1,
then we set

en+1(θn) = (I − θnQH)(I − Ph)en(θ0n−1), n = 0, 1, · · · .

Let ‖ · ‖ denote the norm generated by the innerproduct [·, ·] = A(·, ·). We define the
function of θn by

F (θn) = ‖en+1(θn)‖2, n = 0, 1, · · · .

Our idea is to select properly a positive number θ0n, such that

F (θ0n) = min
θn

F (θn), n = 0, 1, · · · . (8)

Without loss of generality, we assume that gn = (I − Ph)en(θ0n−1) �= 0 (otherwise,
un+ 1

2
= uh,H). Since there is a decomposition gn = v1n+v2n, with v1n ∈ V1 and v2n ∈ V2,

we have

‖gn‖2 = [gn, v1n + v2n] (9)
= D1(gn, v1n) + [gn, v2n] (10)
= D1(QHgn, v

2
n). (11)

Hence QHgn �= 0. Therefore, it follows from (4.1) that

F ′(θn) = 0.

Thus, we obtain

θ0n =
[gn, QHgn]
‖QHgn‖2

.

We must illustrate how to calculate these positive numbers θ0n. In fact, QHgn can
be obtained directly by the step 1 and step 2 in the above standard algorithm, namely,
QHgn = u2. Furthermore, we have

[gn, QHgn] = D1(QHgn, QHgn) = |u2|21,Ω1
.
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Now, we can describe an new algorithm.
Schwarz-steepest descent algorithm Let u0 ∈ V be a initial approximation. When
we have gotten un ∈ V , we look for un+1 ∈ V as follows:

1o Solving u1 ∈ V1 by

D1(u1, v1) = (f, v1)−D1(un, v1), ∀v1 ∈ V1,

and set
un+ 1

2
= un + u1;

2o Solving u2 ∈ V2 by

D1(u2, v2) = Φ(v2)−A(un+ 1
2
, v2), ∀v2 ∈ V2.

3o Computing norms |u2|21,Ω1
and ‖u2‖2, and set

un+1 = un+ 1
2
+ θ0nu

2,

with θ0n =
|u2|21,Ω1
‖u2‖2 .

For the above algorithm, we have the following convergence result (see [HY99b]).

Theorem 2 There is a constant C independent of h and H, such that

‖en+1(θ0n)‖2 ≤ (1− 1
C
)‖en(θ0n−1)‖2, n ≥ 1. (12)

Remark 2 If we set θ0n = 1, which corresponds to the standard two-level multiplicative
Schwarz algorithm, this algorithm may be divergent.

A preconditioner for the discrete system

Because the stiffness matrix associated with the discrete problem (5) is symmetric and
positive definite, this linear system can also be solved by the PCG method.

Now we construct a kind of preconditioner for this bilinear form.
For convenience’ sake, we define the operators A, Ā : V → V by

(Aϕ,ψ) = D1(ϕ,ψ)+ < K2ϕ,ψ >Γ, ∀ϕ, ψ ∈ V

and
(Āϕ, ψ) = D1(ϕ,ψ), ϕ ∈ Sh,H , ∀ψ ∈ V.

Let A1 : V1 → V1 and A2 : V2 → V2 denote the restrictions of the operator Ā, which
satisfy

(A1ϕ1, ψ1) = (Āϕ1, ψ1), ϕ1 ∈ V1, ∀ψ1 ∈ V1

and
(A2ϕ2, ψ2) = (Āϕ2, ψ2), ϕ2 ∈ V2, ∀ψ2 ∈ V2.

It is clear that the operators A1 and A2 are symmetric and positive definite with
respect to the L2 innerproduct.
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We define the preconditioner of the operator A as

B = A−11 Q1 +A−12 Q2, (13)

where Q1 : V → V1 and Q2 : V → V2 are the L2 orthogonal projection operators.
The following result has been proved in [HY99a].

Theorem 3 There exists a constant C independent of h and H, such that

cond(BA) ≤ C. (14)

Remark 3 Since the operator K2 in the second section can be expressed explicitly,
we need not solve any (singular) integral equation. Instead, we need only to calculate
some singular integrations (refer to [HY99b], [HY99a] and [Yu93]). Besides, only
two subproblems with two standard bases are needed to be solved. These are the main
merits of the algorithm introduced in this paper.

Remark 4 The preconditioning algorithm introduced in this section has faster con-
vergence speed than the Schwarz algorithm introduced in the last section (see the next
section). Moreover, it is additive, so the result can be extended directly to the case
of inexact local solver. On the other hand, the stiffness matrix of (5) can not be ob-
tained directly (refer to [MT86], [McC89] and [SBG96]), because V1∩V2 �= ∅. For the
Schwarz algorithm given in the last section, the global stiffness matrix of the bilinear
form A(·, ·) need not be generated (therefore, no need to care about basis for V ). Be-
sides, this algorithm has minimal memory requirement. These are the merits of the
Schwarz algorithm.

Numerical examples

To illustrate the theoretical results stated in this paper, we consider

−∆u = f, ∈ Ωc, (15)
u = g, on ∂Ω, (16)

where Ω = [−1, 0]× [−1, 0]; f and g are given functions such that its exact sulution is

u(x, y) = (x2+y2)
1
3

(x+ 1
2 )

2+(y+ 1
2 )

2 .

(f(x, y) = −u(x, y){ 2/3
(x2 + y2)[(x+ 1

2 )
2 + (y + 1

2 )
2]
+

8/3
(x+ 1

2 )
2 + (y + 1

2 )
2
− 8/9

x2 + y2
})

It is clear that the analytic solution u is singular at the corner point (0,0) (α = 2
3 ).

This problem is solved by the method introduced in the second section. Here, radius
of the auxiliary circle Γ is R = 2. Moreover, the subdomain Ω3 is chosen as the sector
with radius 1. We use quasi-uniform triangular elements. The resulting linear system
is solved by the Schwarz-steepest descent algorithm (or the PCG method with the
preconditioner defined in the last section).

The error estimates (6) and (7) are confirmed by Table 1 (with the equivalent
discrete norms).
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Table 1
error estimates (H = 4π/m, h = H/4)

m ‖uH − u‖1,Ω1 ‖uh,H − u‖1,Ω1 ‖uH − u‖0,Ω1 ‖uh,H − u‖0,Ω1

20 9.87D-1 7.25D-1 9.31D-1 4.66D-1
40 6.37D-1 3.64D-1 3.75D-1 1.20D-1
80 4.12D-1 1.83D-1 1.53D-1 3.14D-2
160 2.65D-1 9.24D-2 6.14D-2 8.07D-3 (or 8.09D-3)

The numbers of iteration are given in Table 2 (or Table 3), which can confirm
Theorem 8 (or Theorem 13). Here, the domination error with the discrete l2 norm is
5.0× 10−5.

Table 2
numbers of iteration

m 20 40 80 160
iter 21 22 21 22

Table 3
numbers of iteration

m 20 40 80 160
PCG 14 14 15 14
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15. Direct Mehtod of Lines for Solving an Elliptic
Transmission Problem

Kiyoshi Kitahara 1, Hideyuki Koshigoe 2

Introduction

The object of this paper is to present the numerical algorithm to obtain a finite
difference solution for an elliptic transmission problem by use of the direct method of
lines ([Nak65],[KK98], [KK99]). Let Π be a rectangular domain in R2, Ω1 be an open
subset of Π and Ω2 = Π \ Ω1, Γ = ∂Ω1 (see Figure 1). Then the elliptic transmission
problem is formulated as follows. And it is well known that (3) and (4) are called the
conditions of transmission (cf. [DL90], [Lio71]).

Problem I Find (u1, u2) ∈ H1(Ω1)×H1(Ω2) such that

−ε1*u1 = f1 in Ω1 , (1)
−ε2*u2 = f2 in Ω2 , (2)

u1 = u2 on Γ , (3)

ε1
∂u1
∂ν

= ε2
∂u2
∂ν

on Γ , (4)

u2 = g on ∂Π . (5)

Hhere ε1 and ε2 are positive constants, {f1, f2} ∈ L2(Ω1) × L2(Ω2), g ∈ H1/2(∂Π)
and ν is the unit normal vector on Γ directed from Ω1 to Ω2 .

✛
ν

Π

Ω2

Ω1

Γ

Figure 1: Interface Γ and unit normal ν

Equations (1)-(5) of this type are arisen in various contexts. One of such examples
can be found in the context of electricity. In fact, let {ε1, ε2} denote dielectric con-
stant, {u1, u2} be potential of the electric field and {f1, f2} be charge density in the
dielectric material {Ω1,Ω2} respectively. Then the conditions (3) and (4) mean that
the tangential component of the electric field and the normal component of electric

1Department of General Education, Kogakuin University, Tokyo, Japan. kita-
hara@cc.kogakuin.ac.jp

2Institute of Applied Mathematics, Chiba University, Chiba, Japan. koshigoe@applmath.tg.chiba-
u.ac.jp
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flux density are continuous across Γ respectively. Moreover if g=0, (5) represents that
R2 \Π is occupied by a perfect conductor.

The problem of transmission type has been studied from the viewpoint of both
theoretical and numerical researchs. And the method of the auxilliary domain plays
the important role in the field of numerical analysis. In this paper we present another
point of view to solve it numerically. That is to use the method of the successive
eliminations of lines and to solve directly the kernel of the Steklov-Poincaré operator
T , which is defined as the linear operator from the Dirichlet data on Γ to the Neumann
data on Γ

T : H1/2(Γ) 7 w → ε1
∂u1
∂ν

− ε2
∂u2
∂ν

∈ H−1/2(Γ),

in the sense of the finite difference. We remark here that the discretized equations
of Problem I is reduced to solve the linear system of equations defined on Γ (i.e.,
the kernel of the Steklov-Poincaré operator T ) and another parts of unknowns are
automatically decided by the algebraic computation using the explicit formula of the
approximate solutions stated in the section 4.

Now considering the kernel of the Steklov-Poincaré operator T , Problem I is rewrit-
ten by Problem II. In fact, two formulations are equivalent by use of the distribution
theoretical approach and Green’s formula. Hence from now on, we consider the con-
struction of the solution for Problem II in the sense of the finite difference.

Problem II Find u ∈ H1(Π) such that{
−div (a(x)∇u) = f in D′(Π) ,

u = g on ∂Π .
(6)

Here a(x) = ε1 χΩ1(x) + ε2 χΩ2(x), f(x) = f1(x)χΩ1 (x) + f2(x)χΩ2 (x) and χΩ(x)
is defined by

χΩ(x) =

{
1 if x ∈ Ω
0 if x /∈ Ω

for any subset Ω of Π.
The contents of this paper are as follows. In the second section, we introduce a

small perturbation on Γ for the numerical computation, which is defined by 1
2 ( f1(x)+

f2(x) ) δ(x − Γ), in the discretized formulation of Problem II. Roughly speaking, it
implies that T (uh) = O(h) for any mesh size h . In the third section, we prepare the
representation formula of the solution for a system of linear equations. This is the
background in the numerical algorithm we propose here. In the fourth section, the
kernel of the Steklov-Poincaré operator T and the explicit formula of the approximate
solutions will be presented using the results in the third section. In the fifth section,
two numerical results will be shown by use of the explicit formula in the fourth section.

Finite difference approximation for Problem II

We partition the region Π into rectangles by vertical m− 1 lines and horizontal n− 1
lines. We denote mesh size for x direction as ∆x and for y direction as ∆y. Moreover
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by Γ∆ we denote the set of all mesh points (which are interior of Π) such that from
each point the horizontal distance to Γ is less than ∆x/2 or the vertical distance to Γ
is less then ∆y/2 (see Figure 2). We designate the point in Γ∆ as artifitial interface
mesh point. By Π∆ we denote the set of all interior mesh points which do not belong
to Γ∆.

In order to denote a discretized model for Problem II we prepare some notations.
We assume that the boundary data g is continuous on ∂Π and the charge densities f1,
f2 are coutinuous on Ω1, Ω2 respectively. Let denote uij as approximate value of the
solution u at mesh point Pij . We denote Pi+1/2,j as the center of the points Pij and
Pi+1,j and denote Pi,j+1/2 as the center of the points Pij and Pi,j+1. For every mesh
piont Pij ∈ Γ∆ we denote PΓ

ij as the nearest point form Pij among the points which
are on the intersection of mesh lines and Γ (see Figure 3).

Ω2

Ω1

Γ

�

�

� �

�

Figure 2: Mesh point near Γ

�
�

�
�

�
�

�
��

Pij

PΓ
ij

uij
ui+1,jui−1,j

ui,j+1

ui,j−1

Ω1

Ω2 Γ

Figure 3: The point PΓ
ij

Let us define the function ε(P ) and the elements fij as the following :

ε(P ) =


ε1 if P ∈ Ω1,

(ε1 + ε2)/2 if P ∈ Γ,
ε2 if P ∈ Ω2,

fij =

{
f(Pij) if Pij ∈ Π∆,

(f1(PΓ
ij) + f2(PΓ

ij))/2 if Pij ∈ Γ∆.

By use of above notations we define a discretized model for Problem II at a mesh piont
Pij by the following form :

Discretized formula for Problem II at Pij

− 1
∆x

[
ε(Pi+1/2,j)

ui+1,j − uij
∆x

− ε(Pi−1/2,j)
uij − ui−1,j

∆x

]
− 1

∆y

[
ε(Pi,j+1/2)

ui,j+1 − uij
∆y

− ε(Pi,j−1/2)
uij − ui,j−1

∆y

]
= fij .

(7)

Now we put that

bWij = ε(Pi−1/2,j), bEij = ε(Pi+1/2,j), cSij = ε(Pi,j−1/2), cNij = ε(Pi,j+1/2), (8)
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then we can rewrite the equation (7) to the following form :

−tcSijui,j−1 +
(
bWij + bEij + t(cSij + cNij )

)
uij − tcNijui,j+1

= bWij ui−1,j + bEijui+1,j + (∆x)2fij ,
(9)

where t = (∆x)2/(∆y)2. The coefficients bWij , . . . , c
E
ij have the following properties.

bEij = bWi+1,j , cNij = cSi,j+1 for all mesh points , (10)

bWij = bEij = ε(Pij) = cSij = cNij if Pij ∈ Π∆. (11)

These properties are obvious from definitions (8).
Now for i = 1, 2, . . . ,m−1, we denote Ui as unknown columun vector [uij ]1≤j≤n−1

and define coefficient matrices Aεi , B
W
i and BEi by the following forms.

Aεi =


aεi,1 −tcNi,1 0 · · · · · ·
−tcSi,2 aεi,2 −tcNi,2 0 · · ·

...
...

...
...

...
· · · · · · 0 −tcSi,n−1 aεi,n−1

 , (12)

BWi = diag[bWij ]1≤j≤n−1, BEi = diag[bEij ]1≤j≤n−1, (13)

where aεij = bWij + bEij + t(cSij + cNij ) and Aεi is a tridiagonal matrix.
By use of these notations we can rewrite equations (9) to the following system of

equations which is a discretized model for Problem II .

Problem III Find vectors Ui (1 ≤ i ≤ m− 1) such that

Aεi Ui = BWi Ui−1 +BEi Ui+1 + Fi (1 ≤ i ≤ m− 1), (14)

where U0 = 0, Um = 0 and Fi (1 ≤ i ≤ m − 1) are known vectors constructed form
the functions f and g.

From the equations (10) we know that Aεi (1 ≤ i ≤ m−1) are symmetric matricies
and BEi = BWi+1 (1 ≤ i ≤ m− 2).

Construction of the solution for linear equations based
on the direct method of lines

Before proceeding to solve Problem III, we shall state our result about linear equations
for the unkown matrix {Xi} as follows:

AXi = Xi−1 +Xi+1 + Yi (1 ≤ i ≤ m− 1). (15)

Here we make the following assumptions:
(H1) A is a square matrix of order N .
(H2) Xi (0 ≤ i ≤ m) and Yi (1 ≤ i ≤ m − 1) are N × M matrices which satisfy

the system of equations (15).
Then we have the following representation for any one Xk.
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Theorem 1 We assume (H1),(H2). Then we have

AmXk = Am−kX0 +Am−k

k−1∑
i=1

Ai Yi

+Ak

m−1∑
i=k

Am−i Yi +AkXm (1 ≤ k ≤ m− 1)

(16)

where the sequence of matrices {Ai} is defined by

A1 = I, A2 = A, Ai+1 = AAi −Ai−1 (i = 2, 3, . . . ). (17)

If A = [aij ] is the (n− 1)− symmetrix tridiagonal matrix as follows:

ajj = 2 s aj,j+1 = aj+1,j = −t where s = 1 + t (18)

then the representation (16) turns out to be a very simple form. In fact we can reduceA
to a diagonal form by means of the orthgonal transfomation : P = t[P1 , P2 , . . . , Pn−1]
where

pl,j =

√
2
n

sin
(
l j π

n

)
(1 ≤ l, j ≤ n− 1). (19)

and P has the following properties,

tP = P, P 2 = I. (20)

Multiplying P A−1m on the both sides of (16), we obtain the following result.

Proposition 1 Assume X0 = Xm = O, then we have

P Xk =
k−1∑
i=1

Dm−k,i P Yi +
m−1∑
i=k

Dk,m−i P Yi (1 ≤ k ≤ m− 1) (21)

where for l and i (1 ≤ l, i ≤ m− 1)

Dl,i = P A−1m Al Ai P = diag
[
sinh(l aj) sinh(i aj)
sinh(maj) sinhaj

]
1≤j≤n−1

. (22)

Explicit formula of the solution for Problem III

We return to Problem III. We can rewrite the system of equations (14) to the following
new system of equations, which is more useful forms for the Method of Lines, by use
of splitting unknown vectors. Then our last problem is reduced to the following.

Problem IV Find {Vi, Wi} (1 ≤ i ≤ m− 1) such that

AVi =Vi−1 + Vi+1 + Fi +BWi Wi−1 −Aεi Wi +BEi Wi+1 (1 ≤ i ≤ m− 1) (23)
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where V0 = Vm = W0 = Wm = 0 and the matrix A is given by the equation (18).
Now we will derive the system of equations (23) from the system (9). At first, for

any column vector V (= [vj ]), we define a set of indices as that supp(V ) = {j | vj �= 0}.
Let us divide each unknown vector Ui into two parts.

Ui = U ′
i +Wi, (1 ≤ i ≤ m− 1) (24)

where

supp(U ′
i) ⊆ {j |Pij ∈ Π∆} and supp(Wi) ⊆ {j |Pij ∈ Γ∆}. (25)

If j ∈ supp(U ′
i) then by use of the above definition (25) and the relation (11), we

obtain the eqaution that BWi U ′
i = BEi U ′

i . Then we define the new unknown vectors
Vi:

Vi = BWi U ′
i = BEi U ′

i (1 ≤ i ≤ m− 1). (26)

From the definition of Vi and Wi we have the following relations.

supp(Vi) ∩ supp(Wi) = ∅ (1 ≤ i ≤ m− 1). (27)

Moreover it follows from (10) that

Vi = BEi−1U
′
i = BWi+1U

′
i and AεiU

′
i = AVi (1 ≤ i ≤ m− 1), (28)

where the matrix A is given by the equation (18). By use of the relations (28) we can
rewrite the system of equations (14) to the new system of equations (23).

Applying Proposition 1 to our difference equations (23) we obtain the following
expressions.

Proposition 2 For each number k (1 ≤ k ≤ m− 1),

P Vk =
k−1∑
i=1

Dm−k,i P
[
BWi Wi−1 −Aεi Wi +BEi Wi+1

]
+
m−1∑
i=k

Dk,m−i P
[
BWi Wi−1 −Aεi Wi +BEi Wi+1

]
+

(
k−1∑
i=1

Dm−k,i P Fi +
m−1∑
i=k

Dk,m−i P Fi

) (29)

From the equations (29), we can elimimate Vk and get the linear equations for {Wi}
by use of the support property (27) and the orthogonarity of {Pl} .

Theorem 2 (Equations for Wi) For l ∈ supp(Wk),
k−1∑
i=1

tPlDm−k,i P
[
−BWi Wi−1 +Aεi Wi −BEi Wi+1

]
+
m−1∑
i=k

tPlDk,m−i P
[
−BWi Wi−1 +Aεi Wi −BEi Wi+1

]
= tPl

(
k−1∑
i=1

Dm−k,i P Fi +
m−1∑
i=k

Dk,m−i P Fi

)
.

(30)
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By use of the orthogonarity of {Pl}, we get the following Theorem.

Theorem 3 (Expressions for vi,j) For l ∈ supp(Vk),

vk,l =
k−1∑
i=1

tPlDm−k,i P
[
BWi Wi−1 −Aεi Wi +BEi Wi+1

]
+
m−1∑
i=k

tPlDk,m−i P
[
BWi Wi−1 −Aεi Wi +BEi Wi+1

]
+ tPl

(
k−1∑
i=1

Dm−k,i P Fi +
m−1∑
i=k

Dk,m−i P Fi

)
.

(31)

Examples

Using Theorem 2 and 3, we show the numerical results for the elliptic transmission
problem (1) under the following geometry.

✲

✻

�
�

�
�

��

O 1
x

1
y

Ω1

Ω2

Γ

Figure 4: Example 1

✲

✻

O
x

y

Ω1

Ω2 Γ

Figure 5: Example 2

Example 1:

Let Π = (0, 1) × (0, 1) = Ω1 ∪ Γ ∪ Ω2 , Γ : x − y + 1/4 = 0 as Figure 4. Set
ε1 = 1, ε2 = 3 in Problem I and ∆x = ∆y = h in (7).

We then use test functions:

u =

{
sin(x− y + 1/4) + x+ 1 in Ω1,

(x− y + 1/4)2 + x+ 1 in Ω2,
f =

{
2 ε1 sin(x− y + 1/4) in Ω1,

−4 ε2 in Ω2.

and get the Table 1 below.

Example 2:

Let Π = (−0.5,−0.5)× (0.5, 0.5) = Ω1 ∪Γ∪Ω2 , Γ : x2 + y2 = R2 , R = 1/4 as Figure
5. Set ε1 = 5, ε2 = 3 in Problem I and ∆x = ∆y = h in (7).
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We then use test functions:

u =

{
x3 − y3 in Ω1,

(x3 − y3)(x2 + y2)/R2 in Ω2,

f =

{
−6 ε1 (x− y) in Ω1,

−2 ε2 (11 x3 − 3 x2 y + 3 x y2 − 11 y3)/R2 in Ω2.

and get the Table 2 below.

In the table 1 and 2, we use the following notations. The ’maximum point’ (i, j)
means the mesh point where the muximum error occurs and
‖u− uh‖∞ = maxi,j |u(i h, j h)− ui,j |. Moreover ’ratio’ means the percentage of the
number of unknowns {wij} for the system of linear equations in Theorem 2 to the
total number of unknowns {uij} in (7).

mesh size ratio maximum point ‖u− uh‖∞
1/16 4.89% ( 6, 10) 6.232701× 10−5

1/32 2.39% ( 12, 20) 1.557993× 10−5

1/64 1.18% ( 24, 40) 3.894824× 10−6

1/128 0.59% ( 48, 80) 9.736942× 10−7

Table 1: Numerical result of example 1

mesh size ratio maximum point ‖u− uh‖∞
1/16 10.67% ( 4, 12) 7.426605× 10−3

1/32 4.58% ( 9, 19) 2.119219× 10−3

1/64 2.32% ( 28, 47) 8.459878× 10−4

1/128 1.12% ( 58, 95) 4.221186× 10−4

Table 2: Numerical result of example 2

Remark

Both examples show that the ’ratio’ is decreasing in proportion to mesh size. Hence
our method seems to be advantageous in the situation where the mesh size is very
small.
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16. Finite Difference Method with Fictitious
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Introduction

In this paper we shall consider the construction of the solution by the method of lines
coupled with a fictitious domain for the following Dirichlet problem (1) in a bounded
domain Ω of R2.

Problem I. For given functions f and g, find u in H2(Ω) such that{
− ∆u = f in Ω ,

u = g on ∂Ω .
(1)

Here f ∈ L2(Ω) , g ∈ H3/2(∂Ω) and Ω is a bounded domain in R2 with the smooth
boundary ∂Ω ( see Figure 1 ).

The method of lines for solving Problem I works well if Ω is a rectangular domain
since the finite difference solution is expressed explicitly by use of eigenvalues and
eigenvectors for the finite difference scheme([BGN70], [Nak65]). But one says that
this method seems difficult to be applied to the case where Ω is not a rectangular
domain. However the solution algorithm using the fictitious domain and the domain
decomposition has been developed recently ( [AKP95], [GPP94], [HH99], [FKK95],
[KK99], [MKM86]). Hence from this point of view we shall propose a numerical
algorithm by the method of lines coupled with a fictitious domain in this paper.

First of all, we embed Ω in a rectangular domain Π whose boundary ∂Π consists
of straight lines parallel to axes and set Ω1 = Π \ (Ω ∪ ∂Ω) ( see Figure 2 ). Then Π
is called a fictitious domain.

Ω

∂Ω

Figure 1: Figure 1

Ω1

Ω

∂Ω

Figure 2: ( Π = Ω ∪Ω1 )

Hereafter we shall construct the numerical algorithm for solving Poisson’s equa-
tion (1) in the fictitious domain Π. In §2, Problem I is reduced to a fictitious domain
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2Department of General Education, Kogakuin University, Tokyo, Japan. kita-
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formulation by use of the distribution theoretical approach. In §3, we shall discuss
characterizations of the solution for the fictitious domain formulation. In §4, a nu-
merical algorithm of the direct method of lines will be proposed and the results of
numerical computations will be shown.

A fictitious domain formulation of Problem I.

Using the trace operator γ in Sobolev space and distribution theoretical argument,
we deduce a fictitious domain formulation from Problem I. It is well-known that there
exists a function G ∈ H2(Ω) such that γG = g on ∂Ω because of g ∈ H3/2(∂Ω). Then
putting u = v +G, Problem I is reduced to

Problem II. Find v ∈ H2(Ω) such that{
− ∆v = f + ∆G in Ω,

v = 0 on ∂Ω.
(2)

Remark 1 Set u = v +G where v is a solution of Problem II. Then u is a unique
solution of Problem I. In this case, it is important to be independent of a choice of G
in Problem II ( see p.232 in [Miz73] ). And this fact will be used in §4.

We now define a function ṽ as follows: for any function v ∈ L2(Ω),{
ṽ(x) = v(x) (x ∈ Ω)
ṽ(x) = 0 (x ∈ R2\Ω).

(3)

Then for v ∈ H1
0 (Ω), ṽ belongs to H1(R2) and the equality

∂

∂xi
ṽ =

∂̃v

∂xi
(4)

holds( see p.187-189 in [Miz73]). Moreover operating ∆ to ṽ, we have the following
lemma which was shown by Kawarada([Kaw89]).

Lemma 1 Let v ∈ H2(Ω) ∩H1
0 (Ω). Then

∆̃v = ∆ṽ +
∂v

∂n
· δ(∂Ω) in the sense of distribution in R2, (5)

holds where n is the unit normal vector at ∂Ω, directed towards the outer of Ω and
δ(∂Ω) means the delta measure supported on ∂Ω .

By use of (3)-(5) and the definition of the weak derivative in the sense of the distri-
bution, we have

Theorem 1 Problem II is equivalent to the following Problem III. i.e.,

Problem III. Find ṽ ∈ H1
0 (Π) and w ∈ L2(∂Ω) such that

− ∆ṽ = ˜f +∆G+ w δ(∂Ω) in D′(Π) (6)
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Remark 2 ṽ ∈ H1
0 (Π) means that v ∈ H1

0 (Ω) and v ≡ 0 in Ω1.

Corollary 1 The solution {ṽ, w} of (6) has the following relation:

w =
∂v

∂n
on ∂Ω.

Remark 3 We call (6) a fictitious domain formulation of Problem II and this formu-
lation is essential for our discussions. It will be used to construct the finite difference
solution of Problem I in §4.

Characterization of the solution of the fictitious do-

main formulation (6)

Before proceeding to the construction of the finite difference scheme under the ficti-
tious domain formulation, we state the relation between (6) and the auxiliary domain
method ([Lio73]).

Proposition 1 The following statements are equivalent to each other.
(i) There exists a unique solution v ∈ H2(Ω) satisfying Problem II. And set w =

∂v
∂n .

(ii) There exists a solution {ṽ, w} ∈ H1
0 (Π)×L2(∂Ω) in Problem III which satisfies

− ∆ṽ = ˜f +∆G+ w δ(∂Ω) in D′(Π).

(iii) There exists a solution {v0, v1, w} ∈ H1
0 (Ω)×H1

0 (Ω1)× L2(∂Ω) such that

− ∆v0 = f +∆G in Ω ,

− ∆v1 = 0 in Ω1 ,

v0 = v1 = 0 on ∂Ω ,

∂v0
∂n

= w on ∂Ω ,

v1 = 0 on ∂Π.

(iv) There exists a solution {v, w} ∈ V × L2(∂Ω) satisfying∫
Π

∇v · ∇ϕ dx =
∫
Ω

(f +∆G)ϕ+
∫
∂Ω

ωϕ dΓ for any ϕ ∈ V (7)

where V = H1(Π) ∩H1
0 (Ω1).

Remark 4 ω in the form (7) is usually called a Lagrange multiplier .

Proposition 2 The solution ṽ of Problem III with g = 0 is the limit function of the
approximate solutions {vε0, vε1} as ε → 0:

− ∆vε0 = f in Ω ,

−ε2α∆vε1 + ε−2βvε1 = 0 in Ω1 ,

vε0 = vε1 on ∂Ω ,

∂vε0
∂n

= ε2α
∂vε1
∂n

on ∂Ω ,

vε1 = 0 on ∂Π
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for any α, β satisfying 0 < α < β.

Proof In fact, it is known that for α and β (0 < α < β),
vε0 → v0 in H1(Ω), vε1 → 0 in L2(Ω1), and v0 is the solution of Problem II

( see Theorem 10.1, pp. 78-82 in [Lio73]). Hence setting w = ∂v0
∂n , ṽ0 is exactly the

solution of Problem III by (iii) of Propostion 1.

Numerical Algorithm of the fictitious domain formu-

lation (6) by use of the direct method of lines

In this section, we shall propose a numerical algorithm of the direct method of lines
by use of the fictitious domain formulation (6).

Discretization of the fictitious domain formulation (6)

We first assume the fictitious domain Π given by

Π = { (x, y) | 0 < x < 1, 0 < y < 1 }, (8)

which consists of Ω and Ω1 where Ω1 = Π \Ω (see Figure 2).
While the set of grid points, Πh, is of the form

Πh = { (xi, yj) | 0 ≤ i ≤ m, 0 ≤ j ≤ m },

here xi = ih, yj = jh for a suitable spacing h = 1/m and P (i, j) = (xi, yj).
With each grid point (xi, yj) of Πh, we associate the cross line with center (xi, yj):

M
(
(xi, yj)

)
= { (xi + s, yj), s ∈ (−h

2
,
h

2
)} ∪ { (xi, yj + s), s ∈ (−h

2
,
h

2
)}.

We then define

Ω0
h = { (xi, yj) : (xi, yj) ∈ Πh, M((xi, yj)) ⊂ Ω },

Ω1
h = { (xi, yj) : (xi, yj) ∈ Πh, M((xi, yj)) ⊂ Ω1 },

∂Ω0
h = { (xi, yj) : (xi, yj) ∈ Πh,M((xi, yj)) ∩ ∂Ω �= φ },

∂Ω1
h = { (xi, yj) : (xi, yj) ∈ Πh, M((xi, yj)) ∩ ∂Ω1 �= φ }.

We then define for each i, j (0 ≤ i, j ≤ m),

Fi,j = F (xi, yj) =

{
f(xi, yj) for P (i, j) ∈ Ω0

h ,

0 otherwise .

Gi,j = G(xi, yj) =

{
g(xi, yj) for P (i, j) ∈ ∂Ω0

h

0 otherwise .

Here g(xi, yj) is defined as follows:
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(xi, yj)
hy

hx

B

A
�❤

g(xi, yj) =



g(xi, yj) if hx = 0 or hy = 0,
g(A) if 0 < hx ≤ h/2 and hy > h/2,
g(B) if hx > h/2 and 0 < hy ≤ h/2,
g(A)× hy + g(B)× hx

hx + hy
if 0 < hx, hy < h/2.

Then the finite difference approximation of (6) can be formulated as follows.
Find v(= {vi,j}) and w(= {wi,j}) such that

−(∆hv)(xi, yj) = Fi,j + (∆hG)(xi, yj) +
√
2

h
wi,j δ(Pi,j) for all (xi, yj) ∈ Πh (9)

where δ(Pi,j) = 1 if Pi,j ∈ ∂Ω0
h, δ(Pi,j) = 0 if Pi,j /∈ ∂Ω0

h and the finite difference
operator −∆h, approximating the Laplace operator −∆ is of the form

−(∆hv)(xi, yj) =
1
h2

[vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j ]

and vi,j = v(xi, yj) as usual.

Theorem 2 There exists a unique solution {vi,j} and {wi,j} of (9).

Proof In fact, (9) is rewritten as follows. Find v(= {vi,j}) and w(= {wi,j}) such
that

−(∆hv)(xi, yj) = Fi,j + (∆hG)(xi, yj) for all (xi, yj) ∈ Ω0
h (10)

v(xi, yj) = 0 for all (xi, yj) ∈ ∂Ω0
h, (11)

−(∆hv)(xi, yj) = 0 for all (xi, yj) ∈ Ω1
h (12)

v(xi, yj) = 0 for all (xi, yj) ∈ ∂Ω1
h, (13)

−(∆hv)(xi, yj) =
√
2

h
wi,j δ(Pi,m+j) for all (xi, yj) ∈ ∂Ω0

h. (14)

Then it follwos from these forms and the standard arguments in the finite difference
method ([Joh67]) that the Dirichlet problems (10)- (11) and (12)-(13) have unique
solutions vi,j on Πh\∂Ω0

h, from which and (14) , vi,j on ∂Ω0
h are uniquely determined.
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Now in order to give the matrix expression of (9), we shall introduce the following
notations. For each i(1 ≤ i ≤ m− 1),

Vi = (vi,1, · · · , vi,m−1)T , (15)

Wi = (ξi,1, · · · , ξi,m−1)T , (16)

Zi = h2 (Fi,1 + (∆h)G(xi, y1), · · · , Fi,m−1 + (∆h)G(xi, ym−1) )T (17)

Here we set ξi,j =
√
2 h wi,j (1 ≤ i, j ≤ m− 1).

Remark 5 If P (i, j) ∈ ∂Ω0
h, then vi,j = 0 and wi,j �= 0. If P (i, j) /∈ ∂Ω0

h, then
wi,j = 0.

We introduce the concept of the support of vectors which is used in our numerical
algorithm.

Definition 1. The support for an (m-1)-vector Vi(= {vi,j}) is defined by

supp(Vi) = {j | vi,j �= 0}.

Then Remark 5 shows that supp(Vi) ∩ supp(Wi) = φ and ξi,j = 0 if j /∈ supp(Wi).

Using the above notations, the discrete equation for (6) is to

find {Vi , Wi} (1 ≤ i ≤ m− 1) such that

A Vi = Vi−1 + Vi+1 +Wi + Zi (1 ≤ i ≤ m− 1) (18)

where V0 = 0 , Vm = 0 and A is (m− 1)× (m− 1) matrix as follows;

A =


4 −1
−1 4 ·

· · ·
· · −1

−1 4

 . (19)

Numerical algorithm by use of the direct method of lines

From now on we shall construct a numerical algorithm for (18). Using successive
eliminations by lines, we have

Theorem 3 For each k (1 ≤ k ≤ m− 1),

PVk =
k−1∑
i=1

D−1
m Dm−kDiPWi +

m−1∑
i=k

D−1
m DkDm−iPWi +Gk (20)

holds where Gk =
∑k−1
i=1 D−1

m Dm−kDiPZi +
∑m−1
i=k D−1

m DkDm−iPZi
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and the diagonal matrix Dk and the orthogonal matrix P are determined by

Dk =


ak1 0

ak2
. . .

0 akm−1


where the elements akj (1 ≤ j ≤ m− 1) are determined exactly by

akj =
sinh(kaj)
sinh(aj)

, aj = cosh−1(
λj
2
), λj = 2

(
2− cos(

j

m
π)
)
. (21)

and the orthogonal matrix P = [p1, p2, · · · , pm−1] consists of

pj =

√
2
m



sin( jmπ)
sin(2jmπ)

·
·
·

sin( (m−1)jm π)

 (1 ≤ j ≤ m− 1). (22)

Remark 6 By use of the property of the orthogonal matrix P , PVi and PWi are
expressed as follows:

PVi =
∑

j∈supp(Vi)
vi,j pj, PWi =

∑
j∈supp(Wi)

wi,j pj . (23)

Finally we propose a numerical algorithm which is deduced from Theorem 3 and (23).

Numerical algorithm:

(1st step) Calculate {ξi,j}(j ∈ supp(Wi), 1 ≤ i ≤ m− 1) such that

k−1∑
i=1

∑
j∈supp(Wi)

(
pl •D−1

m Dm−kDi pj
)

ξi,j +
m−1∑
i=k

∑
j∈supp(Wi)

(
pl •D−1

m DkDm−i pj
)

ξi,j

= −pl •Gk for all l ∈ supp(Wk).

(2nd step) Compute {vk,l} (l ∈ supp(Vk), 1 ≤ k ≤ m− 1) by

vk,l =
k−1∑
i=1

∑
j∈supp(Wi)

(
pl •D−1

m Dm−kDi pj
)

ξi,j +
m−1∑
i=k

∑
j∈supp(Wi)

(
pl •D−1

m DkDm−i pj
)

ξi,j

+ pl •Gk for all l ∈ supp(Vk).

Here • means the inner product in Rm−1.

Remark 7 This is a generalization of the corresponding one in [KK99].
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Numerical experiments

Using the numerical algorithm of Theorem 3, we consider the Dirichlet problem:{
− ∆u = 0 in Ω ,

u = U on ∂Ω .

Here
U(x, y)=sinh(πx/2) sin(πy/2) and Ω = {(x, y) | (x−1/2)2

(1/4)2 + (y−1/2)2
(1/8)2 < 1} that is

the same geometry as one in [GPP94].
Then we get the following table of the choice of different mesh interval dh as

for the maximum error (MaxEr) and the average error (AvEr) where MaxEr =
max{|U(ih, jh)−Ui,j| ; P (i, j) ∈ Ω0

h} and AvEr =
∑m−1
i,j=1{ |U(ih, jh)−Ui,j|; P (i, j) ∈

Ω0
h}/Nh ( Nh : the total number of the mesh points in Ω0

h).

dh = 1/n MaxEr AvEr
n = 16 9.430569× 10−3 3.588982× 10−3

n = 32 5.492716× 10−3 1.065969× 10−3

n = 64 5.258107× 10−3 6.026563× 10−4

n = 128 2.969270× 10−3 3.058067× 10−4

Concluding remarks

We have presented the numerical algorithm of the direct method of lines coupled with
the fictitious domain. This method which use the regular mesh is very simple and
easy to perform the calculation, and yet the above maximum errors are same as one
in the standard framework of the finite difference method in nonrectangular domain
([Joh67]). Therefore this argument shows that the finite difference method under the
regular mesh is able to be applied to the case of general domains with the help of the
fictitious domain.

Acknowledgment

The authors wish to thank Professor Hideo Kawarada, Chiba University, for his en-
couragement and useful comments.

References

[AKP95]Y. Achdou, Y.A. Kuznetsov, and O. Pironneau. Substructuring precondition-
ers for the q1 mortar element method. Numer.Math., 71:419–449, 1995.

[BGN70]B.L. Buzbee, G.H. Golub, and C.W. Nielson. On direct methods for solving
Poisson’s equations. SIAM J.Numer.Anal., 7(4):627–656, 1970.

[FKK95]H. Fujita, H. Kawahara, and H. Kawarada. Distribution theoretical approach
to fictitious domain method for Neumann problems. East-West J.Math., 3(2):111–
126, 1995.



FINITE DIFFERENCE METHOD WITH FICTITIOUS DOMAIN 161

[GPP94]R. Glowinski, T.W. Pan, and J. Periaux. A fictitious domain method for
Dirichlet problem and applications. Computer Methods in Applied Mechanics and
Engineering, 111:283–303, 1994.

[HH99]H. Han and Z. Huang. The direct method of lines for the numerical solutions
of interface problem. Comput. Meth. Appl. Mech. Engrg., 171(1-2):61–75, March
1999.

[Joh67]F. John. Lectures on Advanced Numerical Analysis. Gordon and Breach Sci-
ence, 1967.

[Kaw89]H. Kawarada. Free boundary problem-theory and numerical method. Tokyo
University Press, 1989.

[KK99]H. Koshigoe and K. Kitahara. Method of lines coupled with fictitious domain
for solving Poisson’s equation. Gakuto international series, Mathematical Sciences
and Applications, 12:233–242, 1999.

[Lio73]J.L. Lions. Perturbations singuliéres dans les problémes aux limites et en con-
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17. New Interface Conditions for Non-overlapping
Domain Decomposition Iterative Procedures

Ohin Kwon1 Dongwoo Sheen2

Introduction

A Seidel-type interface condition is considered for non-overlapping domain decompo-
sition iterative methods. With a suitable pseudo-energy defined on interfaces, the
convergence speed of the iterative scheme is shown to be as twice fast as that of the
Jacobi scheme. Our analysis is entirely independent of the governing model problems
of a specific type of partial differential equations, but depends only on the scheme of
updating interface data. By this, our analysis covers Seidel-type schemes for a general
class of problems, such as elliptic, Helmholtz, Maxwell, and elasticity problems, etc.
In order to avoid the sequential nature of Seidel schemes and to implement them on
parallel computers, red-black Gauss-Seidel schemes are also considered with equivalent
efficiency to Seidel schemes.

Concerning domain decomposition iterative methods, P.-L. Lions [Lio88, Lio90]
investigated the convergence properties by taking a suitable pseudo-energy with which
he was able to show iterative solutions converge. This idea has been applied to a
more difficult Helmholtz problem by Després [Des91, BD97]. An improved variant
of Lions’s method is proposed by Q. Deng and its convergence is analyzed in the
Sobolev H1 norm [Den97]. Exploiting the structure of mixed finite element, Douglas
et al. obtained a more precise convergence rate by a spectral radius estimation of
the iterative solution operator [DPRW93]. More efficient iterative schemes, such as
Seidel-type and under-relaxation type domain decomposition iterative methods for
elliptic, Helmholtz and electromagnetic problems have been considered in [CGJ98,
CDJP97, DM97, Fen97, Gha97], and Seidel-type approaches based on nonconforming
finite elements [DSSY99] were used in [HKS99, Kwo99, KS99] with estimations of
spectral radii obtained. In this paper we show that the Seidel-schemes are exactly
twice faster than the corresponding Jacobi-schemes.

1Department of Mathematics, Seoul National University, Seoul 151–742, Korea; E-mail: oik-
won@math.snu.ac.kr

2Department of Mathematics, Seoul National University, Seoul 151–742, Korea; E-mail:
sheen@math.snu.ac.kr, http://www.math.snu.ac.kr/˜ sheen; This work was partially supported by
Lotte Fellowship, and KOSEF 97-0701-01-01-3.
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Domain decomposition iterative procedure

A model problem

Let Ω be a domain in RN , N = 2, 3, with the boundary Γ = ∂Ω. Let us first consider
the following model problem:

−∇ · (A∇u) + Bu = f in Ω, ν ·A∇u+ αu = g on Γ, (1)

where ν is the unit outward normal vector to ∂Ω. The coefficients A = A(x),B =
B(x) = BR + iBI , and α = α(x) = αR + iαI are assumed to satisfy

0 < A0|ξ|2 ≤ Ajk(x)ξk ξ̄j ≤ A1|ξ|2 < ∞,

|B(x)| < B1 < ∞, |α(x)| < B2 < ∞.

Notice that (1) covers the case of Helmholtz equation and (1) may be regarded as
a general form of first-order absorbing boundary condition.

Non-overlapping domain decomposition iterative procedure

Let {Ωj : j = 1, · · · , J} be a non-overlapping decomposition of Ω such that

Ω̄ = ∪Jj=1Ω̄j , Ωj ∩ Ωk = ∅, j �= k,

and set

Γj = ∂Ω ∩ ∂Ωj , Γjk = Γkj = ∂Ωj ∩ ∂Ωk.

Denote by vj := v|Ωj the restriction of a function v to Ωj for all j, and set

Vj = H1(Ωj) ∀j; V = {v
∣∣ v|Ωj ∈ Vj , ∀j};

Λ = {w
∣∣ w|Γjk = TrΓjk(wj) ∈ H−1/2(Γjk) ∀k ∀j},

where Hs(Ω),Hs(Ωj), s ∈ R, are the usual complex-valued Sobolev spaces and TrΓjk
is the trace operator to Γjk.

Then the domain decomposition iterative procedure for solving (1) is as follows.
1. Initialization Step. An initial approximation u0 ∈ V .
2. Iterative Step. For n = 1, 2, · · · , solve iteratively the subdomain problems

for unj , j = 1, · · · , J :

−∇ · (A∇unj ) + Bunj = fj in Ωj , (2)
νj · A∇unj + αunj = gj on Γj , (3)

with the interface conditions
νj · A∇unj + βunj = −νk ·A∇un−1k + βun−1k on Γjk, ∀k, (4)

where νj is the unit outward normal vector to ∂Ωj , and β is a matching parameter
such that β|Γjk = β|Γkj ∀k ∀j.
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The weak problem for (2) is then to find un ∈ V such that

aj(unj , ϕ) +
∑
k

〈βunj , ϕ〉Γjk = Fj(ϕ) +
∑
k

〈−νk · A∇un−1k + βun−1k , ϕ〉Γkj , ϕ ∈ Vj ,

(5)

where

aj(uj , ϕ) := (A∇uj ,∇ϕ)j +
(
Buj , ϕ

)
j
+ 〈αuj , ϕ〉Γj ,

Fj(ϕ) := (fj , ϕ) + 〈gj , ϕ〉Γj ,

with (·, ·)j and 〈·, ·〉Γjk being the L2(Ωj) and L2(Γjk) inner products, respectively.
For each n, denote by λn ∈ Λ the oblique normal traces:

λnjk := νj · A∇unj , Γjk ∀k.

Then the interface condition (4) can be equivalently written in the form

λnjk + βunj = −λn−1kj + βun−1k , Γjk ∀k, (6)

and the weak formulation (5) takes the form

aj(unj , ϕ) +
∑
k

〈βunj , ϕ〉Γjk = Fj(ϕ) +
∑
k

〈βun−1k + βun−1k , ϕ〉Γjk , ϕ ∈ Vj . (7)

Each Iterative Step consists of the following two substeps:
Substep 2a. Solve the subdomain problems (7) for un ∈ V ;
Substep 2b. Update λn ∈ Λ by (6).

The updating procedure (6) may be regarded as a Jacobi-type scheme with which
subdomain problems (7) for all j can be easily parallelizable. Can we have a Seidel
type (Gauss-Seidel or red-black Gausss-Seidel type) scheme for the updating procedure
which guarantees faster convergence than the Jacobi-type scheme? The answer is
affirmatively given. It will be clear from Remark 1 that Gauss-Seidel schemes will
be as twice fast as the corresponding Jacobi ones, and from the next section that,
by exploiting the red-black procedure, Gauss-Seidel schemes will guarantee such fast
convergence when implemented in parallel.

Seidel-type Domain Decomposition Iterative Method

Gauss-Seidel iteration procedure

The Seidel-type domain decomposition iterative procedure is obtained by replacing
the interface condition (4) by

νj · A∇unj + βunj =
{

−νk ·A∇un−1k + βun−1k , j < k,
−νk ·A∇unk + βunk , j > k,

on Γjk, ∀k, (8)
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and hence (7) by

aj(unj ,∇ϕ)j +
∑
k

〈βunj , ϕ〉Γjk (9)

= Fj(ϕ) +
{ ∑

k〈−λn−1kj + βun−1k , ϕ〉Γjk , j < k,∑
k〈−λnkj + βunk , ϕ〉Γjk , j > k.

Let ũj = u|Ωj and λ̃jk = −νj ·A∇ũj |Γjk so that ũj and λ̃jk satisfy the local equations

aj(∇ũj ,∇ϕ)j −
∑
k

〈λ̃jk, ϕ〉Γjk = Fj(ϕ), ϕ ∈ Vj ,

λ̃jk = −λ̃kj − β(ũj − ũk), Γjk ∀k.

We will show the convergence of (unj , λ
n
jk) to (ũj, λ̃jk). Set

enj = unj − ũj , µnjk = λnjk − λ̃jk.

From (9) and (10), we have the error equations: for all j,

aj(∇enj ,∇ϕ)−
∑
k

〈µnjk, ϕ〉Γjk = 0, ϕ ∈ Vj , (10)

µnjk =
{

−µn−1kj − β(enj − en−1k ), j < k,

−µnkj − β(enj − enk), j > k,
on Γjk, ∀k. (11)

The choice v = enj in (10) gives

aj(∇enj ,∇enj )−
∑
k

〈µnjk, enj 〉Γjk = 0. (12)

We rewrite (11) as follows:

µnjk = −µn−1kj − β(enj − en−1k ), j < k,

µnjk = −µnkj − β(enj − enk ), j > k, (13)

= µn−1jk + β(enk − en−1j )− β(enj − enk)

= µn−1jk − βenj + 2βenk − βen−1j .

This motivates us to define the pseudo-energy for the Seidel-type iterative procedure
by

Rn := R(en, µn) =
∑
j<k

∣∣µnjk + βenj
∣∣
0,Γjk

+
∑
j>k

∣∣µnjk + β(enj − 2enk )
∣∣
0,Γjk

. (14)

We observe that by (13), for j > k,

µnjk + β(enj − 2enk) = −µnkj − βenk ,

which implies that Rn given by (14) can be equivalently put in the simpler form:

Rn(e, µ) =
∑
j<k

∣∣µnjk + βenj
∣∣
0,Γjk

+
∑
j>k

∣∣µnkj + βenk
∣∣
0,Γjk

. (15)
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Theorem 1 For a given (u0, λ0) ∈ V ×Λ, if iterative solutions (un, λn) ∈ V ×Λ are
computed by using (9), the pseudo-energy given by (15) satisfies

Rn(e, µ) = Rn−1(e, µ)− 8Re
∑
j,k

〈µn−1jk , βen−1j 〉Γjk .

Proof. Stating from (15), by suitable swapping of the indices j and k, we have

Rn = 2
∑
j<k

∣∣µnjk + βenj
∣∣
0,Γjk

= 2
∑
j<k

∣∣∣µn−1kj − βen−1k

∣∣∣
0,Γjk

by (13)

= 2
∑
j>k

∣∣∣µn−1jk − βen−1j

∣∣∣
0,Γjk

= 2
∑
j>k

∣∣∣−µn−1kj + β(en−1k − 2en−1j )
∣∣∣
0,Γjk

by (13)

= 2
∑
j<k

∣∣∣µn−1jk − β(en−1j − 2en−1k )
∣∣∣
0,Γjk

= 2
∑
j<k

∣∣∣µn−1jk + βen−1j − 2(en−1j − βen−1k )
∣∣∣
0,Γjk

= Rn−1 − 8Re
∑
j<k

〈
µn−1jk + βen−1j , β(en−1j − en−1k )

〉
Γjk

+8
∑
j<k

∣∣β(en−1j − en−1k )
∣∣
0,Γjk

= Rn−1 − 8Re
∑
j<k

〈
µn−1jk + βen−1k , β(en−1j − en−1k )

〉
Γjk

= Rn−1 − 8Re
∑
j,k

〈
µn−1jk , βen−1j

〉
Γjk

since

Re

∑
j<k

〈
−βen−1k , β(en−1j − en−1k )

〉
Γjk

+
∑
j<k

〈
µn−1jk , βen−1k

〉
Γjk


= Re

∑
j<k

〈
βen−1k ,−β(en−1j − en−1k ) + µn−1jk

〉
Γjk

= Re
∑
j>k

〈
βen−1j , β(en−1j − en−1k ) + µn−1kj

〉
Γjk

= −Re
∑
j>k

〈
βen−1j , µn−1jk

〉
Γjk

by (13)

= −Re
∑
j>k

〈
µn−1jk , βen−1j

〉
Γjk

.
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Remark 1 The reader should observe that the form of pseudo-energy defined in (14)
or (15) and both Theorem 1 and its proof are entirely independent of the sesquilinear
form a(·, ·), and hence Theorem 1 is independent of governing model problem. (Our
result depends only on the interface condition (8).) An implication of this observation
is that Theorem 1 is valid for a wide range of problems, such as Maxwell and elasticity
problems, obviously extending our model problem introduced in the previous section.

Theorem 2 The energy Rn can be expressed as

Rn(e, µ) = R0(e, µ)− 8β
n−1∑
k=1

J∑
j=1

Reaj(ekj , βe
k
j )j .

Now, take the real part in (12) to obtain

Re
∑
k

〈µnjk, ej〉Γjk = Reaj(∇enj ,∇enj ).

and choose β = βR + iβI with positive real and nonnegative imaginary parts. Then,
under additional assumptions on BI and αI such that BI ≥ 0 and αI ≥ 0, which are
indeed physically valid, we have

Reaj(enj , βe
n
j )j = βR

[
(A∇enj ,∇enj )j + (BRenj , e

n
j )j + 〈αRenj , enj 〉Γ

]
+βI

[
(BIenj , e

n
j )j + 〈αIenj , enj 〉Γj

]
> 0.

In this case, we can conclude from (2) that enj tends to zero as n → ∞.

Remark 2 For the Jacobi case with the same form of energy as in (15), it is well-
known after Després [Des91] that the corresponding decay relations to Theorems 1 and
2 have the form

Rn(e, µ) = Rn−1(e, µ)− 4Re
∑
j,k

〈µn−1jk , βen−1j 〉Γjk ,

and

Rn(e, µ) = R0(e, µ)− 4β
n−1∑
k=1

J∑
j=1

Reaj(ekj , βe
k
j )j .

Therefore we conclude that the Seidel scheme is exactly as twice fast as the Jacobi
scheme.

Red-black Gauss-Seidel procedure

Jacobi-type iterative algorithms are easily parallelizable, but Seidel-type are not easily
parallelizable. In order to parallelize the introduced Seidel scheme, we propose a red-
black Seidel scheme with efficiency equivalent to the Seidel-type one. For this, divide
the subdomain indices into the two parts JR and JB, so that

Ω̄ =
[
∪j∈JRΩ̄j

] ⋃[
∪j∈JB Ω̄j

]
, Ωj ∩j �=k Ωk = ∅,
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and every element Ωj , j ∈ JR, is not adjacent to any element Ωk, k ∈ JB.
With an initialization, the red-black iteration scheme is then the altenations of the

following steps

1. ∀j ∈ JR, solve (7) for un ∈ V with

λnjk = −λn−1kj + β
(
unj (ξjk)− un−1k (ξjk)

)
2. ∀j ∈ JB, solve (7) for un ∈ V with

λnjk = −λnkj + β
(
unj (ξjk)− unk (ξjk)

)
.

The pseudo-energy for the red-black Seidel-type iterative procedure takes the sim-
ilar form as (14) or (15) for errors

Rn := R(en, µn) =
∑
j∈JR

∣∣µnjk + βenj
∣∣
0,Γjk

+
∑
j∈JB

∣∣µnjk + β(enj − 2βenk )
∣∣
0,Γjk

=
∑
j∈JR

∣∣µnjk + βenj
∣∣
0,Γjk

+
∑
k∈JB

∣∣µnkj + βenk
∣∣
0,Γjk

The same arguments as the Gauss-Seidel case lead the analogous results as Theo-
rems 1 and 2, and Remark 1.
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18. On the Interface and Two-Level Preconditioners
in Newton-Schwarz Method

Daniel Lee1

Introduction

This paper is concerned with parallel computation in solving the convection-diffusion
equation and the incompressible Navier-Stokes equation via Newton-Schwarz method,
a nonlinear domain decomposition (DD) method. Various preconditioners are inves-
tigated here. An interface problem is tackled as a preconditioner for nonlinear block
Jacobi DD approach, with an optional fine level interface problem solved as further
preconditioner. Also a (global) coarse level preconditioner is considered. Examined
also is the relaxation type preconditioner. Such preconditioned nonlinear DD methods
exhibit impressive improvement over the basic non-preconditioned parallel Newton-
Jacobi method.

A general review on Newton-Schwarz method is [GEMT98]. Our setup has the
advantages of both the overlapped and the nonoverlap DD approach. The subdomain
variables form a (nonoverlap) partition of the whole global system of equations. Solv-
ing the interface problem is regarded as a preconditioner to all subproblems. We note
that the interface variables were excluded from subproblems in [LC98].

We describe in later sections the problem and solution procedure, the test cases
and results, and a brief conclusion.

Solution Procedure and Newton-Schwarz

Following previous work [LC98], boundary-fitted cell-center type finite volumes with
collocated grids were assumed for geometry discretization. Test problems ([Wan89])
are considered in integral form, involving properly defined numerical fluxes. All the
definite integrals are further discretized ([Lee99], [JYL99]) as weighted averages in-
volving the primitive (and the flux) variables at neighboring cells. To double-check
our numerical observation, we solved both the coupled system, consisting of the con-
tinuity and the momentum equations, and also in a decoupled way (PISO, [Iss85]) for
the system consisting of the momentum and the Pressure-Poisson equation. We tested
also the Burgers equation. The discrete global nonlinear system is decomposed into
partition of (nonoverlap) blocks of equations. Basic Parallel Newton-Jacobi (PNJ)
method can be then carried out accordingly.

Interface Preconditioner

We regard an interface preconditioner as solving the interface problem on the interface
B, before each nonlinear block Jacobi iteration. We prepose the following for further
discussion.

1National Center for High-Performance Computing, Taiwan, R.O.C., c00dle00@nchc.gov.tw



172 LEE

Procedure IPPNJ ( Interface-Preconditioned Parallel Newton-
Jacobi ) :

Do While
{∣∣Xnew −Xold

∣∣ ≥ global-tolerance
}

Step 1 : Solve the discrete algebraic nonlinear system Fi(x) = 0, x ∈ Ωi
for all subdomain problems in parallel.

Step 2a : Set up the interface problem, with infomation communicated
from each subdomain.

Step 2b : Solve the nonlinear system for the interface problem.
FB(x) = 0, x ∈ B.

Step 2c : Update via communication the interior boundary conditions
for all subproblems with the interface variables just solved.

End Do

The interface problem is relatively small in size, easier to solve by an approximate
matrix-free Newton-GMRes method [BS90], and the solution is supposed to offer more
accurate interior boundary condition at the interface variables in an efficient way. This
is the spirit of IPPNJ. That is, acceleration on (only) the interface variables yields
a preconditioner for subsequent DD iterations. In implementation the interface pre-
conditioner is squeezed into after and before two consecutive block Jacobi iterations.
We mention that, in our setup, an interface-preconditioned Newton-Schwarz method
corresponds actually to a mixing of nonlinear analogue of Schwarz type and Schur-
complement type linear DD methods.

Preconditioned Block Newton-Schwarz Procedure

For general application, we recast the discrete system as Φ(u) = rhs, where Φ =
(Φ1, · · , Φnd)

T , u = (u1, · ·, und)
T , with ui ∈ Rds ≡ Xs . Here s denotes a

subdomain (and a subproblem), ds denotes the dimension of subproblem (on subdo-
mains). We assume equal size of the subproblems for simplicity. The space Xs is
therefore where a solution to the discrete subproblem resides. Consider the subprob-
lems Φ̃i(ũi) = r̃hsi and J(Φi, ui) = ∂Φi

∂ui
. We assume regularity of such portion of the

global Jacobian. We describe a more general version of previous procedure in details
with these notation, based on partition of nonoverlap subdomains and some certain
order of the equations and variables.
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Procedure PPNJ ( Preconditioned Parallel Newton-Jacobi ) :

Do while (global convergence achieved or maximum DD iteration exceeded)
1. Do i = 1, · · · , nd (in parallel)

a. set ũi by u and canonical projection
b. set r̃hsi
c. obtain an approximated solution to Φ̃i(ũi) = r̃hsi
d. evaluate for local convergence the residual r̃i := r̃hsi − Φ̃i(ũi)
e. evaluate for local convergence the difference diff i := ‖ũi − ũisav‖

End Do
2. Update global u by communicating the ũi among relevant processors
3. Check global convergence by evaluating maxi diff i or ‖Φ(u)‖ on Xnd

ns
4. If global convergence is satisfied, then break. Otherwise

a. Do an optional accelerator or preconditioner, such as interface
preconditioner or global coarse level preconditioner.

b. Update interface variables by communication, and approximation
schemes in case of a two level preconditioner.

5. Update the DD iteration counter.
End Do

Other Preconditioners

The solution procedure in solving the interface problem and all subproblems are iden-
tical by default. However, the interface problem can be solved optionally with a
fine-level interface preconditioner. This is affordable if the two level setup for the in-
terface problem remains relatively cheaper than the other subproblem both in storage
and computation. It is therefore a natural iterative refinement procedure based on
the consideration of load balance. A global coarse level preconditioner is also a good
choice, hopefully produces global information update as motivated by the linear DD
theory. Relaxation type strategy, in simple or hybrid form, can be used to accelerate
the convergence on the interface variables, as to provide an interface preconditioner
to the global problem. Furthermore, one can even over-relax the setup of the interface
problems resulting in an accelerated interface preconditioner [LY00].

Numerical Results and Discussions

All cases were tested on a PC cluster at NCHC. The global region consists of nine
subdomains in cases 1-5, and eight in case 6. Reynolds number is 1 in case 1, and 10
in cases 2-6. More about test is given in Table 1. The cpu time spent is shown in
Table 2. Only partial results in accuracy and convergence are shown ( Figures 1-12
), due to limitation of space. Four-subdomain cases are also tested, showing behavior
similar to what we described below.

Case 1 : Four DD methods are tested : Parallel Newton-Jacobi (PNJ), Interface-
Preconditioned Parallel Newton-Jacobi (IPPNJ), Coarse-level-
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Preconditioned Parallel Newton-Jacobi (CPPNJ), and Fine-level Interface-
Preconditioned Parallel Newton-Jacobi (FIPPNJ). Convergence up to nine digits is
enforced. The maximum DD-iterations is set to 100 to examine the stability. Although
in practice this may be much smaller.

Shown in Figures 1-2 are the accuracy and convergence in relative sense. All yield
very stable discrete dynamics. CPPNJ the fastest while PNJ the slowest. IPPNJ
and FIPPNJ converges at about the same rate. About accuracy, CPPNJ is the worst
and IPPNJ achieves the same accuracy both in absolute and relative sense, and takes
about half iterations as PNJ. This is similar to what bewteen classical Gauss-Seidel
and Jacobi iterations. We point out that the precision achieved with the two-level
preconditioners depend certainly on local interpolation or approximation, and are
confined therefore by the spatial grid resolution. It is witnessed that FIPPNJ saturated
at some earlier stage, and was forced therefore to iterate 100 iterations. This hurt in
the cpu-time contest (Table 2). Although, the convergence history does justify the
stableness in computation. The FIPPNJ result seems not as appealing as that of
IPPNJ. Therefore FIPPNJ is excluded in other test cases below.

Case 2 : PNJ is validated and applied to both the decoupled and the coupled
approach, i.e., with or without PISO. Then we will test later in case 4 our proposed
preconditioners within these two different approaches. Our algorithms and implemen-
tation is justified ( Figure 3 and 4 ). The accuracy when without PISO is only slightly
inferior to that with PISO. The time spent in computation of third order derivatives
in Pressure-Poisson equation for the PISO formulation seems a disadvantage.

Case 3 : IPPNJ is applied with or without PISO. The findings, Figures 5 and 6,
are similar to case 2.

Case 4 : The coupled system without PISO is solved with PNJ, IPPNJ and CPPNJ
methods. CPPNJ is the most accurate and IPPNJ also outperforms PNJ (Figure 7 ).
The convergence in the relatively severe maximum norm ( Figure 8 ), although not as
smooth as with the normalized two-norm (not shown), does indicate the relative spirits
in these methods. Very heavy communications are seen on the coarse preconditioner,
in the pre- and post- data processing in solving the global coarse problem. Therefore
we exempted CPPNJ from subsequent cases.

Case 5 : Here we solve with PISO and compare PNJ and IPPNJ. The latter
converges faster and is more accurate ( Figures 9-10 ).

Case 6 : Relaxation type preconditioners are examined with various relaxation
parameters. The kind of monotonicity of the effectiveness in accuracy ( Figure 12
) and convergence ( Figure 11 ) is obviously seen. More thoughts along this line,
including combination of different strategy and even working on over-relaxed interface
problem, is investigated in [LY00].

Conclusion

Several preconditioners are designed for the interface problem in a Newton-Schwarz ap-
proach. With these the basic parallel block Jacobi precodure either converges faster or
is more accurate. We found that IPPNJ converges faster while achieving same or bet-
ter accuracy and costs less computation time, and that CPPNJ and FIPPNJ achieve
moderate precision and converge faster in terms of the number of DD iterations, but
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both with apparently heavier communication overhead. The choice certainly depends
on, among others, the spatial resolution and the required precision in computed re-
sults. We believe future technology improvement in system architecture will resolve
the communication inefficiency to a large extent.
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Table 1: Parameters of test runs with supremum norm; range of x, y and z in cases 1
and 6 is (0.0, 1.0); range of x and y in cases 2-5 is (1.0, 2.0).

case eq. DD it ht ht CFL nx, ny, nz PISO method
1 2D Burgers 100 1e-3 9.00e-06 60, 60 0 various
2 2D NS 20 1e-3 5.62e-06 240, 240 0, 1 PNJ
3 2D NS 20 1e-3 5.62e-06 240, 240 0, 1 IPPNJ
4 2D NS 20 1e-3 5.62e-06 240, 240 0 various
5 2D NS 20 1e-3 5.62e-06 240, 240 1 various
6 3D Burgers 50 1e-2 4.16e-03 10, 10, 10 0 PNJ

Table 2: Cpu time in cases 1-6.

case iter total total other total
sub. solver sub. solver overhead cpu time

1 PNJ 81 4.05e+02 4.52e+02 9.00e+00 8.66e+02
IPPNJ 38 2.43e+02 2.07e+02 3.00e+00 4.53e+02
CPPNJ 11 1.01e+02 6.96e+01 2.40e+00 1.81e+02
FIPPNJ 100 1.88e+03 4.34e+02 6.00e+00 2.32e+03

2 PISO 0 20 2.90e+03 3.28e+03 8.00e+01 6.26e+03
PISO 1 20 3.42e+03 1.34e+04 8.00e+01 1.69e+04

3 PISO 0 20 2.50e+03 2.78e+03 8.00e+01 5.36e+03
PISO 1 20 4.56e+03 2.38e+04 1.50e+02 2.84e+04

4 PNJ 20 2.86e+03 3.22e+03 9.00e+01 6.15e+03
IPPNJ 20 2.44e+03 2.74e+03 9.00e+01 5.25e+03
CPPNJ 20 1.23e+04 3.48e+03 1.20e+02 1.59e+04

5 PNJ 20 3.34e+03 1.34e+04 1.10e+02 1.69e+04
IPPNJ 20 1.52e+04 1.44e+04 1.00e+02 2.97e+04

6 without SOR 10 6.07e+00 2.28e+01 8.73e+00 3.76e+01
over with 1.1 9 4.86e+00 2.00e+01 8.24e+00 3.31e+01
over with 1.2 10 5.52e+00 2.25e+01 8.48e+00 3.65e+01
over with 1.3 12 5.32e+00 2.68e+01 9.19e+00 4.12e+01
over with 1.4 19 9.39e+00 4.31e+01 1.21e+01 6.46e+01
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Figure 1: Relative accuracy in solving
Burgers’ eq. in case 1.
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Figure 2: Relative convergence in solving
Burgers’ eq. in case 1.
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PISO in case 2.
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out preconditioner in case 4.
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Appendix

Analytic descriptions of the equations and solutions for our test are given here for easy
reference. Dirichlet type boundary data are adopted for the test runs in this paper.
We refer to [Wan89] for more explanation on the equations.

(1) 2D Burgers’ equation:

ut + u(ux + uy)−
1
Re

(uxx + uyy) = 0, (1)

and one solution is :

u =
1

1 + e
Re(2x+2y−2t)

4

. (2)

(2) 2D Navier-Stokes equation:
Continuity equation:

ux + vy = 0, (3)

X-momentum equation:

ut + uux + vuy = −px +
1
Re

(uxx + uyy), (4)

Y-momentum equation:

vt + uvx + vvy = −pv +
1
Re

(vxx + vyy), (5)

and one solution is :

u = −cos(x) ∗ sin(y) ∗ e
−2t
Re , (6)

v = sin(x) ∗ cos(y) ∗ e
−2t
Re , (7)

p = 10.0 − 1
4
(cos(2x) + cos(2y)) ∗ e

−4t
Re ). (8)

(3) 3D Burgers’ equation:

ut + u(ux + uy + uz)−
1
Re

(uxx + uyy + uzz) = 0, (9)

and one solution is :

u =
1

1 + e
Re(2x+2y+2z−3t)

4

. (10)
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19. A Mortar Finite Element Method for Plate
Problems

L. Marcinkowski 1

Introduction

In the paper we discuss two versions of mortar finite element methods applied to
clamped plate problems. The problems are approximated by the nonconforming Mor-
ley and Adini element methods in each subregion into which the original region of the
discussed problems have been partitioned. On the interfaces between subdomains and
at crosspoints of subregions some continuity conditions are imposed.

The main results of the paper are the proof of the solvability of the discrete prob-
lems and their error bounds.

The mortar method is a domain decomposition method that allow us to use
discretizations of different type with independent discretizations parameters in non-
overlapping subdomains, see e.g. [BMP94], [BM97], [BB99] for a general presentation
of the mortar method in the two and three dimensions for elliptic boundary value
problems of second order.

In the paper mortar element methods for the locally nonconforming discretizations
of the clamped plate problems are discussed. In [Lac98] there are formulated results
for mortar method with nonconforming discrete Kirchoff triangle elements (DKT) for
a similar problem while in [Bel97] the mortar method for the biharmonic problem is
analyzed in the case of local spectral discretizations. The paper is based on the results
which are obtained in the PhD thesis of the author, see [Mar99b], cf. also [Mar99a].

This paper is concerned with the mortar method where locally in the subdomains
the nonconforming Adini and Morley plate finite elements are used. We restrict our-
selves to the geometrically conforming version of the mortar method, i.e. the local
substructures form a coarse triangulation. We first introduce independent local dis-
cretizations for the two discussed elements in each subdomain. The 2-D triangulations
of two neighboring subregions do not necessarily match on their common interface,
cf. Figure 1. The mortar technique for nonconforming plate elements which is dis-
cussed here requires the continuity of the solution at the vertices of subdomains and
that the solution on two neighboring subdomains satisfies two mortar conditions of
the L2 type on their common interface. The form of these conditions depends on the
local discretization methods and in some cases these conditions combine interpolants
defined locally on interfaces. It follows from the fact that the respective traces of local
functions also depend on the values of respective degrees of freedom at interior nodal
points. We give error bounds for the both mortar methods. The results obtained in
this paper can be generalized to analogous mortar discretizations of simply supported
plate problems.

1Department of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland,
E-mail: lmarcin@mimuw.edu.pl. This work was partially supported by Polish Scientific Grant
237/PO3/99/16.
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Ωk Ωl

Ωt

δm,s

Ωs

γm,t

Figure 1: Nonmatching meshes.

Discrete problems

Clamped plate problem

Let Ω be a polygonal domain in R2. The differential problem is to find u∗ ∈ H2
0 (Ω)

such that

a(u∗, v) =
∫
Ω

fv dx ∀v ∈ H2
0 (Ω), (1)

where u∗ is the displacement, f ∈ L2(Ω) is the body force,

a(u, v) =
∫
Ω

[*u*v + (1− ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

Here

H2
0 (Ω) = {v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω},

∂n is the normal unit derivative outward to ∂Ω, and uxixj := DiDju for i, j = 1, 2.
The Poisson ratio ν satisfies 0 < ν < 1/2. It is well known that this problem has a
unique solution, see e.g. [Cia91].

Let Ω be a union of non-overlapping polygonal subdomains that are arbitrary for
the Morley element and are rectangles for the Adini element, i.e. Ω =

⋃N
k=1Ωk, Ωk ∩

Ωl = ∅, k �= l. We assume that the intersection of boundaries of two different
subdomains ∂Ωk ∩∂Ωl, k �= l, is either the empty set, a vertex or a common edge. We
assume the shape regularity of that decomposition, cf. [BS94].
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Figure 2: Adini element.

We triangulate each subdomain Ωk into nonoverlapping rectangles for the Adini
element and into triangles for the Morley one. The rectangles (or triangles) of this
triangulation are denoted by τi and called elements. We assume that the arising
fine triangulation Th(Ωk) is quasiuniform with parameter hk = max( diam τ) for
τ ∈ Th(Ωk), cf. [BS94]. The triangulations for different Ωk are independent and can
be nonmatching across interfaces, i.e. on common edges of two subdomains, in general,
cf. Figure 1.

Adini element

In this subsection, we introduce a mortar method that locally uses the Adini element,
cf. Chapter 7, Section 49, p.298 in [Cia91]. The local finite element space XA

h (Ωk) of
the Adini element is defined by

XA
h (Ωk) = {v ∈ L2(Ωk) : v|τ ∈ P3(τ) ⊕ span{x31x2, x1x32} for τ ∈ Th(Ωk),

v, vx1 , vx2 continuous at the vertices of τ and

v(a) = vx1(a) = vx2(a) = 0 for a vertex a ∈ ∂Ωk ∩ ∂Ω}

where τ ∈ Th(Ωk) is a rectangular element, cf. Figure 2.
We also introduce the global space XA

h (Ω) =
∏
kX

A
h (Ωk). For each interface

Γkl = ∂Ωk ∩ ∂Ωl, we choose one side as a master denoted by γm,k ⊂ ∂Ωk and the
second one as a slave δm,l ⊂ ∂Ωl if hk ≤ hl, see Figure 1. This assumption is necessary
for the proof of some technical results and is due to the fact that any local finite element
function is not sufficiently regular.

We introduce additional auxiliary spaces on each slave (nonmortar) δm,l ⊂ ∂Ωl.
Let the first one denoted by Mhl

1,3(δm,l) be the space of C1 smooth functions that are
piecewise cubic except for two elements that touch the ends of δm,l, where are piecewise
linear, and let the second one Mhl

0,1(δm,l) be the space of continuous piecewise linear
functions which are constant on the two elements which touch the ends of δm,l.
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We say that uk ∈ XA
h (Ωk) and ul ∈ XA

h (Ωl) for ∂Ωl∩∂Ωk = Γkl satisfy the mortar
conditions if ∫

δm

(uk − ul)ψ ds = 0 ∀ψ ∈ Mhl
1,3(δm,l), (2)

∫
δm

(Ihk∂nuk − Ihl∂nul)ψ ds = 0 ∀ψ ∈ Mhl
0,1(δm,l), (3)

where Ihl , Ihk are the standard piecewise linear interpolants onto the hl and hk meshes
of δm,l and γm,k, respectively. Note that Ihi∂nui, for i = k, l, equals the normal
derivative of piecewise bilinear interpolant defined over Ωi by the values of ∂nui at
the vertices of rectangular elements of Th(Ωi).

We now define the discrete space V Ah as the subspace of XA
h (Ω) formed by functions

which satisfy the mortar conditions (2) and (3) on all slave sides and are continuous
at all crosspoints.

The discretization of (1) using V Ah is of the form:
Find uAh ∈ V Ah such that

ah(uAh , v) =
∫
Ω

fv dx ∀v ∈ V Ah , (4)

where ah(u, v) =
∑N
k=1 ah,k(u, v) and

ah,k(u, v) =
∑

τ∈Th(Ωk)

∫
τ

*u*v + (1− ν)(2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1) dx.

(5)

The form ah(·, ·) is positive definite over V Ah what follows from the fact that ah(u, u) =
0 implies that u is linear in all rectangles of Th(Ωk), then from the continuity of
u, ux1, ux2 at all vertices of the elements of Th(Ωk) follows that u is linear in Ωk and
from the mortar condition follows that u is linear in Ω. Then the boundary conditions
yield u = 0.

Moreover, it has been proven in [Mar99b] that this form is uniformly elliptic on
V Ah what is stated in the following:

Theorem 1 There exists a constant C independent of hk and the number of subdo-
mains such that for u ∈ V Ah

C ‖u‖2H2
h(Ω)

≤ ah(u, u),

where ‖u‖H2
h(Ω)

= (
∑N
k=1

∑
τ∈Th(Ωk) ‖u‖

2
H2(τ))

1/2 is the so-called broken H2-norm.

Hence

Proposition 1 The problem (4) has a unique solution.



A MORTAR FINITE ELEMENT METHOD FOR PLATE PROBLEMS 187

Figure 3: Morley element.

Morley element

In this subsection, we introduce a mortar method that locally uses the Morley element,
e.g. cf. [LL75].

The local finite element space XM
h (Ωk) is defined by, see Figure 3,

XM
h (Ωk) = {v ∈ L2(Ωk) : v|τ ∈ P2(τ), v continuous at vertices of

τ ∈ Th(Ωk) and ∂nv continuous at midpoints of edges of τ and

v(p) = ∂nv(m) = 0 for a vertex p ∈ ∂Ω and a midpoint m ∈ ∂Ω}.

We also introduce a global space XM
h (Ω) =

∏N
k=1 X

M
h (Ωk) as in the previous

subsection.
We now select an open disjoint side Γkl of ∂Ωk, Γkl = ∂Ωk ∩ ∂Ωl, denote it by

γm,k and name as master (mortar) if hk ≤ hl, cf. Figure 1. This assumption like for
the Adini element is necessary for the proof of some technical results and is due to
the fact that any local finite element function is not sufficiently regular. The side of
Γkl ⊂ ∂Ωl is called slave (nonmortar) and is denoted by δm,l. As hk ≤ hl and the
both triangulations are quasiuniform, we can assume that the two end elements of the
hl-triangulation of the slave δm,l, i.e. the ones that touch the ends of δm,l, are longer
than the respective elements of the hk-triangulation of the master γm,k.

We introduce additionally two auxiliary spaces on each slave (nonmortar) δm,l. Let
the first one denoted by Mhl

−1,0(δm,l), be the space of functions which are piecewise
constant on the hl triangulation of δm,l.

For the simplicity of presentation, we also assume that the both 1-D triangulations
of the interface Γkl, the hk one of its master γm,k and the hl one of its slave δm,l, have
even numbers of the elements. Let consider δm,l and let δm,l,h = {p0, p1, . . . , pNm,l

} be
a set of vertices of the hl triangulation of this slave, (Nm,l is even). Then we introduce
an operator I2hl,2 : C(δm,l) → C(δm,l) defined by the values of u at all points of δm,l,h
as follows:
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• I2hl,2u ∈ P2 on each [pi, pi+2] for even i < Nm,l,

• I2hl,2u(pi) = u(pi) pi ∈ δm,l,h.

The operator I2hk,2 that corresponds to the hk mesh of master γm,k is defined in the
same way.

We next define an auxiliary space M2hl
0,2 (δm,l) as follows

M2hl
0,2 (δm,l) = {v ∈ C(δm,l) : v ∈ P2([pi, pi+2]) for even i �= 0, Nm,l − 2, (6)

and v ∈ P1([pi, pi+2]) for i = 0, Nm,l − 2}.

We now introduce the two mortar conditions on the interface Γkl = γm,k = δm,l:∫
δm

(I2hk,2uk − I2hl,2ul)ψ ds = 0 ∀ψ ∈ M2hl
0,2 (δm,l) (7)

and ∫
δm

(∂nuk − ∂nul)φ ds = 0 ∀φ ∈ Mhl
−1,0(δm,l). (8)

We next define the discrete space VMh as the subspace of XM
h (Ω) formed by func-

tions which satisfy the mortar conditions (7) and (8) on all slave sides and are contin-
uous at all crosspoints.

The discretization of (1) using VMh is of the form:
Find uMh ∈ VMh such that

ah(uMh , v) =
∫
Ω

fv dx ∀v ∈ VMh , (9)

where ah(u, v) =
∑N
k=1 ah,k(u, v) and ah,k(u, v) are defined as in (5). The form ah(·, ·)

is positive definite over VMh . It follows from the fact that ah(u, u) = 0 yields that u is
piecewise linear in the triangles of Th(Ωk), then the continuity of u at all vertices and
∂nu at all midpoints of elements of Th(Ωk) yields that u is linear in Ωk and finally
from the mortar conditions follows that u is linear in Ω. The boundary conditions
yield u = 0.

As in the case of Adini mortar method, we have the uniform ellipticity of the form
ah(·, ·) over VMh , cf. [Mar99a] and [Mar99b], i.e.

Theorem 2 There exists a constant C independent of hk and the number of subdo-
mains such that for u ∈ VMh

C ‖u‖2H2
h(Ω)

≤ ah(u, u),

where ‖u‖H2
h(Ω)

is the broken H2-norm.

Thus we obtain

Proposition 2 The problem (9) has a unique solution.
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Error estimates

We have the following error estimates for the both elements:

Theorem 3 Assume that u∗, the solution of (1), is in the space H2
0 (Ω) ∩ H4(Ω).

Then for the Adini element

‖u∗ − uAh ‖2H2
h(Ω)

≤ CA

N∑
k=1

(
h2k|u∗|2H3(Ωk)

+ h4k|u∗|2H4(Ωk)

)
,

and for the Morley element

‖u∗ − uMh ‖2H2
h(Ω)

≤ CM

N∑
k=1

(
h2k|u∗|2H3(Ωk)

+ h4k|u∗|2H4(Ωk)

)
,

where uAh and uMh are the solutions of (4) and (9), respectively, ‖v‖H2
h(Ω)

is the broken
H2-norm, and CA, CM are positive constants independent of u∗, any hk, and the
number of subdomains.

Remark on Additive Schwarz Methods

In this section we make a brief remark on the parallel methods of Schwarz type for
solving the discrete problems (4) and (9). The detailed discussion will be published
elsewhere.

In [Mar99b] a parallel algorithm for solving (4) was constructed and analyzed.
This is a iterative substructuring method, i.e. it is applied to the Schur complement
of the discrete problem, i.e. interior variables are first eliminated using some direct
methods. The method is described in terms of an Additive Schwarz Method (ASM), cf.
[SBG96]. We decompose a discrete space into a sum of subspaces which consists of a
coarse space, local one dimensional spaces associated with degrees of freedom of order
one at vertices of subdomains, and certain local spaces associated with interfaces. The
coarse space is not standard and can be named an exotic one.

A Neumann-Neumann method for solving systems of linear equations arising from
conforming mortar discretizations of a plate problem which is constructed and ana-
lyzed in [Mar99b], can be adapted to the nonconforming cases of the Adini and Morley
discretizations considered in this paper. The analysis of the Neumann-Neumann meth-
ods for the Adini case can be done in a similar way to that in [Mar99b] utilizing some
technical results which can also be found in [Mar99b], while the case of the Morley
element requires some new technical results which have been obtained and which will
be published elsewhere.

The described methods are almost optimal, i.e. the number of iterations required to
decrease the energy norm of the error by a conjugate gradient method is proportional
to (1 + log(Hh )), where H = maxi(diam Ωi) and h = infi hi.
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20. Bounds for Linear-Functional Outputs of
Coercive Problems in Three Space Dimensions

Marius Paraschivoiu 1

Introduction

A domain decomposition finite element technique for efficiently generating lower and
upper bounds to outputs which are linear functionals of the solution to the convection-
diffusion equation is presented. The bound method is particularly useful to investi-
gate characteristic quantities of a physical system. These quantities, which we term
“outputs”, must be expressed as functionals of the field solution obtained from nu-
merical simulations. Large computational gains can be obtained if a fast and accu-
rate method can provide the output value without accurately calculating the expen-
sive field solution. For the past few years, the bound method has been developed
[PPP97, Par97, PP98] to calculate, instead of the output value, upper and lower
quantitative bounds to this output. The advantages of this approach are the reduced
computational time by calculating an approximation of the field solution and the
mathematical proof that the bounds are rigorous.

The bound method has been extended to address outputs of the Helmholtz equa-
tion, the Burgers equation and the incompressible Navier–Stokes equations in two
space dimensions [PP99, MPP00]. Initial work has been performed to address sensi-
tivity derivatives as well as reduced-order approximations to solve design optimization
problems [LPP00, MMO+00]. However, two key extensions are still desired: appli-
cation to compressible flows and extension to three space dimensions. In this paper,
we address the latter. The Ladeveze procedure used to approximate the hybrid flux
between sub-domains in two space dimensions does not extend to three space dimen-
sions. Therefore a new procedure is needed. We investigate the finite element tearing
and interconnecting (FETI) procedure which is independent of dimensionality. This
iterative method is ideal to approximate the hybrid flux in the bound method, i.e. the
inter-sub-domain connectivity.

The FETI procedure is well established both in the literature as well as in com-
mercial softwares [Far91, FR92, FCM95, FCRR98]. It was shown that, for structural
problems, the FETI procedure outperforms direct and iterative algorithms. For par-
allel processing the FETI procedure becomes even more attractive; it provides parallel
scalability. Furthermore, the application of the FETI procedure in the bound method
permits simple modifications which drastically reduce the computational time and
memory. To be more precise, all the inverse problems do not need to be solved ex-
actly, only an order of magnitude reduction in the residual error suffice. Similarly, the
FETI global iterations can also be limited to only a few iterations because only an
approximation of the hybrid fluxes is needed. The contribution of this paper is the
description of an inexpensive procedure to calculate the inter-sub-domain connectivity

1Department of Mechanical and Industrial Engineering, University of Toronto,
marius@mie.utoronto.ca
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Figure 1: Convection-diffusion Geometry.

by exploiting simplifications made to the FETI method.

The convection-diffusion problem

The convection-diffusion problem is formulated in three space dimensions. This prob-
lem provides an example of a scalar non-symmetric problem,

−(νu,i),i + Uiu,i = f in Ω, i = 1, ..., 3 , (1)

with inhomogeneous Dirichlet boundary conditions

u = gD, on ΓD, (2)

where ν is the positive viscosity and Ω is a bounded domain in R3.I
The computational domain, Ω, is the unit cube, the six sides of which are denoted

Γj , j = 1, ..., 6, as shown in Figure 1. We impose the boundary data on gD|Γ4 =
x2 × x3, gD|Γ5 = x1 × x3, gD|Γ6 = x1 × x2 ; and on gD|Γ1 = gD|Γ2 = gD|Γ3 = 0. The
velocity is prescribed as U = (1, 1, 1), and f = 0 to avoid any quadrature issues. Note
that, for U = (0, 0, 0) we recover the Poisson problem.

Bounds formulation

The bound method is based upon the construction of an augmented Lagrangian, in
which the objective is a quadratic reformulation of the desired output, and the con-
straints are the finite element equilibrium equations and the inter-sub-domain conti-
nuity requirements. In the context of the bound method, computations are focused
on evaluating a design quantity, i.e. an output. For simplicity, the particular linear
functional investigated here is the average value of the field solution. Many engineer-
ing relevant linear functionals can be constructed, including the value at one point or
the flux over a domain boundary [MPP99, Par97, PPP97].
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For the discrete problems, we introduce a partition of the computational domain
Ω into a set of Nk tetrahedra, TH . We also decompose each tetrahedron, Ω(k), of TH ,
into a uniform refinement of tetrahedra Th with characteristic diameter h.

Our discrete functional is constructed from the multiplication of the unit vector
with the finite element mass matrix M , discretized on Th, O = M 1. The output
of interest becomes s = OTu, where u is an n-long vectors representing the discrete
field solution to the Equations (1) and (2). Note that n is the number of nodes
associated with the finite element discretization of u. For discretization, we exploit
the finite element dimensional vector space X consisting of continuous piecewise linear
functions on Th. For the convection-diffusion problem, the unknown nodal values of
u, i.e. ũ, are obtained by solving the algebraic system

L̃ũ = f̃ − b, (3)

where L̃ is r × r non-symmetric positive-definite sparse matrix arising from the finite
element discretization of the problem, and f̃ is a right-hand side r-long vector repre-
senting a prescribed force. The vector b contains the known data of u multiplied by L
and transported to the right-hand side, i.e. the inhomogeneity. Clearly, the interior
degrees-of-freedom r is less than n.

To avoid the expensive calculation of the system in (3), we introduce a discon-
tinuous space X̂ with jumps across the elements Ω(k) and calculate bounds to s, i.e.
sLB ≤ s ≤ sUB . Rigorous bounds are obtained by application of quadratic–linear
duality theory [Str86], in which the candidate Lagrange multipliers are obtained from
inexpensive calculations. The lower bound value is obtained from the Lagrangian,
L(û(k), µ̂, λ̂), where µ̂ and λ̂ are approximations of the Lagrange multipliers. The
lower bound to the output of interest, s, is

sLB =
Nk∑
k=1

(
û(k)

T

A(k)û(k) − f (k)
T
û(k) + O(k)

T
û(k)

)
+ Cu (4)

−µ̂T
Nk∑
k=1

(
L(k)û(k) − f (k)

)
− λ̂T

Nk∑
k=1

B(k)û(k), (5)

where the superscript (k) is the restriction of the operator or the vector to the domain
k. After simplifications we obtain

sLB = −
Nk∑
k=1

û(k)
T

A(k)û(k) + Cu + f (k)
T
µ̂(k), (6)

where all û(k) are solutions of the decoupled local problems

2A(k)û(k) = f (k) − O(k) + L(k)T µ̂(k) −B(k)T λ̂, (7)

and A(k) is the finite element discretization of the symmetric term of L(k) and B(k) is
the sign Boolean matrix which localizes the “jumps” at the interface. Cu is a boundary
data value given by Cu = GT (L−A) G, where G is a discrete function containing the
Dirichlet boundary values and zero values elsewhere. In solving each Equation (7),
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care has to be taken to include the boundary condition for the elements lying on the
boundary.

To guarantee solvability of each Equation (7), the candidate Lagrange multipliers
must satisfy

(f (k) − O(k) + L(k)T µ̂(k) −B(k)T λ̂) ⊥ Ker(A(k)), k = 1, ..., Nf , (8)

where Nf is the number of pure Neumann problems.
The calculation of µ̂ has to be inexpensive such that the cost of calculating sLB

is considerabely less than the cost of calculating s. Hence, a coarse discretization TH
is exploited. We denote by XH the corresponding conforming space of finite element
functions, i.e. piecewise linear continuous functions in TH including the Dirichlet
boundary data. Following the bound method [Par97, PPP97], we solve

L̃H ũH = f̃H − bH , (9)

followed by

L̃TH µ̃H = 2ÃH ũH − f̃H + ÕH + bH , (10)

where ũH and µ̃H are both in XH . Note that there is no jump across the interface
because of this continuous space. Afterward, µ̂ is interpolated on Th to obtain µ̂ ∈ X .

The FETI approach is employed to calculate the inter-sub-domain problems, i.e.
calculation of λ̂. Reformulating the FETI interface problem for the bounds gives[

2FI −GI
−GTI 0

] [
λ̂
α

]
=
[

2d
−e

]
, (11)

where each of these terms is given by

FI =
Nk∑
k=1

B(k)A(k)+B(k)T , (12)

GI =
[
B(1)R(1) . . . B(Nf )R(Nf )

]
, (13)

α =
[
α(1) . . . α(Nf )

]
, (14)

d =
Nk∑
k=1

B(k)A(k)+(f (k) − O(k) + L(k)T µ̂(k)), (15)

e =
[
R(1)T f (1)

]
. . .

[
R(Nf )

T
f (Nf )

]
, (16)

where A(k)+ is a generalized inverse of A(k) when the latter is singular. For sub-
domains with Dirichlet nodes, A(k)−1 is calculated. This domain decomposition based
algorithm can be viewed as a two-step preconditioned conjugate gradient method to
solve the interface problem [FCRR98]. The solution algorithm can be found abun-
dantly in the literature [Far91, FR91, FR92, FCRR98, FM98, FCM95, Rix97]. Hence,
it is not reviewed here.
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We make several remarks regarding the computational simplifications in the con-
text of the bound method. First, the inverse or the generalized inverse of A(k) is
not calculated exactly, an iterative conjugate gradient solver is used. Note that this
operation is need at each FETI iteration and such an approach may seem expensive.
However, because we only require an approximation λ̂, the conjugate gradient iterative
procedure is terminated after the residual error is reduced by one order of magnitude.
This approach requires less storage and fewer arithmetic operations than the Cholesky
factorization used in the standard FETI approach. Note that this simplification is re-
stricted to the bound method [FR91]. Second, we know that the null space, R(k),
of the singular matrix A(k) is the unit vector avoiding the computational cost of its
calculation. Third, the global FETI iterations can be stopped at any step and still
provide rigorous bounds. Indeed, the constraint in the FETI interface problem (Equa-
tion 11) guarantees that the pure Neumann sub-domains are equilibrated. Numerical
results will show that the sharpness of the bounds improves with the FETI iterations,
however over solving the interface problem is not necessary as we will report in the
numerical results Section.

Once µ̂ and λ̂ are calculated, Equation (7) is solved for each subdomain to give
û(k) and finally sLB is calculated from Equation (6). Similarly, the upper bound is
obtained by taking the sign inverse of the lower bound of −s.

Numerical results

The convection-diffusion problem is investigated for the case where f = 0 and ν = 1/5.
The output of interest is the average of the solution on the fine discretization Th. This
“triangulation” consists of 82,944 tetrahedron elements and 15,625 degrees-of-freedom.
Three different coarse subdivisions are considered. The following notation, T(H,N), is
used to identify the coarse discretizations where N is the number of sub-domains per
edge, i.e. N × N × N × 6 sub-domains. Figure 2 presents, on the left, a coarse
subdivision T(H,6) and, on the right, the fine refinement Th = T(H,24). A slice, at
z = 0.5, of the finite element solution on T(H,6) and of the reconstructed solution,
T(H,N), are presented in Figure 3.

To analyze the behavior of this method, we first report the values of the bounds and
their convergence for different TH meshes, Figure 4. The FETI iterations’ stopping
criterion is ‖rn‖2/‖r0‖2 < 10−2 where the numerator and the denominator are the n-
th and the initial residual errors respectively. Obviously, for a given stopping criterion,
the sharpness of the bounds depend on the richness of the coarse mesh. Recall that,
the bound method guarantees that the output is within these values. Indeed, the
expensive calculation on the fine mesh field solution is not required any longer as
sufficient rigorous information is obtained for design.

Discussion of the computational cost of calculating the upper and lower bounds
may be found in [Par00]. In this paper, we only pointout that the cost is related to
the number of FETI iterations. As we have discussed previously, these iterations can
be interrupted at any step and rigorous bounds can be calculated. The sharpness of
the bounds depends on the number of iterations, or more precisely on the residual
reached, as reported in Figure 5. The convergence curves show that the difference
between of each bound and the fine mesh output value is considerably decreased in
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Figure 2: Two examples of meshes: (left) coarse mesh, T(H,6); (right) fine mesh,
Th = T(H,24).
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Figure 3: Isocontours (0 to 0.5 at intervals of 0.05) of (left) uH on TH,6, and (right)
û(k), k = 1, ..., Nk

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

H

sLB/sh
sUB/sh

sH/sh

10
−1

10
0

10
−3

10
−2

10
−1

H

|sLB − sh|
|sUB − sh|

|sH − sh|

Figure 4: (left) Plots of sLB/sh, sUB/sh, and sH/sh as a function of the coarse mesh
characteristic diameter H ; (right) Log plots |sLB − sh|, |sUB − sh| and |sH − sh| as a
function of H .



3D OUTPUT BOUNDS 197

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2

FETI iterations

sLB/sh
sUB/sh

0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

10
1

FETI iterations

|sLB − sh|/sh
|sUB − sh|/sh

Figure 5: (left) Plots of sLB/sh and sUB/sh as a function of FETI iterations; (right)
Log plots of |sLB − sh|/sh and |sUB − sh|/sh as a function of FETI iterations.

the first iterations. This indicates that an optimal number of iterations may exist.
Both the hybrid flux and the adjoint approximations contribute to the bound gap.
During the initial iterations, the bound gap is sensitive to the hybrid flux calculations.
During later iterations, the adjoint interpolation dominates the bound gap. Clearly,
resolving the interface problem more accurately will not improve the bounds because
it does not improve the adjoint approximation. For improving the adjoint, there exists
an adaptive approach to refine the coarse mesh in order to obtain the desired bound
gap [PP97].
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21. Efficient and fast numerical methods to compute
fluid flows in the geophysical β plane

T. SAKAJO 1

Introduction

We consider a fluid flow in a rotating sphere with an unit radius. The flow is incom-
pressible and inviscid, and covers the sphere with a constant density. This kind of
flow is called a geophysical flow, since it is one of the simplest models of atmospheric
flows in the earth. In practical study of geophysical flows, we are sometimes interested
in a local flow in the neighborhood of a certain point in the sphere. In that case, we
consider flows in a plane which is tangent to the point as an approximation model.
The plane is called the geophysical β plane. In the present article, we introduce an
equation which describes a motion in the β plane. And a numerical procedure to
compute the equation is formulated. Furthermore, we suggest an efficient technique
to compute it fast and accurately by using a fast algorithm and a parallelization based
on the idea of Domain Decomposition. As an example of its application, we compute
a two-dimensional flow problem in the β plane and investigate the effectiveness of the
fast method and the effect of rotation on the evolution numerically.

Numerical computations of the geophysical flows play an important role in the
atmospheric research, such as the weather forecast and the investigation of the en-
vironmental issues. In spite of its importance, it is not easy to obtain useful and
practical results since it costs too much to compute these problems for sufficiently
fine resolutions. That is why a fast and accurate numerical method is required. The
purpose of the study is to give an efficient numerical method to compute such flows
and to show its effectiveness by applying it to some fluid problem.

In the next section, we suggest the fast numerical method: We consider the equa-
tion of the flows in the β plane, whose detailed definition and formulation is explained.
Our numerical method called the point potential vortex method is introduced. Then,
some techniques to compute it fast and accurately are appearing. In the third section,
we show some results of the numerical computation of a fluid flow in the β plane: (1)
effectiveness of the fast method and (2) investigation of the influence of rotation on
the evolution of the flow. The last section is conclusions.

Numerical methods

The equation of motion of fluids in the β plane

Now, we introduce an equation of motion of the flows in the geophysical β plane. Let
φ and λ be a latitude and longitude of a point in the sphere, respectively. When fixing
a point (λ0, φ0) in the sphere, we consider the plane which is tangent to the point and

1Graduate school of mathematics, sakajo@math.nagoya-u.ac.jp
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Figure 1: The β plane associated with the point (λ0, φ0) in the sphere.

introduce a new pair of variables (x, y) as follows (See Figure 1):

x = (cosφ0)λ, y = φ− φ0, (|x|, |y| << 1).

We define the stream function Ψ and the vorticity ω in the β plane as ω = rotu,∆Ψ =
−ω. The velocity field u is recovered from the stream function by the formula
u = (−∂yΨ, ∂xΨ), and ∆ is the two-dimensional Laplacian. Then, the equation of
incompressible Euler flow in the β plane is given by

∂

∂t
∆Ψ+

∂(Ψ,∆Ψ)
∂(x, y)

+ β
∂Ψ
∂x

= 0, (1)

where the second term is two-dimensional Jacobian:

∂(a, b)
∂(x, y)

=
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
.

The equation differs from the usual two-dimensional Euler equation in the effect of
rotation (β-effect) of the third term. Therefore, the vorticity is no longer an invariant
quantity along the trajectory of the fluid element just like in two-dimensional case.
However, we can define a “potential vorticity” by

q = ω + βy.

Then, substituting it to the equation (1), we obtain the following simple equations:

Dq

Dt
= (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)q = 0 (2)

∆Ψ = −ω, (u, v) = (−∂yΨ, ∂xΨ), (3)
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where D
Dt represents the derivative along the trajectory of the fluid element which

moves together with the fluid flows (material derivative).
What the equation (2) indicates is the potential vorticity is invariant along the

trajectory of the fluid element. That means, when (x(t), y(t)) is a position of the fluid
element at some time t, the potential vorticity at the position is given by the initial
potential vorticity at (x(0), y(0)):

q(x(t), y(t), t) = q(x(0), y(0), 0) ≡ q0.

Hence, the vorticity ω at the position (x(t), y(t)) is represented by

ω(x(t), y(t), t) = q0 − βy(t). (4)

Based on the considerations in the section, we show a numerical method and some
techniques to compute the evolution of the flows in the β plane fast and accurately in
the following subsections.

The point potential vorticity method

At first, the velocity field is obtained by solving the Laplace equation (3). For the sake
of simplicity, we impose the periodic boundary condition in the x direction. Then, the
velocity field (u, v) = (−∂yΨ, ∂xΨ) are given by

u(x, y, t) = −1
2

∫
ω(x̃, ỹ, t) sinh 2π(y − ỹ)

cosh 2π(y − ỹ)− cos 2π(x− x̃)
dx̃dỹ,

v(x, y, t) =
1
2

∫
ω(x̃, ỹ, t) sin 2π(x− x̃)

cosh 2π(y − ỹ)− cos 2π(x− x̃)
dx̃dỹ. (5)

We must note that the integrals on the right hand side are singular integral. What
follows is our numerical procedure.

1. We discretize the computational domain which includes the vorticity field. Then
we obtain the discretization points {(xn, yn)}, (n = 1, ..., N). We must discretize
a sufficiently large region including no vorticity at the beginning because of
generation of the “ghost vorticity”, which we will explain later section.

2. We assume that the vorticity concentrates in the discretization points, (Point
potential vortices).Then we approximate the vorticity field as follows:

ω(x, y, t) =
N∑
n=1

(qn0 − βyn)δ(x− xn, y − yn), (6)

where qn0 is initial potential vorticity and δ is Dirac’s delta function.

3. Substituting (6) to (5), we compute the velocity field induced by the vorticity.

uN(x, y, t) = − 1
2N

N∑
n=1

(qn0 − βyn) sinh 2π(y − yn)
cosh 2π(y − yn)− cos 2π(x− xn)

,

vN (x, y, t) =
1
2N

N∑
n=1

(qn0 − βyn) sin 2π(x− xn)
cosh 2π(y − yn)− cos 2π(x− xn)

. (7)
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4. The point potential vortices evolves by the induced velocity field:
dxn
dt

= uN (xn, yn),
dyn
dt

= vN (xn, yn), (n = 1, ..., N).

We use the 4-th order Runge-Kutta method to compute the step 4. We refer the
numerical scheme as the “point potential vortex method”.

The fast algorithm and parallel implementation

Although the idea of the point potential vortex method is simple, it has not been easily
applied to simulations of practical geophysical flows so far because of some difficulties.
Here, we explain these difficulties and show some methods to overcome them.

Desingularization of the equation As we note in the previous section, the ve-
locity field (5) is given as a singular integral. Due to the singularity, the round-off
error has a seriously bad influence on numerical solutions. To get rid of the bad influ-
ence of the round-off error, we use the Krasny’s desingularization technique[Kra86].
That is, taking a sufficiently small positive real number ε, we compute the following
desingularized summation instead of (7):

uεN(x, y, t) = − 1
2N

N∑
n=1

(qn0 − βyn) sinh 2π(y − yn)
cosh 2π(y − yn)− cos 2π(x− xn) + ε2

,

vεN (x, y, t) =
1
2N

N∑
n=1

(qn0 − βyn) sin 2π(x− xn)
cosh 2π(y − yn)− cos 2π(x− xn) + ε2

. (8)

We can compute the velocity field (8) stably since they are bounded as long as ε �= 0.

Fast summation method Let N be the number of point potential vortices which is
obtained by the discretizaion of the computational domain. The amount of computa-
tion which is required to compute the velocity field (8) for a point is O(N). Therefore,
it takes O(N2) operations to compute the Step 4 for all the points. Due to the rapid
increase of the total amount of operations, it is difficult to use high resolution in the
practical numerical computation. In order to overcome the difficulty, we apply the
Draghicescu’s fast algorithm. This algorithm reduces the total amount of operations
to O(N logN), allowing approximation error to some extent. However, the method
works well for a large number of N , since the approximation error reduces with O( 1

N )
and is negligible as N increases. As for the detailed algorithms and how to apply the
algorithm to the periodic boundary condition, we would like the readers to refer to
Draghicescu[Dra94] and Sakajo & Okamoto[SO98], respectively.

Parallel implementation We implement the fast numerical algorithm to a parallel
computer. Now when the parallel computer has p CPUs, we assign N

p point potential
vortices to each processor and then compute the evolutions concurrently. Since the
point potential vortices are obtained by discretizing the computational domain, the
parallelization would be one of the Domain Decomposition techniques. In the present
computation, we use a distributed parallel computer with four DEC Alpha 21264
processors.
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N+M 8192 32768 131072
direct 143 2288 36789
fast 25 120 463

parallel+fast 12 51 156

Table 1: The elapsed time to compute the velocity field (8) in seconds

Results

We apply the point potential vortex method to the computation of a vortex sheet in
the β plane. A vortex sheet is a surface across which the velocity of the fluid changes
discontinuously. That means that initially the vorticity exists only in the vortex
sheet, and outside of the vortex sheet there exists no vorticity. In the two-dimensional
β plane, the vortex sheet is represented by a one-parameter curve: (x(Γ, t), y(Γ, t)),
where Γ is circulation parameter along the sheet and t is time. We imposed the
periodic boundary condition on the sheet as follows,

x(Γ + 1, t) = x(Γ, t) + 1, y(Γ + 1, t) = y(Γ, t), (0 ≤ Γ < 1).

A flat vortex sheet (x, y) = (Γ, 0) is a steady state. We add a small disturbance to
the steady state and take it as an initial condition of the numerical computation:

x(Γ, t) = Γ + 0.01 sin 2πΓ, y(Γ, t) = −0.01 sin 2πΓ.

If we consider the ordinary two-dimensional vortex sheet, we have only to discretize
the vortex sheet since the vorticity is invariant. However, since not the vorticity but
the potential vorticity is invariant in the β plane approximation, the vorticity could
be created as a result of the vertical movement of the point potential vortices even if
it has no vorticity at the beginning. The created vorticity is called the ghost vorticity.
Therefore, we have to discretize the sufficiently large regions to the y directions in this
case by taking the creation of ghost vorticity into considerations.

We discretize the vortex sheet along the sheet and obtain N point potential vortices
(xn, yn), (n = 1, ..., N), whose initial position is

xn(0) =
n

N
+ 0.01 sin 2π

n

N
, yn(0) = −0.01 sin 2π

n

N
, (n = 1, ..., N).

and initial potential vorticity is qn0 = 1
N +βyn(0). We also discretize the outer regions

by grids and obtain M point potential vortices, (x̃n(t), ỹn(t)), whose initial potential
vorticity is q̃n0 = 0 + βỹn(0), (1 ≤ n ≤ M).

Effectiveness of the fast computation

We show the effectiveness of the fast algorithm and parallelization. The desingulariza-
tion parameter is fixed to 0.1. Table 1 shows the elapsed time to compute the velocity
field (8) in second when we change the number of discretization N + M . When we
use the direct summation of O(N2), the computational time increases rapidly. On the
other hand, the time is very small when we use the fast summation method. It takes
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N+M 8192 32768 131072
error 2.26e-07 5.35e-08 9.46e-09

Table 2: Maximum approximation error of the fast algorithm

about 80 times faster than the direct summation when N = 131072 point potential
vortices are used. Moreover, as a result of the implementation of the fast algorithm
to the parallel computer, we achieve more than 230 times faster computation for
N = 131072 points are used. Table 2 shows the maximum approximation error of the
fast algorithm. As N +M increase, the error gets smaller. The fast algorithm yields
very accurate computation for a large number of point potential vortices.

These two results indicates that the more we use point potential vortices the more
accurate and faster we can compute the velocity field.

An application - a vortex sheet in the β plane

We discretize the vortex sheet by 65536 points and the other no vorticity region
[0, 1]× [−2.0, 2.0] by 128× 512 grid points. The desingularization parameter ε is 0.1.
We change only the parameter β to see the effect of rotation to the evolution.

Figure 2 shows the time evolution of the vortex sheet: (a) β = 0 (no rotation),
(b) β = 5 (mild rotation) and (c) β = 10 (fast rotation). At first, when there exists
no β-effect (column (a)), it evolves in the same way as the two-dimensional vortex
sheet, which Krasny computed[Kra86]. Nearly flat vortex sheet becomes unstable and
roll-up and then generates the spiral structure in the middle of the region. Next, when
β = 5 (column (b)), it forms the spiral structure as well. However, the center of the
spiral moves toward the northwest. This movement is due to the effect of rotation,
which is well-known as the Rosby effect. Note that the number of winding of the spiral
becomes few. At last, when β = 10 (column (c)), it begins forming the spiral structure
at t = 1.0 but it hardly grows. Instead, an another spiral structure is generated at
t = 2.0. The result indicates that faster rotation results in the appearance of the new
spiral structure, which would be a new feature of the β-effect.

Conclusions

We suggest the point potential vortex method to compute the geophysical fluids in
the β plane numerically. The fast summation method and the implementation to the
parallel computer based on the Domain Decomposition approach makes us possible to
execute the numerical computation accurately and fast. The hybrid combination of
these two fast numerical method brings us a possibility to try the numerical compu-
tations of various practical geophysical flows.

As one of the examples, we apply the numerical scheme to the computation of
the vortex sheet in the β plane. We find the northwestward movement of the spiral
structure and the appearance of the new spiral structure due to the effect of rotation.
The analytic investigation of these phenomena remains in the future.
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The point potential vortex method could be extended to the case of the flows
in the rotating sphere. The formulation is the same as the present method. That
is, the potential vorticity is also preserved along the trajectory of the fluid element.
However, since there is no fast summation method to compute the velocity field fast,
the extension wouldn’t be completed. The development of the fast algorithm for the
velocity field in the sphere is challenging.
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(a) β=0.0 (b) β=5.0 (c) β=10.0

t=0.00

t=0.50

t=1.00

t=1.50

Figure 2: The time evolution of the vortex sheet in the β plane. (a) β = 0.0, (b)
β = 5.0 and (c) β = 10.0
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22. Boundary Element Scheme with Domain
Decomposition Approach for Moving Interface
Phenomenon

R. Sugino1, H. Imai2, N. Tosaka3

Introduction

In many situations of hydrodynamic phenomenon, two-layer fluid is a dominant feature
of fluid motion. Such two-layer fluid often contains jumps in the density across the
interface of fluid domains. The interface of air and water or salt water and fresh
water is obvious example [Tho68]. The density jump may be assumed to occur in an
infinitesimally thin interface in the mixture. And, the behavior of such an interface is
important to understand various hydrodynamic phenomena [DR81].

In our previous study, we developed the efficient numerical procedure which is
able to simulate the time evolution of an interface between two fluids with different
densities. The numerical solution procedure based on the sub-region boundary ele-
ment method with the mixed Eulerian - Lagrangian approach developed in the moving
boundary problems in potential field [ST93]. Now, cluster computation by work sta-
tions or personal computers becomes available in many laboratories all over the world.
Because of their potential for both high-performance and cost-effectiveness, cluster
computing will attract much more attention of researches, and they will take the most
important part in engineering computation in stead of vector computing in near fu-
ture. Under this situation, investigation of parallel FEM algorithm [GDP83],[GASS93]
based on the DDM is increasing. Recently, Kamiya et al. introduced DDM for
the boundary element analysis in order to implement the parallel BEM computation
[DM96],[KIK96]. They showed the utility of BEM analysis with domain decomposition
scheme for some potential and elastic problems.

In this paper, we propose a new boundary element procedure for the density strat-
ified flow based on the domain decomposition method. The final system of equations
for the whole region is obtained by adding the set of boundary integral equations of
governing equation for each sub-domain in conjunction with compatibility and equilib-
rium conditions between their interfaces. The present study is an attempt to develop
parallel computation procedure for the interface motion of the two-layer fluid in a rect-
angular region based on domain decomposition method and two sub-domain boundary
element method.

Mathematical Modeling of Moving Interface Flow

As shown in Figure1, Ω1 and Ω2 denote the portions of flow domain occupied by fluids
1 and 2, respectively. The fluid regions are separated by a sharp interface. Here, the

1Anan College of Technology,sugino@anan-nct.ac.jp
2Tokushima University,imai@pm.tokushima-u.ac.jp
3Nihon University,n7tosaka@ccu.cit.nihon-u.ac.jp
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Figure 1: Geometrical configuration of problem.

subscript i denotes each flow region. And ρ denotes the density of fluids.
In this model, we assume the existence of velocity potentials φi (x, y, t) (i = 1, 2)

in the fluids both sides of the interface. Then, the governing equations for the velocity
vector ui = (ui, vi) are given as follows:

∇2φi =
∂2φi

∂x2
+

∂2φi

∂y2
= 0 in Ωi (i = 1, 2), (1)

ui = ∇φi in Ωi (i = 1, 2), (2)

where ∇ = (∂/∂x, ∂/∂y) and ∇2 denotes the two-dimensional Laplacian.
There are two kinds of the boundary conditions to be prescribed. The first one is

the wall boundary condition given by

∂φi
∂n

= n · ∇φi = 0 on Γi
w (i = 1, 2), (3)

where n denotes the outward unit normal vector on the boundary. The other is the so-
called moving boundary conditions on the moving interface ΓI . They are the kinematic
and dynamic conditions. As the mathematical expressions of these conditions, we
introduce its Lagrangian description in terms of the Lagrangian coordinates ( ξi, ηi
)for a marked particle on the moving interface. Consequently, the liquid particles
on the interface must move with the interface in each domain. Then, the kinematic
conditions for a particle are given by

Dξi
Dt

= ui =
∂φi
∂x

Dηi
Dt

= vi =
∂φi
∂y

 on Γi
I (i = 1, 2), (4)

where D/Dt is used to express the Lagrangian derivative.
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Next, we also can express the dynamic condition derived from Bernoulli’s equation
as the following equation on rate of change of φi :

∂φi
∂t

+
1
2

{(
∂φi
∂x

)2

+
(
∂φi
∂y

)2
}

+ gηi + Pi/ρi = 0 on Γi
I (i = 1, 2), (5)

where g is the acceleration of gravity, and Pi are the pressure on the interface ΓI
i.

The interfacial conditions should be introduced to this model. To require that
two fluids do not separate or cross over at the interface, we must set the following
kinematic condition :

∂φ1
∂n

= −∂φ2
∂n

on ΓI
i (i = 1, 2). (6)

Next, the normal stress of the fluid is to be continuous at the interface. For an inviscid
fluid, this means satisfaction of the following dynamical condition that the pressure is
continuous:

P1 = P2 on ΓI
i (i = 1, 2). (7)

In this paper, we consider the mathematical model given by equations (1)-(7) as
the coupled problem of the boundary-value problem of Laplace equation (1) and the
initial-value problem of the system of evolutional equations (4) and (5).

Theory of DD Approach for Moving Interface in
Flow Region

DD Approach for Boundary Element Scheme

Let us consider the two layer flow with a moving interface in a domain Ω, which is
decomposed into two sub-domains Ω1 and Ω2 as shown in Figure 2. Here, we can
easily transform the field equation (1) into the following boundary integral equation
by taking into consideration with the linearity of Laplace equation (1):∫

Γi

φi( x )
∂ω∗i
∂n

( x , y )dΓ( x ) =
∫
Γi

∂φi
∂n

( x )ω∗i ( x , y )dΓ( x ) (i = 1, 2), (8)

in which ω∗ is the well-known fundamental solution given by

ω∗( x , y ) =
1
2π

ln
1
r

, r =‖ x − y ‖ . (9)

If Dirichlet data on the moving interface ΓI is known, then we can determine its
derivative on ΓI with solution of the above boundary integral equation. In order to
solve approximately (8), we use the BE scheme.

In DD approach of (1),(6) and (7), several formulations can be derived according
to treatment of inter boundary conditions of (6) and (7). In this study, we employ the
continuity of Dirichlet data (i.e., velocity potential) and Neumann data (i.e., normal
velocity ) as follows:

φ2 = αφ1 + β on ΓI , (10)
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∂φ1
∂n

+
∂φ2
∂n

= 0 on ΓI . (11)

To treat the inter-subdomain boundary condition, the Lagrange multiplier λ is intro-
duced as follows:

φ1 = λ =
1
α
φ2 −

β

α
on ΓI . (12)

Applying the above conditions to (8), the following inverse formulation is derived:

2∑
i=1

[∫
Γi

I+w

φi
∂ω∗i
∂n

dΓ−
∫
Γi

I+w

∂φi
∂n

ω∗i dΓ

]
+
∫
ΓI

(
∂φ1
∂n

+
∂φ2
∂n

)
δλdΓ = 0. (13)

Figure 2: Problem splitted into two sub-domains.

Uzawa’s Algorithm for DD Approach

Equation (13) consists of the usual boundary integral forms for the subdomain Ωi and
the constrain term derived from the energy equilibrium as well as the normal velocity
continuity among subdomains. Uzawa’s method[GDP83], which is one of iterative
solution techniques, is employed here to solve (13).

Uzawa’s algorithm is summarized as follows:

• STEP 1:Initialization

λ0 = λ̂(: constant). (14)

• STEP 2:Computation in each subdomain :

2∑
i=1

[∫
Γi

I+w

φi
∂ω∗i
∂n

dΓ−
∫
Γi

I+w

∂φi
∂n

ω∗i dΓ

]
+
∫
ΓI

τnλndΓ = 0, (15)
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τn =
∂φ1
∂n

+
∂φ2
∂n

on ΓI , (16)

where τ denotes the residual value which is the continuity of flux.

In this step, we solve the Laplace equations under following boundary conditions:

∂φi
∂n

= 0 on Γiw, (17)

φ1 = λn, φ2 = αλn + β on ΓiI , (18)

where superscript n indicates the n-th iterative step.

• STEP 3:Modification of lagrange multiplier λn

λn+1 = λn + ωτn, (19)

where ω denotes the convergence coefficient.

• STEP 4:Judgement of convergence

The criterion for convergence employed here is:∫
ΓI

τn · τn
τ0 · τ0 dΓ ≤ ε. (20)

If λn has not converged yet, return to STEP 1 by setting n ← n+ 1.

By implementation of the above iterative method, we can get the potential φk+1
i and

(∂φi/∂n)k+1 on the ΓI
i and use these values for estimation of interfacial dynamics.

Formulation for Moving Interface Computations

We will determine the particles on the interface whose velocities (∂XI /∂t, ∂YI /∂t) are
a mean values of velocities of the two fluids. The kinematic condition (4) is modified
to the following forms as given by :

∂XI
∂t

=
[
(1 + β)

∂φ1
∂x

+ (1− β)
∂φ2
∂x

]
/2

∂YI
∂t

=
[
(1 + β)

∂φ1
∂y

+ (1− β)
∂φ2
∂y

]
/2

 , (21)

where β is the constant in which β = +1 corresponds to the lower fluid, β = −1 is
to the upper fluid and β = 0 is to mid-interface particles. In this computation, we
adopt β = 0, and the velocity of interface is mid-interface particles of the layer. This
system to be considered as the one of first-order ordinary differential equations can
be solved approximately by using the time integration scheme. Applying the Euler
scheme to the above system, we can determine the new value of ξ and η at the (k+1)-
th time step. The procedure can be repeated to track the time history of the interface
movement.
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Numerical Experiments and Evaluations

In order to examine applicability of our method proposed, we show the obtained
numerical results. We simulate the motion of two different density fluids in which are
stratified for the vertical direction under gravitational force g. Two fluids are settled in
the rectangular container with non-dimensional width, L = 0.04 and height, H = 0.06.
And, the container is filled with the lower fluid to a height, h = 0.03 at the stationary
state. This interface is initially flat, but a perturbation is supplied by specifying
the y-coordinate component of its position at the interface as δy = A0 cos(πx/L).
Numerical computations are carried out for the case given by parameters such that
A0 = 0.0001,g = 1.0 and ∆t = 0.005. The fluid domains is divided into 50 boundary
segments and both interface parts are divided into 20 segments, respectively.

In Figure3, we show the profiles of interface at each time step in the case of
ρ1/ρ2 = 1.0/2.0 as density ratio of the two fluids. The pertubation drives the unstable
fluid interface, causing it to flow down along the right edge of the box in the form
of a fluid spike, while a bubble moves up along the left box edge. Figure 4 shows
the profiles of deformed interface at three cases at different time. Figure 5 shows
the good convergence of Uzawa’s iteration in Case I. Figure 6 shows the situations of
convergence using Uzawa’s method at each deformation level of interior-interface of
DD computations. From this results, we can recognize the convergence speed of Case
I is faster than the speed of Case II or Case III.

Figure 3: The schematic histories of time-dependent behaviour in a moving boundary
phenomenon.
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Figure 4: Three profiles showing interface deformations at different out put times.
Case I :small deformation at t=0.000sec. Case II :middle deformation at t=0.130sec.
Case III :large deformation at t=0.165sec.

Figure 5: Convergence process of Uzawa’s iterations at Case I.

Figure 6: Comparison of convergence situations using DDM applied to three cases.
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Concluding Remarks

In conclusions, we have shown the applicability for BE analysis with DDM to nu-
merical simulation for moving boundary problems. We introduced the DDM which
is based on construction of the set of BEM for each sub-domain in conjunction with
compatibility and equilibrium conditions on the interface. Uzawa’s method is effec-
tive to iterative computations for this type problem. This solution procedure can
simulate the interfacial movement of density stratified flow. Obtained results show
the tendency to increase of iteration number in computation at complicated shape of
the internal boundary. Consequently, this DD-BEM procedure will contribute to the
establishment of parallel BEM computation for further applications.
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23. Two iterative substructuring methods for
Maxwell’s equations with discontinuous coefficients
in two dimensions

A. Toselli 1

Introduction

In this paper, we present some numerical results for a Balancing and a FETI method
for the solution of a linear system arising from the edge element approximation of a
vector field problem in two dimensions. The two methods are presented as projected
preconditioned conjugate algorithms and give comparable performances in our tests.
Our numerical results show that their condition number is independent of the number
of substructures and grows only polylogarithmically with the number of unknowns
associated with individual substructures. It is also independent of the jumps of both
coefficients of the original problem.

We consider the following problem: Find u ∈ H0(curl ; Ω), such that

a(u,v) =
∫
Ω

f · v dx, v ∈ H0(curl ; Ω), (1)

where the bilinear form a(·, ·) is defined as

a(u,v) :=
∫
Ω

(a curlu curlv + bu · v) dx,

and f ∈ L2(Ω)2. Here, Ω is a bounded, open, connected polygon in R2, H(curl ; Ω)
is the space of vectors in L2(Ω)2, with curl in L2(Ω), and H0(curl ; Ω) its subspace
of vectors with vanishing tangential component on ∂Ω. The coefficients a and b are
positive functions in L∞(Ω) bounded away from zero.

Finite element functions

For the discretization of problem (1), we consider a conforming triangulation Th of
Ω, of maximum diameter h, consisting of triangles or rectangles. We then define U
as the space of edge elements of lowest degree, defined on Th, originally introduced in
[N8́0]. Let Eh be the set of edges of Th. We recall that the tangential components of
the vectors in U are constant along the edges of Th and that these constant values can
be chosen as the degrees of freedom in U .

We then consider a non–overlapping partition of the domain Ω, consisting of sub-
domains, also called substructures, FH = {Ωi| i = 1, . . . , N}. The substructures are
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connected polygonal domains the boundaries of which do not cut through the ele-
ments, and H is the maximum of their diameters. Let ti be the unit tangent to ∂Ωi,
having counterclockwise direction and restricted to ∂Ωi \ ∂Ω. We will employ these
unit vectors to define the coarse spaces of our algorithms. We also define the interface
Γ as

Γ :=
N⋃
i=1

∂Ωi \ ∂Ω.

We remark that we only present numerical results for uniform meshes in this paper, but
that our algorithms can be defined for more general cases. In particular, a theoretical
bound for a FETI method, which is valid for triangulations that are shape–regular
and locally quasi uniform, was proven in [TK99]. In the following, we assume, for
simplicity, that the coefficient b is constant on each substructure and equal to bi.

Given a substructure Ωi, we define Ui as the space of restrictions of vectors in U
to the Ωi. We also define the local spaces Wi of tangential vectors as

Wi := {(ui · ti) ti restricted to ∂Ωi \ ∂Ω | ui ∈ Ui}.

The vectors in Wi are uniquely determined by the degrees of freedom on ∂Ωi. In
the following, the column vector of degrees of freedom of ui ∈ Wi will be denoted by
ui, and it will be convenient to use the same notation for spaces of vectors and the
corresponding spaces of degrees of freedom.

The finite element discretization of (1) gives rise to a symmetric, positive definite
linear system. The degrees of freedom inside the substructures and on ∂Ω only belong
to one substructure and can be eliminated in parallel by block Gaussian elimination.
We are then left with a linear system involving only the degrees of freedom on Γ. Let
Si be the local Schur complement relative to the degrees of freedom on ∂Ωi \ ∂Ω

Si : Wi −→ Wi.

If a local vector on Ωi is divided into two subvectors, of degrees of freedom corre-
sponding to edges inside Ωi and on ∂Ωi \ ∂Ω, respectively, the local stiffness matrix
of Ai can be written as

Ai =

[
AIIi AIBi

ABIi ABBi

]
,

and the Schur complement Si is defined as

Si := ABBi −ABIi
(
AIIi

)−1
AIBi .

Before introducing our algorithms, we need to define a set of local scaling functions.
These functions are constructed with the values of the coefficient b and ensure that
the condition number of our iterative methods is independent of the jumps of both
coefficients. For a substructure Ωi, we define a piecewise constant function µ†i on
∂Ωi \ ∂Ω such that

µ†i |e ≡
bδi

bδi + bδk
, e ⊂ ∂Ωi ∩ ∂Ωk, e ∈ Eh,
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where δ ≥ 1/2 is arbitrary but fixed. Let Di be the diagonal matrix that represents
the multiplication of vectors in Wi by µ†i .

Conjugate Gradient algorithms

The two methods that we consider can be described as projected preconditioned con-
jugate gradient (PPCG) algorithms. We suppose that we are looking for the solution
of a symmetric, positive definite linear system

Fz = d, z ∈ V, (2)

arising from a finite element discretization of an elliptic problem.
We first introduce a suitable subspace V0 ⊂ V , of low dimension K, that will play

the role of a coarse space, and define P0 as the projection onto V0 that is orthogonal
with respect to the scalar product induced by F . The operator

P := I − P0,

is also an orthogonal projection and, if

V = V0 ⊕ V ⊥,

we have that Range(P ) = V ⊥. Let z0 = P0z be the projection of the solution z onto
V0.

We consider the following preconditioned system

PMP t Fz = PMP t d, z ∈ z0 + V ⊥, (3)

where the preconditioner M has the form

M :=
N∑
i=1

Mi,

and the application of the local component Mi involves the solution of a local problem
on the substructure Ωi. Here, P t denotes the transpose of the matrix P . Recalling
the definition of P0, we see that P t �= P , in general.

A full description of the conjugate gradient method applied to Equation (3) can
be found in [FCM95, Tos00, TK99]. Here, we only remark that the action of the
projection P on a vector can be evaluated at the expense of applying the matrix F
and of solving a coarse problem of dimension K. Moreover, the action of P t does not
need to be calculated in practice.

A suitable choice of the projection P ensures that the condition number of the
corresponding iterative method is independent of the number of substructures and
depends only on the ratio ρ = H/h, which is a measure of the number of degrees of
freedom in each substructure. In addition, a suitable choice of the preconditioner M
ensures that the condition number is slowly increasing with ρ and is independent of
possibly large jumps of the coefficients.
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A Balancing method

The method that we present is a variant of the Neumann–Neumann algorithm intro-
duced and analyzed in [Tos00]: it employs the same preconditioner M , but a different
coarse space V0. In [Tos00], the partition FH is required to be a conforming coarse
triangulation of Ω and V0 is the standard edge element space defined on it, while,
here, the partition is arbitrary and the basis functions of V0 are associated to the
substructures.

We consider the linear system obtained from the approximation of Problem (1)
on the conforming finite element space U and define W as the space of tangential
components of the vectors in U on Γ. We note that the restrictions of the vectors in
W to ∂Ωi \ ∂Ω belong to Wi, for i = 1, . . . , N . After eliminating the variables interior
to the substructures, we are left with the system

Su = g, u ∈ W, (4)

where S is the global Schur complement matrix relative to Γ and g is the resulting
right hand side. We define the operators

Rti : Wi −→ W, i = 1, . . . , N,

as the extensions by zero of local vectors in Wi on the whole Γ, and note that the Ri
are the restriction operators from W to Wi. We can then write

S =
N∑
i=1

RtiSiRi.

Problem (4) then corresponds to the choice F = S, d = g, V = W , in (2). We define
the coarse space as the span of the extensions to Γ of the vectors {ti}:

V0 := span{Rti ti | i = 1, . . . , N}.

It can easily be checked that the dimension of V0 is equal to the number of substruc-
tures minus one.

Following [Tos00], we define the local components of the preconditioner as

Mi := RtiDi S
−1
i DiRi, i = 1, . . . , N.

A FETI method

The method presented in this section was originally developed and analyzed in [TK99].
We define the non–conforming space Ŵ as

Ŵ :=
N∏
i=1

Wi.

We note that the vectors in Ŵ are in general discontinuous across Γ and, given two
substructures, Ωi and Ωk, that share a common edge, there are two different fields on
∂Ωi ∩ ∂Ωk that correspond to a vector u ∈ Ŵ . We define the block diagonal matrix

Ŝ := diag{S1, S2, · · · , SN} : Ŵ −→ Ŵ .
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We can then formulate our finite element problem as a constrained minimization
problem: Find u ∈ Ŵ , such that

1
2u
t Ŝ u− ut g −→ min

Bu = 0

}
(5)

where the matrix B evaluates the difference of the corresponding degrees of freedom
on Γ and can be written as

B =
[
B(1) B(2) · · · B(N)

]
.

Here, g is constructed with the local load vectors on the substructures. We then
introduce a vector of Lagrange multipliers λ, to enforce the constraints, and obtain
a saddle point formulation of (5). After eliminating the primal variable u, we obtain
the following equation for the dual variable λ, see [FCM95, TK99],

BŜ−1Btλ = BŜ−1g, λ ∈ Range(B). (6)

We consider a PPCG method for the solution of (6). This corresponds to the choice
F = BŜ−1Bt, d = BŜ−1g, V = Range(B), in (2). We note that V is the space of
jumps of the tangential vectors in Ŵ . We then define the coarse space V0 as a space
of scaled jumps of the local vectors {ti}

V0 := span{Bi (I −Di) ti | i = 1, . . . , N}.

We refer to [TK99, Sect. 5] for additional details and for a discussion of the dimension
of V0. In particular, we note that the vectors {ti} also need to be scaled using the
lengths of the edges in Eh if the mesh Th is not uniform.

Following [TK99, KW99], we define the local components of the preconditioner as

Mi := (BD̂−1Bt)−1 BiD−1
i ŜiD

−1
i Bti (BD̂−1Bt)−1,

where D̂ := diag{D1, D2, · · · , DN}.

Numerical results

We first remark that, for the Balancing method, at each conjugate gradient step,
we need to solve one Neumann problem on each substructure for the application of
the preconditioner, and two Dirichlet problems for the application of S and P (we
recall that P is a projection that is orthogonal with respect to the scalar product
induced by F = S). Similarly, for the FETI method, at each step, we need to solve
two Neumann problems and one Dirichlet problem on each substructure. We refer to
[FCM95, Tos00, TK99] for additional comments.

In our numerical tests, we consider the domain Ω = (0, 1)2 and two uniform tri-
angulations Th and FH . The fine triangulation is made of triangles for the FETI
method, and squares for the Balancing method. It consists of 2 ∗ n2 triangles and n2

squares, respectively, with h = 1/n. We note that, as opposed to the case of nodal
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Figure 1: Case with a = 1, b = 1, n = 32, 64, 128, 192, 256. Estimated condition
number (asterisk) and least–square second order logarithmic polynomial (solid line),
versus ρ = H/h for the Balancing (on the left) and the FETI (on the right) methods.
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Figure 2: Checkerboard distribution of the coefficients in the unit square.

elements, for a fixed value of n, triangular and rectangular meshes do not give rise
to edge element spaces of the same dimension. Nevertheless, the mesh size h and the
order of accuracy is the same, see [N8́0], and our comparisons of the two methods are
still reasonably fair. The coarse triangulation consists of nc2 squares which are unions
of fine elements, with H = 1/nc. The substructures Ωi are the elements of the coarse
triangulation FH . Throughout, we use the value δ = 1/2.

We first consider a case with constant coefficients and meshes with
n = 32, 64, 128, 192, 256. Figure 1 shows the estimated condition number (aster-
isks), for a = b = 1, as a function of ρ = H/h, for different values of n. The results
for the FETI method are taken from [TK99]. For a fixed value of ρ, the condition
number is quite insensitive to the dimension of the fine mesh. We have also plotted
the best second order logarithmic polynomial least–square fits; our numerical results
for both methods are consistent with the bound for the condition number

κ(PMP tF ) ≤ C

(
1 + log

H

h

)2

,

and suggest that this bound is sharp. We note that this bound was proved in [TK99]
for the FETI method.

We then consider some cases where the coefficients have jumps. In Table 1, we
show some results when the coefficient b has jumps across the substructures. We



SUBSTRUCTURING METHODS FOR MAXWELL’S EQUATIONS 221

b2, ρ 4 8 16
10−4 15.6 (22) 13.4 (22) 12.1 (22)
10−3 15.1 (21) 13.2 (21) 12.1 (23)
10−2 13.8 (20) 12.5 (21) 11.9 (23)
10−1 10.8 (19) 10.8 (21) 11.5 (22)
1 6.31 (17) 7.55 (19) 10.2 (21)
10 3.87 (13) 5.41 (15) 7.36 (18)
102 2.33 (8) 3.12 (10) 3.87 (11)
103 3.70 (12) 4.77 (14) 5.56 (16)
104 3.96 (14) 4.33 (14) 4.64 (15)
105 3.27 (12) 3.55 (13) 4.34 (14)
106 2.99 (12) 3.44 (13) 4.28 (14)

4 8 16
4.12 (17) 5.99 (22) 8.42 (26)
4.09 (16) 5.96 (20) 8.37 (25)
4.04 (15) 5.88 (19) 8.25 (23)
3.88 (13) 5.65 (17) 7.91 (21)
3.44 (12) 5.02 (15) 6.99 (18)
2.56 (9) 3.73 (12) 5.16 (14)
1.76 (7) 2.41 (8) 3.10 (10)
2.51 (9) 3.37 (11) 3.99 (12)
2.74 (10) 3.09 (11) 3.51 (11)
2.20 (9) 2.73 (10) 3.35 (11)
2.09 (9) 2.65 (10) 3.34 (12)

Table 1: Checkerboard distribution for b: (b1, b2). Estimated condition number and
number of CG iterations to obtain a relative preconditioned residual less than 10−6

(in parentheses), versus ρ = H/h (columns) and b2 (rows), for the Balancing (on the
left) and the FETI (on the right) methods. Case of n = 128, a = 1, and b1 = 100.

consider the checkerboard distribution shown in Figure 2, where b is equal to b1 in the
shaded area and to b2 elsewhere. For a fixed value of n = 128, b1 = 100, and a = 1, the
estimated condition number and the number of iterations in order to obtain a reduction
of the norm of the preconditioned residual by a factor 10−6, are shown as a function
of ρ = H/h and b2. For b2 = 100, the coefficient b has a uniform distribution, and this
corresponds to a minimum for the condition number and the number of iterations for
both methods. When b2 decreases or increases, the condition number and the number
of iterations also increase, but they can still be bounded independently of b2. We
observe that the two methods give comparable iteration counts.

In Table 2, we show some results when the coefficient a has jumps. We consider
the checkerboard distribution shown in Figure 2, where a is equal to a1 in the shaded
area and to a2 elsewhere. For a fixed value of n = 128, a1 = 0.01, and b = 1, the
estimated condition number and the number of iterations are shown as a function
of ρ = H/h and a2. We remark that for a2 = 0.01, the coefficient a has a uniform
distribution. For both methods, a slight increase in the number of iterations and the
condition number is observed, when a2 is decreased or increased and when H/h is
large.
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24. FEM-FSM Combined Method for 2D Exterior
Laplace and Helmholtz Problems

T. Ushijima1

Introduction

Consider the Poisson equation −∆u = f in a planar exterior domain of a bounded
domain O. Assume that f = 0 in the outside of a disc with sufficiently large diameter.
The solution u is assumed to be bounded at infinity. Discretizing the problem, we
employ the finite element method (FEM, in short) inside the disc, and the charge
simulation method (CSM, in short) outside the disc. A result of mathematical analysis
for this FEM-CSM combined method is reported in this paper.

CSM is a typical example of the fundamental solution method (FSM, in short),
through which the solution of homogeneous partial differential equation is approxi-
mated as a linear combination of fundamental solutions of differential operator. Hence
the combined method for 2D exterior Laplace problem is extendable to the planar ex-
terior reduced wave equations. Our discretization procedure for the reduced wave
equation is also described in the paper.

Boundary bilinear forms of Steklov type for exterior

Laplace problems and its CSM-approximation form

Let Da be the interior of the disc with radius a having the origin as its center, and
let Γa be the boundary of Da. Let Ωe = (Da ∪ Γa)C , which is said to be the exterior
domain. We use the notation r = r(θ) for the point in the plane corresponding to
the complex number reiθ with r = |r| where |r| is the Euclidean norm of r ∈ R2.
Similarly we use a = a(θ), and Sρ = Sρ(θ), corresponding to aeiθ with a = |a|, and ρeiθ

with ρ = |Sρ|, respectively.
Fix a positive integer N . Set

θ1 =
2π
N

, θj = jθ1 for j ∈ Z.

Fix a positive number ρ so as to satisfy 0 < ρ < a. Let

Sρj = Sρ(θj), aj = a(θj), 0 ≤ j ≤ N − 1.

The points Sρj , and aj , are said to be the source, and the collocation, points, respec-
tively. The arrangement of the set of source points and collocation points introduced as
above is called the equi-distant equally phased arrangement of source points
and collocation points, in this paper.

1The University of Electro-Communications, ushijima@im.uec.ac.jp
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For functions u(a(θ)) and v(a(θ)) of H1/2(Γa), let us introduce the boundary bilin-
ear form of Steklov type for exterior Laplace problem through the following formula:

b(u, v) = 2π
∞∑

n=−∞
|n|fngn,

where fn, and gn, are continuous Fourier coefficients of u(a(θ)), and v(a(θ)), respec-
tively. Namely fn is defined through the following formula:

fn =
1
2π

∫ π

−π
u(a(θ))e−inθdθ.

It is to be noted the following fact:
If u(a(θ)) is the boundary value on Γa of the function u(r) satisfying the following

boundary value problem (E) of (1) with ϕ = u(a(θ)):

(E)


−∆u = 0 in Ωe,

u = ϕ on Γa,
sup
Ωe

|u| < ∞,
(1)

then

b(u, v) = −
∫
Γa

∂u

∂r
vdΓ. (2)

(In (2), dΓ is the curve element of Γa. Namely dΓ = adθ in the polar coordinate
expression.)

A CSM approximate form for b(u, v), which is denoted by b
(N)

(u, v), is represented
through the following formula (3):

b
(N)

(u, v) = −2π
N

N−1∑
j=0

∂u(N)(aj)
∂r

v(N)(aj), (3)

where u(N)(r), and v(N)(r), are CSM-approximate solutions for u(r) satisfying (E) of
(1) with ϕ = u(a(θ)), and ϕ = v(a(θ)), respectively. Namely u(N)(r) is determined
through the following problem (E(N)) of (4) with f(a(θ)) = u(a(θ)):

(E(N))



u(N)(r) =
N−1∑
j=0

qjGj(r) + qN ,

u(N)(aj) = f(aj), 0 ≤ j ≤ N − 1,

N−1∑
j=0

qj = 0,

(4)

where
Gj(r) = E(r− Sρj)− E(r), E(r) = − 1

2π
log r.
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Problem (E(N)) of (4) is to find N + 1 unknowns qj , 0 ≤ j ≤ N, and it is uniquely
solvable for any fixed ρ ∈ (0, a). See [KO88], [Ush98a], and [Ush98b].

Let us use the parameter γ as

γ =
ρ

a
,

and let

N(γ) =
log 2
− log γ

.

Modifying the treatment in [KO88] appropriately, we have the following Theorem:

Theorem 1 Fix a positive number b, 0 < b < a. Let u(r) be harmonic in a domain
containing the exterior domain of the disc with radius b having the origin as its center.
And let u(N)(r) be the solution of the problem (E(N)) of (4) with the data f(a(θ)) =
u(a(θ)). Let N ≥ N(γ). Then there exist constants B > 0 and β ∈ (0, 1), independent
of u (with the property above) and N , such that the following two estimates are valid:

max
r∈Ωe

∣∣∣u(r)− u(N)(r)
∣∣∣ ≤ B · βN ·max

|r|=b
|u(r)| ,

max
r∈Ωe

∣∣∣grad u(r)− grad u(N)(r)
∣∣∣
R2

≤ B · βN ·max
|r|=b

|u(r)| .

FEM-CSM combined method for exterior Laplace prob-
lems

Fix a simply connected bounded domain O in the plane. Assume that the boundary C
of O is sufficiently smooth. The exterior domain of C is denoted by Ω. Fix a function
f ∈ L2(Ω) with the property that the support of f , supp(f), is bounded. Choose a so
large that the open disc Da may contain the union O ∪ supp(f) in its interior. The
following Poisson equation (E) of (5) is employed as a model problem.

(E)


−∆u = f in Ω,

u = 0 on C,
sup
|r|>a

|u| < ∞.
(5)

The intersection of the domain Ω and the disc Da is said to be the interior domain,
denoted by Ωi: Ωi = Ω ∩ Da. Consider the Dirichlet inner product a(u, v) for u, v ∈
H1(Ωi):

a(u, v) =
∫
Ωi

grad u grad v dΩ.

Since the trace γav on Γa is an element of H1/2(Γa) for any v ∈ H1(Ωi), the boundary
bilinear form of Steklov type b(u, v) is well defined for u, v ∈ H1(Ωi). Therefore we
can define a continuous symmetric bilinear form:

t(u, v) = a(u, v) + b(u, v)
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for u, v ∈ H1(Ωi). Let F (v) be a continuous linear functional on H1(Ωi) defined
through the following formula:

F (v) =
∫
Ωi

fv dΩ.

A function space V is defined as follows:

V =
{
v ∈ H1(Ωi) : v = 0 on C

}
.

Using these notations, the following weak formulation problem (Π) of (6) is defined.

(Π)
{

t(u, v) = F (v), v ∈ V,
u ∈ V.

(6)

Admitting the equivalence between the equation (E) of (5) and the problem (Π)
of (6), we consider the problem (Π) of (6) and its approximate ones hereafter.

Fix a positive number ρ so as to satisfy 0 < ρ < a. For a fixed positive integer N ,
set the points Sρj,aj , 0 ≤ j ≤ N − 1, as the equi-distant equally phased arrangement
of source points and collocation points.

A family of finite dimensional subspaces of V :

{VN : N = N0, N0 + 1, . . . }

is supposed to have the following properties:

(VN − 1) VN ⊂ C(Ωi).

(VN − 2)
{

For any v ∈ VN , v(a(θ)) is an equi−distant piecewise linear
continuous 2π−periodic function with respect to θ.

(VN − 3) min
v∈VN

a(v − vN ) ≤
C

N
||v||H2(Ωi), v ∈ V ∩H2(Ωi).

In the property (VN − 3), C is a constant independent of N and v, and

a(v) = a(v, v)1/2, v ∈ V.

To construct a family {VN} with the conditions (VN − 1), (VN − 2) and (VN − 3), we
employ the curved element technique due to [Zlá73] .

For u, v ∈ H1(Ωi) ∩ C(Ωi), we define a bilinear form t
(N)

(u, v) as follows.

t
(N)

(u, v) = a(u, v) + b
(N)

(u, v).

A family of approximate problems (Π
(N)

) of (7) is stated as follows.

(Π
(N)

)

{
t
(N)

(uN , v) = F (v), v ∈ VN ,

uN ∈ VN .
(7)

We can show the following error estimate:
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Theorem 2 Suppose that supp(f) is contained in a disc Db with the radius b(< a)
having the origin as its center. Let the function D(ξ) of ξ ∈ (0, 1) be defined through

D(ξ) =
ξ

(1− ξ)3
.

Let N ≥ N(γ). Then there is a constant C such that

||u− uN ||H1(Ωi) ≤ C

{
BβN +

1 +D( ba )
N

}
||f ||L2(Ωi),

where the constants B and β ∈ (0, 1) are described in Theorem 1 for the set of param-
eters {a, ρ, b}. In the above, the constant C is independent of the inhomogeneous data
f and N .

Reduced wave problem in the outside of an open disc

Let k be the length of the wave number vector. Consider the following reduced wave
problem (Ef) of (8) in the exterior domain Ωe of the circle Γa with radius a having
the origin as its center.

(Ef)


−∆u− k2u = 0 in Ωe,

u = f on Γa,
lim
r→∞

√
r
{
∂u
∂r − iku

}
= 0.

(8)

In the above, f is a complex valued continuous function on Γa.
The solution u = u(r) of the problem (Ef) of (8) is represented as

u =
∞∑

n=−∞
fn

H
(1)
n (kr)

H
(1)
n (ka)

einθ,

where fn is the continuous Fourier coefficient of the function f(a(θ)), and H
(1)
n (z) is

the n-th Hankel function of the first kind.
The boundary bilinear form b(u, v) of Steklov type corresponding to the problem

(Ef) of (8) is given by the following formula:

b(u, v) = 2π
∞∑

n=−∞
µ|n|fngn,

where

µn = k
Ḣ

(1)
n (ka)

H
(1)
n (ka)

with Ḣ(1)
n (z) =

d

dz
H(1)
n (z) for n = 0, 1, 2, . . . .
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FSM approximate problem for the reduced wave prob-

lem in the outside of an open disc

Fix a positive number ρ so as to satisfy 0 < ρ < a. For a fixed positive integer N , set
the points Sρj,aj , 0 ≤ j ≤ N − 1, as the equi-distant equally phased arrangement of
source points and collocation points.

The FSM approximate problem (E(N)
f ) of (9) for the problem (Ef) of (8) in the case

of equi-distant equally phased arrangement of source points and collocation points is
defined through the following:

(E(N)
f )

 u(N)(r) =
∑N−1
j=0 qjGj(r),

u(N)(aj) = f(aj), 0 ≤ j ≤ N − 1.
(9)

We use basis functions Gj(r) in this problem represented as follows, with the use of
the constant multiple of the fundamental solution of Helmholtz equation, H(1)

0 (kr),

Gj(r) = H
(1)
0 (k|reiθ − ρeiθj |), 0 ≤ j ≤ N − 1.

FSM approximate form for the boundary bilinear

form of Steklov type

Setting
g(θ) = H

(1)
0 (k|aeiθ − ρ|),

we define for l ∈ Z,
gl = g(θl).

The two-sided infinite sequence {gl : l = 0,±1,±2, . . .} has the period N . Further it is
symmetric with respect to N/2. A wave propagation matrix G is defined through

G = (gjk)0≤j,k≤N−1, gjk = gk−j , 0 ≤ j, k ≤ N − 1.

It is to be noted that the matrix G is a complex valued symmetric cyclic square matrix
of order N . The problem (E(N)

f ) of (9) is represented as

(E) Gq = f , with q = (qj)0≤j≤N−1, f = (f(aj))0≤j≤N−1.

Denote eigenvalues of the matrix G by λj , 0 ≤ j ≤ N − 1. Then we have the
following representation:

λj =
N−1∑
l=0

glω
jl, 0 ≤ j ≤ N − 1, with ω = eiθ1 .

All the eigenvalues ofG differ from zero if and only if the matrixG is regular. Therefore
the problem (E(N)

f ) of (9) is uniquely solvable if and only if the following condition
holds good:

λj �= 0, 0 ≤ j ≤ N − 1.
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Assuming the above condition, define an FSM approximate boundary bilinear form

b
(N)

(u, v) of the boundary bilinear form b(u, v) through the same formula (3) as in
the case of exterior Laplace problem, in which u(N)(r), and v(N)(r), are solutions of
the FSM approximate problem (E(N)

f ) of (9) with the boundary data f = u(a(θ)), and
f = v(a(θ)), respectively.

FEM-FSM combined method for the reduced wave

problem in the exterior of a general scattering body

Fix a simply connected bounded domain O in the plane. Assume that the boundary
C of O is sufficiently smooth. The exterior domain of C is denoted by Ω. Let g be
a function representing the plane wave with the wave number vector (l,m). More
precisely, set

g(x, y) = ei(lx+my), l2 +m2 = k2.

Consider the following reduced wave problem (E) of (10).

(E)


−∆u− k2u = 0 in Ω,

u+ g = 0 on C,
lim
r→∞

√
r
{
∂u
∂r − iku

}
= 0.

(10)

As in the case of Poisson equation in the second section, the intersection of the domain
Ω and the disc Da is said to be the interior domain, denoted by Ωi.

For complex valued functions u, v ∈ H1(Ωi), consider the Dirichret inner product
a(u, v):

a(u, v) =
∫
Ωi

grad u grad v dΩ,

where v represents the complex conjugate of v. Further the L2 inner product for
u, v ∈ L2(Ωi) is denoted by m(u, v):

m(u, v) =
∫
Ωi

uv dΩ.

Since the trace γav on Γa is an element of H1/2(Γa) for any v ∈ H1(Ωi), we can see
the boundary bilinear form of Steklov type b(u, v) is well defined for u, v ∈ H1(Ωi)
(See, for example, [Zeb92].). Therefore we can define a continuous bilinear form:

t(u, v) = a(u, v)− k2m(u, v) + b(u, v)

for u, v ∈ H1(Ωi). Hereafter, denoting the function space H1(Ωi) by W , let

V = {v ∈ W : v = 0 on C} .

With these notations, the following weak formulation problem (Π) of (11) is de-
fined.

(Π)

 t(u, v) = 0, v ∈ V,
u+ g = 0 on C,
u ∈ W.

(11)
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Admitting the equivalence between the equation (E) of (10) and the problem (Π) of
(11), we consider the problem (Π) of (11) and its approximate ones hereafter.

A family of finite dimensional subspaces of W ,

{WN : N = N0, N0 + 1, . . . } ,

is supposed to have the following properties:

(WN − 1) WN ⊂ C(Ωi).

(WN − 2)
{

For any v ∈ WN , v(a(θ)) is an equi−distant piecewise linear
continuous 2π−periodic function with respect to θ.

Define an approximate space VN of V through

VN = WN ∩ V.

For u, v ∈ H1(Ωi) ∩ C(Ωi), set

t
(N)

(u, v) = a(u, v)− k2m(u, v) + b
(N)

(u, v).

Fix an element gN of WN which coincides with g at the nodal points on the interior
boundary C.

Now we can set the following approximate problem (Π
(N)

) of (12).

(Π
(N)

)


t
(N)

(uN , v) = 0, v ∈ VN ,

uN + gN = 0 on C,
uN ∈ WN .

(12)

Thus we have formulated an FEM-FSM combined method for the reduced wave prob-
lem in the exterior of a general scattering body.
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25. A Parallel Interface Preconditioner for the
Mortar Element Method in Case of Jumping
Coefficients

Yu. Vassilevski 1

Introduction

The paper is devoted to designing an interface preconditioner for the mortar element
method. After brief overview of the problem in Introduction, we discuss the mortar
element method with different types of the Lagrange multiplier spaces. Next, we con-
sider the domain decomposition technique for the solution of mortar element systems
and outline the general framework of the solution of saddle-point systems which result
from the mortar element system. In the last two sections, we constuct the interface
preconditioner for the saddle-point Schur complement, which is the goal of the paper,
and we present numerical experiments illustrating the basic properties of the interface
preconditioner.

Designing the interface preconditioner is one of the most difficult problems in
the mortar element method. In this paper we continue development of the Dirichlet-
Dirichlet preconditioner [DA99, KV99]. We extend the method to the case of arbitrary
type of Lagrange multiplier space and large jumps of coefficients. The proposed algo-
rithm possesses natural parallelism. It is illustrated on a set of numerical experiments.

The mortar element method with Lagrange multipli-
ers

We consider a macro-hybrid P1 finite element method with respect to a decomposition
of the computational domain Ω ⊂ R3 intom nonoverlapping regular shaped polyhedral
subdomains Ωi, 1 ≤ i ≤ m, i.e., Ω̄ = ∪mi=1Ω̄i, Ωi ∩Ωj = ∅, 1 ≤ i �= j ≤ m. We assume
this decomposition to be geometrically conforming in the sense that if Θ̄ij = Ω̄i∩Ω̄j �=
∅, i �= j, then Θ̄ij is either a common vertex, a common edge, or a common face of Ωi
and Ωj . We refer to S :=

⋃
{Θ̄ij : | Θij |�= 0, 1 ≤ i �= j ≤ m} as the skeleton of the

decomposition. We further decompose the skeleton, according to

S =
K⋃
k=1

γ̄k =
K⋃
k=1

δ̄k, (1)

into the so-called mortars γk and non-mortars δk, 1 ≤ k ≤ K, where each mortar is the
entire open face of two adjacent subdomains ΩM(k) and ΩM̄(k), 1 ≤ M(k) �= M̄(k) ≤
m, i.e., γk = ΘM(k),M̄(k). The non-mortars δk denote the corresponding opposite side

1Institute of Numerical Mathematics, Gubkina 8, 117333, Moscow, Russia,
vasilevs@dodo.inm.ras.ru. This work was supported in part by the Russian Foundation for
Basic Research Grant 99-01-01189, by the French-Russian A.M.Lyapounov Institute of Informatics
and Applied Mathematics, and CNRS (France)
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of the mortars γk. Choosing H1/2(δk) as the trace space of H1(ΩM̄(k)) on δk, we
introduce

V :=
m∏
i=1

H1(Ωi), Λ :=
K∏
k=1

H−1/2(δk).

We consider an elliptic problem in the macro-hybrid primal variational formulation
[BF91]: Find (u, λ) ∈ V × Λ such that

a(u, v) + b(λ, v) = l(v), v ∈ V, (2)
b(µ, u) = 0, µ ∈ Λ.

Here, the bilinear forms a(·, ·) : V × V → R, b(·, ·) : Λ × V → R and the functional
l(·) : V → R are given by

a(v,w) :=
m∑
i=1

ai(v,w), ai(v,w) :=
∫
Ωi

[ρ∇v · ∇w + εvw]dx,

b(µ, v) :=
K∑
k=1

bk(µ, v), bk(µ, v) :=< µ, [v]J >δk , l(v) :=
m∑
i=1

∫
Ωi

fvdx,

where [v]J |δk := v|ΩM̄(k)
− v|ΩM(k) , and < ·, · >δk refers to the dual pairing between

H−1/2(δk) and H1/2(δk), f ∈ L2(Ω). For simplicity we assume that ε(x) = εi ≡
consti > 0, ρ(x) = ρi ≡ consti > 0 in Ωi, i = 1, . . . ,m.

Let Ωhi be a conformal simplicial triangulation of Ωi, i = 1, . . . ,m. We denote
by V hi the space of P1 conforming finite elements on Ωi associated with triangulation
Ωhi . It is obvious that the traces of V h

M̄(k)
and V hM(k) on δk are, generally speaking,

different.
We denote δhk = Ωh

M̄(k)
∩ δk and consider three choices of the discrete Lagrange

multiplier space associated with continuous piecewise linear [BM94, Kuz95], piecewise
constant [AT95] and the Dirac functions, respectively:

Λh(δk) :=
{
v =

∑
i∈{N (δhk )}

βiψi, ψi =
∑

j∈{B(δhk )}

(ϕi, ϕj)L2(δk)∑
l∈{N (δhk )}

(ϕl, ϕj)L2(δk)
ϕj + ϕi

}
(3)

Λh(δk) :=
{
v|σ ∈ P0(σ), σ ∈ D(δhk )

}
(4)

Λh(δk) :=
{
v =

∑
i∈{N (δhk )}

βiδ(xi)
}

(5)

Here N (δhk ) is the set of inner nodes of δhk , B(δhk ) is the set of the nodes of δhk lying on
∂δk, and D(δhk ) is the mesh dual to δhk [Fei93]. The element σ of D(δhk ) with a center
node xi is defined via the baricentric coordinates on elements e of δhk surrounding
xi, λj(e), j = 1, 2, 3 : σ = {x|λj(x) ≥ max

l �=j
λl, λj(xi) = 1}. Notation δ(x) stands for
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the Dirac function and ϕi stands for the standard Courant basis function, while {A}
denotes the set of indexes for nodes belonging to A.

Setting

V h :=
m∏
i=1

V hi and Λh :=
K∏
k=1

Λh(δk),

the mortar finite element approximation of (2) requires the computation of (u, λ) ∈
V h × Λh such that

a(u, v) + b(λ, v) = l(v), v ∈ V h, (6)
b(µ, u) = 0, µ ∈ Λh.

We note that in contrast to (3),(4), in case (5) Λh/⊂ Λ and the mortar finite elements
are nonconforming ones. Since the paper is addressing a solution procedure for (6),
we do not discuss approximation properties of (6) here.

In the sequel, we denote by A ∼ B the spectral equivalence between the matrices
A and B or proportionality between values A and B, and by c or C, with or without
subscripts, positive constants.

Domain decomposition solver

General framework

The finite element problem (6) results in the system of linear algebraic equations in
the saddle-point form:

[
A BT

B 0

] [
u
λ

]
=
[

f
0

]
, or


A1 0 BT1

· ·
· ·

· ·
0 Am BTm
B1 . . . Bm 0




u1
·
·
·

um
λ

 =


f1
·
·
·

fm
0

 ,

(7)

where the block representations of the matrices A and B are associated with the
definition of the spaces V h and Λh, while the matrix A and the vector f are specified by
the bilinear form a(u, v) and the functional l(v), respectively. Under the assumptions
made, matrices Ai are symmetric positive definite and the whole matrix of system (7)
is nonsingular.

The linear problem (7) may be solved by several iterative techniques (the reader is
referred to [HIK+98, Kuz95] and references therein). The construction of a precondi-
tioner Rλ for the matrix BA−1BT is one of the most important issues. Usually Rλ is
called to be an interface preconditioner, or a Lagrange multiplier preconditioner. One
of possible constructions is the Dirichlet-Dirichlet preconditioner [DA99, KV99]. The
goal of this paper is to develop the parallel version of the Dirichlet-Dirichlet precondi-
tioner which is robust to both the types of Lagrange multipliers spaces and the jump
of coefficients.
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Interface preconditioner

Let Γi := ∂Ωi \ ∂Ω, nΓi be the number of nodes of Γhi := ∂Ωhi ∩ Γi, MΓi ∈ RnΓi×nΓi

be the boundary mass matrix, di be the diameter of Ωi, i = 1, . . . ,m.
We introduce the matrix PΓi = w1,Γiw

T
1,Γi

,where w1,Γi =
1√
|Γi|

eΓi , eΓi = [1 . . . 1]T ∈
RnΓi . We note that (MΓiw1,Γi , w1,Γi) = 1, and PΓiMΓi are the MΓi-orthogonal pro-
jectors, i = 1, . . . ,m. Let εi ≤ cρi/d

2
i and let Āi be a matrix generated on Ωhi by the

bilinear form ai(u, v) with ε = ρi/d
2
i . The matrices Ai and Āi have the block forms

Ai =
[

AΓi AΓiIi

AIiΓi AIi

]
and Āi =

[
ĀΓi ĀΓiIi

ĀIiΓi ĀIi

]
,

where AΓi , ĀΓi ∈ RnΓi×nΓi .

Lemma 1 [HIK+98, Kuz95] Under the assumptions made(
ĀΓi − ĀΓiIiĀ

−1
Ii

ĀIiΓi
)−1

+
1

εidi
PΓi ∼

(
AΓi −AΓiIiA

−1
Ii

AIiΓi
)−1

. (8)

The spectral equivalence takes place with constants independent of ρi, εi, di.

The above Lemma is used for the construction of a preconditioner to BA−1BT ,
since
BiA

−1
i BTi = BΓi(AΓi −AΓiIiA

−1
Ii

AIiΓi)−1BTΓi , where matrix BΓi is the interface sub-
block of Bi, Bi = (BΓi , O). Using (8) we have

BA−1BT =
m∑
i=1

BiA
−1
i BTi ∼

m∑
i=1

1
εidi

BΓiPΓiB
T
Γi + Ḡ, (9)

Ḡ =
m∑
i=1

BΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii

ĀIiΓi
)−1

BTΓi . (10)

Theorem 1 [KV99] Let the symmetric positive definite matrix D be such that the
spectrum of DḠ belongs to the interval [c1, c2], 0 < c1 < c2 and let

Rλ :=
m∑
i=1

1
εidi

BΓiPΓiB
T
Γi +D−1. (11)

Then

Rλ ∼ BA−1BT . (12)

The spectral equivalence takes place with constants independent of ρi, εi, di, m and
dependent on c1, c2.

MatrixRλ is a modification ofD−1 by a low rank matrixXXT =
m∑
i=1

1
εidi

BΓiPΓiB
T
Γi

with X =
(
. . . , 1√

εidi|Γi|
BΓieΓi , . . .

)
. The solution of a system with matrix Rλ may

be found by evaluations of matrix D:

R−1λ = D −DX(I−1m +XTDX)−1XTD,
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where Im ∈ Rm×m is the identity matrix. Thus, in order to construct a good precon-
ditioner for BA−1BT we have to find a preconditioner D to Ḡ such that DḠ ∼ I and
D is easily multiplied by a vector.

In order to motivate our further constructions, we briefly review already developed
ones. Let us suppose for a moment that ρi = 1, i = 1, . . . ,m. In [KV99] and in [DA99]
the following constructions were investigated, respectively:

D̃ =
m∑
i=1

BΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii

ĀIiΓi
)
BTΓi , (13)

D̃ = (BBT )−1BĀBT (BBT )−1. (14)

The choice (13) provides an easy parallel implementation, while (14) is not well paral-
lelized, since the global matrix BBT is to be factorized. A parallel iterative inversion
of BBT seems to be too expensive in view of large condition number of BBT (of order
of 100 in cases (3),(4)). On the other hand, the choice (13) yields the small ratio c2/c1
only in the case (5), in contrast to (14) providing satisfactory results in the case (3).
The main reason for that is a mutual annihilation of the jump matrices in the product
D̃Ḡ = (BBT )−1BĀBT (BBT )−1BĀBT .

A natural compromise between (13) and (14) is an approximation of (BBT )−1 by
a block diagonal matrix whose blocks are associated with interfaces. The construction
of this matrix will be considered later.

Another important modification stems from the properties of the Neumann-Neu-
mann preconditioner [DRLT91, MB96]. Preconditioning the interface Schur com-
plement by assembling Neumann problems requires certain weights for the Neumann
problems [KMV93]. By analogy with the Neumann-Neumann preconditioner we weight
the Dirichlet problems in (13) by diagonal matrices wΓi . The entries of wΓi are recip-
rocal to the number of host subdomains Ωi, for any interface node.

We return to construction of block diagonal approximation of (BBT )−1. Let BΓi,j

be the j-face block of matrix BΓi , then

BBT =
m∑
i=1

BΓiB
T
Γi =

m∑
i=1

 BΓi,1B
T
Γi,1

BΓi,1B
T
Γi,2

· · ·
BΓi,2B

T
Γi,1

BΓi,2B
T
Γi,2

· · ·
...

...
. . .

 = (15)

m∑
i=1

BΓi,1wΓiB
T
Γi,1

BΓi,2wΓiB
T
Γi,2

. . .

+
m∑
i=1

BΓi,1(1− wΓi)BTΓi,1 BΓi,1B
T
Γi,2

· · ·
BΓi,2B

T
Γi,1

BΓi,2(1− wΓi)BTΓi,2 · · ·
...

...
. . .

.

Such a decomposition of matrix BBT turns out to be numerically reasonable in the
sense that the inverse of the first term in (15) is a suitable substitution for (BBT )−1,
according to numerical evidence.

Taking into account the above observations we present the parallel version of
Dirichlet-Dirichlet preconditioner, in the case ρi = 1, i = 1, . . . ,m:

D =
m∑
i=1

F−1Γi
BΓiωΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii

ĀIiΓi
)
ωΓiB

T
ΓiF

−1
Γi

, (16)
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FΓi = blockdiag{FΓi,j}, FΓi,j = BΓi,j ωΓi B
T
Γi,j +BΓi( ,j( ωΓi( BTΓi( ,j( .

Here, Ωi( is the neighbor-subdomain to Ωi with shared faces j and jH. We note the
factorization of FΓi is feasible since FΓi is a sparse matrix.

Now let ρi > 0 be arbitrary. Then

Ḡ =
m∑
i=1

BΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii

ĀIiΓi
)−1

BTΓi ≡ (17)

≡
m∑
i=1

1
√
ρi

BΓi

(
ρ−1i ĀΓi − ρ−1i ĀΓiIiĀ

−1
Ii

ĀIiΓi
)−1

BTΓi
1

√
ρi

,

and the problem of construction D is reduced to the case ρi = 1 by substitutions
BΓi → BΓi/

√
ρi, Āi → Āi/ρi. Thus, the general form of the Dirichlet-Dirichlet

preconditioner is

D =
m∑
i=1

F−1Γi

1
√
ρi

BΓiωΓi

(
ρ−1i ĀΓi − ρ−1i ĀΓiIiĀ

−1
Ii

ĀIiΓi
)
ωΓiB

T
Γi

1
√
ρi

F−1Γi
,

FΓi = blockdiag{FΓi,j},

FΓi,j =
1

√
ρi

BΓi,j ωΓi B
T
Γi,j

1
√
ρi

+
1

√
ρi(

BΓi( ,j( ωΓi( BTΓi( ,j(
1

√
ρi(

,

which may be rewritten as:

D =
m∑
i=1

F−1Γi
BΓiω

ρ
Γi

(
ĀΓi − ĀΓiIiĀ

−1
Ii

ĀIiΓi
)
ωρΓiB

T
ΓiF

−1
Γi

, (18)

FΓi,j = BΓi,j ω
ρ
Γi

BTΓi,j +BΓi( ,j( ω
ρ
Γi(

BTΓi( ,j( , ωρΓi = ωΓi/ρi.

It is clear that (18) differs from (16) only in the scaled count matrices wρΓi .
Remark. The presence of Dirichlet boundary conditions for the original problem

reduces the rank of XXT since subdomains with a Dirichlet part of the boundary do
not contribute to XXT [Kuz95].

Numerical experiments

We present the effect of the Dirichlet-Dirichlet preconditioner for the model operator
−∇ · ρ∇ + ε with Neumann boundary conditions. The domain Ω is a union of four
similar tetrahedra Ωi sharing one common edge:

Ω =

{
x |

3∑
i=1

|xi| <
1
2
, x1 > 0

}
, m = 4,

Ω1 = {x ∈ Ω, x2 < 0, x3 < 0} , Ω2 = {x ∈ Ω, x2 < 0, x3 > 0} ,

Ω3 = {x ∈ Ω, x2 > 0, x3 < 0} , Ω4 = {x ∈ Ω, x2 > 0, x3 > 0} .
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We compare the Dirichlet-Dirichlet preconditioner Rλ for BA−1BT in three cases of
Lagrange multiplier spaces, (3), (4), (5). The comparison will be done for different
types of tetrahedral meshes: quasi-uniform, shape-regular, and anisotropic. We dis-
tinguish the above types of meshes by the metric H = diag{H1, H2, H3} in which the
meshes Ωhi become quasi-uniform, i.e. consist of the given number NT of shape-regular
(in metric H) tetrahedra of the same size (in metric H). In the tables below we show
the estimated condition number of preconditioned Schur complement BA−1BT and
the number of PCG iterations applied to a system with BA−1BT in order to reduce
the Euclidean norm of residual by a factor of 106.

Coef. Mesh quasi-uniform isotropic anisotropic
ρi NT 800 6000 39000 800 6000 800 6000

Λh(δk) from (3)
ρ1,2,3,4 = 1 cond(#it) 29(19) 45(25) 29(26) 37(17) 44(20) 26(17) 32(22)

ρ1,2 = 1, ρ3,4 = 104 cond(#it) 36(13) 18(11) 17(12) 81(23) 170(24) 59(18) 18(13)
ρ1,3 = 1, ρ2,4 = 104 cond(#it) 52(19) 83(23) 41(21) 91(21) 81(22) 44(17) 69(22)

Λh(δk) from (4)
ρ1,2,3,4 = 1 cond(#it) 29(20) 36(25) 28(24) 34(16) 36(17) 23(16) 29(19)

ρ1,2 = 1, ρ3,4 = 104 cond(#it) 32(13) 19(12) 17(12) 74(20) 170(22) 51(19) 18(12)
ρ1,3 = 1, ρ2,4 = 104 cond(#it) 49(19) 83(24) 35(21) 83(20) 81(22) 35(15) 65(23)

Λh(δk) from (5)
ρ1,2,3,4 = 1 cond(#it) 17(16) 18(20) 20(26) 17(14) 18(18) 16(13) 18(18)

ρ1,2 = 1, ρ3,4 = 104 cond(#it) 20(12) 41(19) 22(20) 20(11) 36(17) 23(12) 20(17)
ρ1,3 = 1, ρ2,4 = 104 cond(#it) 18(13) 19(15) 21(19) 18(10) 19(12) 18(10) 19(13)

Table 1: Condition number of R−1λ BA−1BT and #PCG iteration, ε = 1.

In Table 1 the quasi-uniform mesh is obtained on the basis of the metric H1 =
H2 = H3 = 1, and the isotropic and anisotropic refinements to the common edge
are defined by H1 = H2 = H3 = 0.5/(

√
y2 + z2 + 0.01) and H1 = 1, H2 = H3 =

0.5/(
√

y2 + z2+0.025), respectively. The meshes are generated in such a way that they
do not match on the interfaces. It implies that the number of tetrahedra in Ωhi is equal
to NT only approximately. We consider three different distributions of coefficients ρi
in Ω: no jump, two simply connected subdomains with constant coefficient, and the
chess pattern.

In the next example we consider the effects of small value of coefficient εi and
large number of subdomains m. The domain Ω = (0, 1)3 is split into m = 6 (resp.
48 or 384) tetrahedron subdomains Ωi of the same diameter di =

√
3 (resp.

√
3/2 or√

3/4), i = 1, . . . ,m. We consider the Helmholtz operator −∆+ ε with homogeneous
Neumann boundary condition on ∂Ω and restrict the set of possible triangulations
by quasi-uniform ones and take the Lagrange multiplier space (3). The number of
tetrahedra NT in Ωhi is chosen to be equal to 800. Slightly worse performance in the
cases m = 48, 384 is due to presence of the crosspoints.

In Table 3 we present the parallel properties of the method in terms of the execution
time of PCG iterations measured on different sets of processors. The measurement
was obtained using a DEC TruCluster with Dec alpha processors running at 400 MHz.



238 VASSILEVSKI

ε \m m = 6 m = 48 m = 384
ε = 1 cond (# it) 26(26) 64(44) 84(45)

ε = 10−2 cond (# it) 35(20) 61(33) 62(28)
ε = 10−4 cond (# it) 29(15) 40(18) 19(7)

Table 2: Condition number of R−1λ BA−1BT and #PCG iteration, quasi-uniform
meshes, ρ1,2,3,4 = 1, Λh(δk) from (3).

The Fortran code uses MPI library for interprocessor communications.

NT #Processors 2 4 8
800 time of PCG it. 3.0 1.5 0.9
2000 time of PCG it. 7.7 3.8 1.9

Table 3: Execution time of PCG iterations (sec), m = 48, quasi-uniform meshes,
ε = 1, ρ1,2,3,4 = 1.

Conclusions

The paper is addressing the construction of parallel interface preconditioner for the
mortar element method. The new version of the Dirichlet-Dirichlet method is dis-
cussed. It is easy to parallel and it is robust to such ”bad” parameters of an elliptic
boundary value problem as the number of subdomains, the mesh refinement, the jump
of the diffusion coefficient, the small value of perturbation parameter. Numerical ex-
periments exhibited the basic properties of the method.
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26. The Application of Operator Split Method to
Large-Scale Reservoir Simulatios Part I. a Priori
Estimates

H. Zhang1

Introduction

High performance computing technology offers the petroleum industry the ability to
solve previously prohibitive large-scale reservoir problems. In July 1999, our group,
in cooperation with the Petroleum Exploration and Development Institute of Daqing
Oil Field, China, ran a million-gridblock-scale reservoir simulation on DAWN 2000,
which is a home-made supercomputer, and a loosely coupled PC cluster seperately.
The parallel computing methods that we used derived from the domain decomposition
methods with no overlap. The next goal of our group is to solve reservoir simulations
with millions of gridblocks on parallel machines. Unfortunately, it seems that the
original computing method is not scalable enough. We believe that the reason is
rather geologic than mathematical. As the simulating area becomes larger and larger,
the geologic faults will be more and more complicated. Therefore, the non-matching
grids on the interfaces of the substructures will be increasing largely, and possessing
entirely different properties. This will inevitably lead to the poor performance of the
original computing methods.

The purpose of this paper is trying to find an effective way to remove as many of
the geologic non-matching grids as possible from the interfaces. The operator split
method, not a very new technique, proposed by Douglas and Dupont[JD71], can solve
this problem. Because, for quite a few reservoir problems, the reservoir Ω can be taken
to be unions of right prisms. Or, mathematically, Ω = ∪Ωi, where Ωi = Ωixy × [0, li],
Ωixy ⊂ R2. When only upright wells are available, the original reservoir problem
can be divided into an xy-direction, two-dimensional problem and a z-direction, one-
dimensional problem in some of the subdomains. So, the geologic non-matching grids
on the interfaces can be greatly reduced.

For a detailed introduction of operator split method, see [JD71] and [Mar90]. Gen-
eralizations of this method to parabolic problems on nonrectangular regions were
presented by Hayes [Hay81]. Special treatments for convection-diffusion problems,
parabolic and hyperbolic equations were considered by Krishnamachari, Hayes and
Russell[SHR89] (without theoretical analysis), Bramble, Ewing and Li[BEL89], Bialecki
and Fernandes[BF93], and Fernandes and Fairweather [FF91]. Applications of these
methods to problems in fluid flow, physics of semiconductors and elastoplastic dynam-
ics were described by Hayes and Krishnamachari [HK84], Berezin and Yanenko[BY84],
and Migual, Pinsky and Taylor[MPT83].

The main purpose of using operator split method here is to reduce the geologic
non-matching grids on the interfaces, instead of saving the memory costs and the

1R & D Center for Parallel Software, Institute of Software, Chinese Academy of Sciences,
zhy@mail.rdcps.ac.cn
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storage requirements as before. Based upon this method, we can further formulate
the domain decomposition algorithms. We expect that this combining method can
perform good scalability, and have nearly the same accuracy as the original methods,
which will be proved in this paper.

In this paper, we will make some a priori estimates for the operator split method
for reservoir problems. An optimal H1 convergence rate will be proved. It is necessary
to make a major, and probably unphysical assumption, as was done in [JR83], [Yua92],
[Che94] and [JDEW83], that the sources and sinks are smoothly distributed and the
resulting functions of interest are thus fairly smooth in space. The techniques involved
to prove the error bounds are quite different from the standard ones presented by
Douglas, Wheeler and Ewing, et.al.[JR83] [Yua92][JDEW83].

In this paper, we consider the single-phase, miscible displacement of one com-
pressible fluid with another in a porous medium. A set of model equations is given
as follows. For a more detailed description of the physical problem, see [Pea66]. Find
the concentration c = c(x, t) and p = p(x, t) that satisfy the following equations:

d(c)
∂p

∂t
+< · u = d(c)

∂p

∂t
−< · (a(c)< p) = q, x ∈ Ω, t ∈ J (1)

φ
∂c

∂t
+ b(c)

∂p

∂t
+ u · <c−< · (D(u)< c) = (ĉ− c)q, x ∈ Ω, t ∈ J (2)

where initial conditions and no flow boundary conditions are given by

p(x, 0) = p0(x), x ∈ Ω (3)
c(x, 0) = c0(x), x ∈ Ω (4)

and

u · ν = 0, x ∈ ∂Ω (5)
(D < c− cu) · ν = 0, x ∈ ∂Ω (6)

For simplicity, denote Ω = Ωxy×[0, l], J = (0, T ], and ν is the outward unit normal
vector on ∂Ω, the boundary of Ω. Here a(c), b(c), d(c), φ = φ(x) are specific reservoir
and fluid properties, u is the Darcy velocity of the fluid, D(u) is the diffusion coefficient
matrix which combines the effects of molecular diffusion and mechanical dispersion,
ĉ is the specific concentration at injection wells and the resident concentration at
production wells, and q = q(x, t) is the imposed external flow, positive for injection
and negative for production.

In [JR83] the authors presented and analyzed certain numerical approximations for
a two dimensional model. Extensions of these methods to more efficient time-stepping
procedures and methods of characteristics[Yua92] have since been developed.

The paper is organized as follows: In §2, the variational form and the elliptic pro-
jections of the problem are introduced. In §3, the numerical procedures are described.
In §4, some a priori estimates are presented, and in §5, the amount of calculations of
the operator split method are estimated.
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Variations and Projections

To obtain a variational form of (1) and (2), we multiply (1) and (2) by test functions
v, w ∈ H1(Ω), and integrate by parts, respectively. This yields

(φ
∂c

∂t
, w) + (b(c)

∂p

∂t
, w) + (u · <c, w) + (D(u)< c,<w)

= ((ĉ− c)q, w), w ∈ H1(Ω), t ∈ J (7)

(d(c)
∂p

∂t
, v) + (a(c)< p,<v) = (q, v), v ∈ H1(Ω), t ∈ J (8)

Let Mh = Mhc ,Nh = Nhp ⊂ W 1,∞ denote the finite element spaces spanned by
tensor product bases, whereMh = span[ψ(xy)

i (x, y)×ψ
(z)
j (z)],Nh = span [ψ̄(xy)

i (x, y)×
ψ̄
(z)
j (z)], and Mh,Nh satisfy

inf
wh∈Mh

‖w − wh‖1,q ≤ K‖w‖l+1,qh
l
c, w ∈ W l+1,q, 1 ≤ q ≤ ∞ (9)

and

inf
vh∈Nh

‖v − vh‖1,q ≤ K‖v‖r+1,qh
r
p, v ∈ W r+1,q, 1 ≤ q ≤ ∞ (10)

respectively. We assume that all standard inverse relations hold on Mh and Nh.
We project the solution of the differential problem (1) and (2) into the finite

element spaces by means of coercive elliptic forms associated with the differential
system. First, for t ∈ J , let c̃ = c̃h : J → Mh be determined by the relations:

(D(u)< (c− c̃),<w) + (u · <(c− c̃), w) + σ1(c− c̃, w) = 0, w ∈ Mh (11)

where the constant σ1 is chosen to be large enough to insure the coercivity of the
bilinear form over H1(Ω).

Similarly, let p̃ = p̃h : calJ → Nh satisfy

(a(c)< (p− p̃),<v) + σ2(p− p̃, v) = 0, v ∈ Nh (12)

where σ2 is assumed to be coercive over H1(Ω).
Let:

ζn = cn − c̃n, En = c̃n − Cn, ηn = pn − p̃n, πn = p̃n − Pn

If the following restrictions are valid:
(i)q is smoothly distributed, the coefficients are smooth, therefore the solution is

smooth.
(ii)The coefficients a, d and φ are positively bounded below, as well as being

smooth.

0 < a∗ ≤ a(c) ≤ a∗, 0 < d∗ ≤ d(c) ≤ d∗, 0 < φ∗ ≤ φ(x) ≤ φ∗ (13)
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D = (Dij(u))3×3 is a positive definite matrix, and there exist constants D∗, D
∗, 0 <

D∗ ≤ D∗, such that for ∀w ∈ R2,

D∗|w|2 ≤ (D(u)w,w) ≤ D∗|w|2 (14)

It follows from [JR83],[Che94] that:

‖ζ‖L2 + hc‖ζ‖H1 + ‖∂ζ
∂t

‖L2 + hc‖
∂ζ

∂t
‖H1 ≤ K{‖c‖Hl+1 + ‖∂c

∂t
‖Hl+1}hl+1

c (15)

‖η‖L2 + hp‖η‖H1 + ‖∂η
∂t

‖L2 + hp‖
∂η

∂t
‖H1 ≤ K{‖p‖Hr+1 + ‖∂p

∂t
‖Hr+1}hr+1

p (16)

‖c̃‖W 1∞(J ;W 1∞) + ‖p̃‖W 1∞(J ;W 1∞) ≤ K, ‖∂
2η

∂t2
‖H1 ≤ Khrp (17)

‖∂
3η

∂t3
‖L∞ + ‖ < ∂2η

∂t2
‖L∞ + ‖ < ∂2ζ

∂t2
‖L∞ ≤ K (18)

where K is a positive constant that does not depend on hc and hp.

The Numerical Procedures

In this section, we present the numerical procedures of (1) and (2) by using operator
split methods. The associated matrix problem, however, will not factor, since, in
general, φ and d(c) are not single tensor products. So, on the left-hand side of (7) and
(8), φ and d(c) are replaced with certain type of patch approximations, respectively.
Using the approximate φ̃ and dn, perturbation terms can be added to the matrix

problem, so that it does factor as desired. For C =
mc∑
i=1

µiψi, P =
mp∑
i=1

γiψ̄i and

w =
mc∑
j=1

νjψj , v =
mp∑
j=1

κjψ̄j , define

(φ̃C,w) =
∫
Ω

{
mc∑
i,j=1

µiψiνjψj φ̃ij}dx (19)

(dnP, v) =
∫
Ω

{
mp∑
i,j=1

γiψ̄iκjψ̄jd
n
ij}dx (20)

where

φ̃ij =
√

φ(xi) · φ(xj) , xi ∈ supp(ψi) (21)

dnij =
√

d(xi, Cn) · d(xj , Cn) , xi ∈ supp(ψ̄i) (22)

The three-level operator split method is defined by finding {Cn, Pn} ∈ Mh ×Nh
such that

(φ̃∂tCn, w) + (Un · <Cn, w) + (D(Un)< Cn,<w) + (b(Cn)∂tPn, w)

+λ1∆t(φ̃< ∂tC
n,<w) + λ21(∆t)2(φ̃

∂2

∂x∂z
∂tC

n,
∂2

∂x∂z
w)
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+λ21(∆t)2(φ̃
∂2

∂y∂z
∂tC

n,
∂2

∂y∂z
w)

= ((Ĉn − Cn)qn, w) + ((φ̃ − φ)∂tCn−1, w), w ∈ Mh (23)

suppose that Un is given by

Un = −a(Cn)< Pn, for ∀x ∈ Ω (24)

and

(dn∂tPn, v) + (a(Cn)< Pn,<v) + λ2∆t(dn < ∂tP
n,<v)

+λ22(∆t)2(dn
∂2

∂x∂z
∂tP

n,
∂2

∂x∂z
v) + λ22(∆t)2(dn

∂2

∂y∂z
∂tP

n,
∂2

∂y∂z
v)

= (qn, v) + ((dn − d(Cn))∂tPn−1, v), v ∈ Nh (25)

where the computing order is C1, P 2, U2, C2, P 3, U3, · · · . For stability, we require that
λ1 >

1
2
D∗/φ∗ and λ2 > a∗/d∗. We assume that the initial time steps are chosen small

enough, so that P 1 = P 0 = p0, and the initial values of C1 are derived through some
kind of iterative methods.

If we notice the fact that the concentration equation is normally convection-
dominated, a scheme combining the operator split procedure with the method of
characteristics can be defined by employing an approximation to the following char-
acteristic vector. For each (x, t), we let τ(x, t) be the unit vector in the indicated
characteristic direction such that

∂

∂τ(x, t)
=

u(x, c,<p)√
|u(x, c,<p)|2 + φ2(x)

∂

∂x
+

φ(x)√
|u(x, c,<p)|2 + φ2(x)

∂

∂t
(26)

= (|u|2 + φ2)−1/2(u1
∂

∂x
+ u2

∂

∂y
+ u3

∂

∂z
+ φ

∂

∂t
) (27)

Let φc = (|u|2 + φ2)1/2, we then see that (2) is equivalent to

φc
∂c

∂τ(x, t)
+ b(c)

∂p

∂t
−< · (D(u)< c) = (ĉ− c)q (28)

and the variational form (7) becomes

(φc
∂c

∂τ
, w) + (b(c)

∂p

∂t
, w) + (D(u)< c,<w) = ((ĉ− c)q, w), w ∈ H1, t ∈ J (29)

When solving for Cn+1, we define for each x ∈ Ω,

x̄ = x− Un(x)
φ(x)

∆t, C̄n(x) = Cn(x̄) (30)
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It is assumed that no flow occurs across the boundary. If x̄ crosses over the boundary
∂Ω, we can replace it with its mirror image point along the normal direction of ∂Ω.
We represented this point by ¯̄x. Therefore, C̄n is well defined. To approximate (29),
we use a backward difference quotient for ∂c/∂τ along the characteristic. Specifically,
we take

(
∂c

∂τ
)n+1(x) ≈ φ

cn+1(x)− cn(x̄)
∆tφc

(31)

so that

φc
∂cn+1

∂τ
≈ φ

cn+1 − c̄n

∆t
(32)

The numerical scheme based on combining the operator split procedure with the
method of characteristics for the concentration equation can be defined as

(φ̃∂tCn, w) + (Un · <Cn, w) + (D(Un)< Cn,<w) + (b(Cn)∂tPn, w)

+λ1∆t(φ̃< ∂tC
n,<w) + λ21(∆t)2(φ̃

∂2

∂x∂z
∂tC

n,
∂2

∂x∂z
w)

+λ21(∆t)2(φ̃
∂2

∂y∂z
∂tC

n,
∂2

∂y∂z
w) = ((Ĉn − Cn)qn, w)

+((φ̃− φ)∂tCn−1, w)− (φ
Cn − C̄n

∆t
, w), w ∈ Mh (33)

The matrix problem associated with (23)-(25) , similarly for (33),(24),(25), is given
by

Knc (µ
n+1 − µn) = Φn (34)

Knp (γ
n+1 − γn) = Ψn (35)

where

Knc = (Diagc)1/2Kc(Diagc)1/2 ,Knp = (Diagnp )1/2Kp(Diagnp )1/2

Diagc =

 φ̃(x1)
. . .

φ̃(xmc)

 , Diagnp =

 d(x1, Cn)
. . .

d(xmp , Cn)


Kijc = ((ψj , ψi) + λ1∆t(<ψj ,<ψi) + λ21(∆t)2[(

∂2ψj
∂x∂z

,
∂2ψi
∂x∂z

) + (
∂2ψj
∂y∂z

,
∂2ψi
∂y∂z

)])

Kijp = ((ψ̄j , ψ̄i) + λ2∆t(<ψ̄j ,<ψ̄i) + λ22(∆t)2[(
∂2ψ̄j
∂x∂z

,
∂2ψ̄i
∂x∂z

)(
∂2ψ̄j
∂y∂z

,
∂2ψ̄i
∂y∂z

)])

Φni = ((Ĉn − Cn)qn, ψi)− (Un · <Cn, ψi)− (D(Un)< Cn,<ψi)
−(b(Cn)∂tPn, ψi) + ((φ̃ − φ)∂tCn−1, ψi)

Ψni = (qn, ψ̄i)− (a(Cn)< Pn,<ψ̄i) + ((dn − d(Cn))∂tPn−1, ψ̄i)
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Notice that Mh and Nh are spanned by tensor product bases, so Kc and Kp can
be rewritten in the following manner:

[I ⊗ (Cxy + λ∆tAxy)][(Cz + λ∆tAz)⊗ I] (36)

where Cxy,Axy correspond to a two-dimensional problem in horizontal planes of Ω,
while Cz,Az to a one-dimensional problem along the vertical lines in Ω.

”A Priori” Error Estimates

In order to derive the optimal H1 error estimates for the procedures (23)-(25), and
(33),(24),(25), We need to let ∂t act on the both sides of the error equation of the
pressure equation. Quite a few of the technical treatments were involved. After a
careful calculation, we obtain

Theorem 1 Suppose the restrictions of §2 be satisfied, and there is no flow at the
initial time, i.e. p0 ≡ const. The parameters hp and hc are chosen such that hrp =

o(hc), hlc = o(hp), r, l ≥ 2, ∆t = O(h2c) = O(h2p). If λ1 >
1
2
D∗/φ∗, λ2 > a∗/d∗, and

the initial values of C0 and C1 satisfy

‖C1 − c1‖2H1 +∆t‖∂t(C − c)0‖2L2 ≤ K(h2rp + h2lc + (∆t)2)

Then for hc and hp sufficiently small, we have

max
1≤n≤M

{‖Cn − cn‖2H1 + ‖Un − un‖2L2}

+∆t
M−1∑
n=1

{‖∂t(C − c)n‖2L2 + ‖∂t(P − p)n‖2L2} ≤ K(h2rp + h2lc + (∆t)2)

From the estimates, we know that the operator split method can maintain the
optimal H1 accuracy. Therefore, the new parallel computing method, the DDM com-
bining with the operator split method, can have nearly the same numerical accuracy
as the origianal method we used before.

Work Estimates

Suppose there are mp = m(hp),mc = m(hc) unknowns for the pressure equation
and the concentration equation respectively. The factorization of the matrices Kc
and Kp requires O(m3/2

c + m
3/2
p ) operations, but this is done only once and used at

all successive time steps. The evaluation of (Diagc)−1/2 requires O(mc) operations,
while (Diagnp )

−1/2 requires O(mp) operations for each time level. The solution, given
the factorization of Kc and Kp, requires O(mc logmc + mp logmp) operations. If
∆t = O(hrp) = O(hlc), i.e. ∆t = O(m−r/3

p ) = O(m−l/3
c ), and r, l ≥ 2, then the total

number of operations needed is O(mr/3+1
p logmp + m

l/3+1
c logmc), which is nearly

optimal since the solution is defined by O(mr/3+1
p + m

l/3+1
c ) parameters for a first-

order correct-in-time method.



248 ZHANG

Acknowledgement. The author would like to thank Prof. Jiachang Sun and Prof.
Yirang Yuan for suggesting this problem, and for many helpful discussions.

References

[BEL89]J.H. Bramble, R.E. Ewing, and G. Li. Alternating direction multistep methods
for parabolic problems-iterative stabilization. Siam J.Numer.Anal., 26(4):904–919,
August 1989.

[BF93]B. Bialecki and R.I. Fernandes. Orthogonal spline collocation Laplace-modified
and alternating-direction methods for parabolic problems on rectangles. Mathemat-
ics of Computation, 60(202):545–573, April 1993.

[BY84]Y.A. Berezin and N.N. Yanenko. The splitting method for the problem in
physics of semiconductors. Dokl.Acad.Sci.USSR, 274(6), 1984. in Russian.

[Che94]A. Cheng. Optimal error estimate of finite element method for a model for
miscible compressible displacement in porous media. Numer.Math.J.Chinese Univ.,
16(2):134–144, June 1994.

[FF91]R.I. Fernandes and G. Fairweather. An alternating direction Galerkin method
for a class of second-order hyperbolic equations in two space variables. Siam
J.Numer.Anal., 28(5):1265–1281, October 1991.

[Hay81]L.J. Hayes. Galerkin alternating-direction methods for nonrectangular regions
using patch approximations. Siam J. Numer. Anal., 18:627–643, 1981.

[HK84]L.J. Hayes and S.V. Krishnamachari. Alternating-direction along flow lines in
a fluid flow problem. Comput. Methods Appl.Mech.Engrg., 47:187–203, 1984.

[JD71]J. Douglas Jr. and T. Dupont. Alternating-direction Galerkin methods on rect-
angles. In B. Hubbard, editor, Proceedings Symposium on Numerical Solution of
Partial Differential Equations, II., pages 133–164, New York, 1971. Academic Press.

[JDEW83]Jr. J. Douglas, R.E. Ewing, and M.F. Wheeler. The approximation of the
pressure by a mixed method in the simulation of miscible displacement. R.A.I.R.O
Numerical Analysis, 17(1):17–33, 1983.

[JR83]Jr. J.Douglas and J.E. Roberts. Numerical methods for a model for compressible
miscible displacement in porous media. Mathematics of Computation, 41(164):441–
459, October 1983.

[Mar90]G.I. Marchuk. Handbook of Numerical Analysis, Splitting and alternating di-
rection methods, volume I. Elsevier Science Publishers B.V., North-Holland, Ams-
terdam, 1990.

[MPT83]O. Migual, P. Pinsky, and R. Taylor. Operator split methods for the numer-
ical solution of the elastoplastic dynamic problem. Comput. Methods Appl.Engrg.,
39:137–157, 1983.

[Pea66]D.W. Peaceman. Improved treatment of dispersion in numerical calculation of
multidimensional miscible displacement. Soc.Pet.Eng.J., pages 213–216, 1966.

[SHR89]S.V.Krishnamchari, L.J. Hayes, and T.F. Russell. A finite element alternating-
direction method combined with a modified method of characteristics for convection-
diffusion problems. Siam J. Numer. Anal., 26(6):1462–1473, December 1989.

[Yua92]Y. Yuan. Time stepping along characteristics for the finite element approxima-
tion of compressible miscible displacement in porous media. Mathematica Numerica
sinica, 14(4):385–400, November 1992.



Part III

Applications





12th International Conference on Domain Decomposition Methods
Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c©2001 DDM.org

27. Minimum Overhead Data Partitioning
Algorithms for Parallel Video Processing

D T Altılar1, Y Paker2

Introduction

Data partitioning is important in many aspects, such as computational, load distri-
bution, inter-process communication, load and data overhead considering different
applications. In this paper, overhead due to data partitioning is discussed and two
algorithms are proposed: Almost Square Tiles (AST) and Almost Square Tiles with
aspect ratio (ASTwar). We exploit data parallelism, which is suitable for both SPMD
and SIMD type of parallel computing.

The applications are selected from image/video processing arena most of which
involve some neighbourhood operations that require surrounding pixels such as con-
volution or motion estimation. However, this never excludes the applicability of these
algorithms to any other parallel applications, including linear or differential equation
solvers. Both AST and ASTwar are to minimise the amount of overlapped data by
defining a partition pattern that comprises rectangular tiles of similar sizes and having
an aspect ratio of around 1.

A detailed explanation of the problem is introduced in Section ”Background and
Problem”. ”Approaches to Data Partitioning Problem” provides the reader a brief
information about a recently proposed approach by Lee and Hamdi [LH95]. The
proposed algorithms are defined in detail, and a brief comparison between the algo-
rithms is given in ”Two Proposed Algorithms:AST and ASTwar” Section. The paper
concludes with a Section suggesting further research.

Background and the Problem

There are number of research areas in which data partitioning occupies an important
role, such as instruction level data parallelism [AAL95], graph partitioning [KQR95],
image processing for image space (2-D) or object space (3-D) [LH95, Whi92, LWY94,
CQ95]. An extended survey on I/O intensive parallel computing is given in [Bre97]
emphasising language support. As mentioned before, we take image/video processing
domain to illustrate the partitioning ideas developed. Moreover, data partitioning is
a very important issue in real-time video processing because any defined task should
terminate within 40ms and acquire new data periodically.

Video processing algorithms we are interested in require neighbourhood pixels or
blocks to be transmitted as shown in Figure 1. The original image is initially split
into rectangles of size a ∗ b. However, for the given application which includes a
neighbourhood operation, rectangle is expanded in size by n in both directions.

1Department of Computer Science, Queen Mary, University of London, altilar@dcs.qmw.qc.uk
2Department of Computer Science, Queen Mary, University of London, paker@dcs.qmw.qc.uk
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Figure 1: (a): Size expansion of a sub-image of a ∗ b due to the neighbourhood pixels,
(b): A core block of N*N and search area of (2R+N)*(2R+N)

Figure 1a shows a sub-image of a by b pixels and the required n pixels size expan-
sion. If we are to compute a convolution algorithm, the overall size of the sub-image
becomes (a+2n)(b+2n) into an associated coefficient matrix of 2n+1 by 2n+1. The
difference in size in pixels between these two sub-images is given in Eq. 1

((a+ 2n)(b+ 2n))− (ab) = 2n(a+ b) + 4n2 (1)

As another application, consider motion estimation, which is the most compute inten-
sive part of MPEG video compression: a core block (called ”macro block” in MPEG
terminology) of N by N from the current frame to be matched with neighbouring
blocks of previous frame (Figure 1b) which is a domain of (2R+N)(2R+N) centred
on the macro block. Considering the above given example, overhead data becomes
significant as R could be up to 16. Thus, comparing with the previous application n
could be up to 16 times bigger than a (or b) for this particular application.

When neighbourhood pixels are taken into account, different partition patterns
yield different amount of additional data, i.e. data overhead, to be transferred giving
rise to a minimisation problem.

Approaches to Data Partitioning Problem

In a recent article [LH95], Lee and Hamdi explain the experimental results of parallel
image processing applications on a network of workstations. They exploited image
parallelism on a client-server based application model, which they call Host-Node
Model. The host splits the image and dispatches to a number of workstations to
perform convolution. It is also responsible to collect the distributed sub-images. They
consider a one-to-one communication between the host and the other nodes. Nodes are
not allowed to communicate among themselves. Above given assumptions on system
fit into our model as well.



MINIMUM OVERHEAD DATA PARTITIONING ALGORITHMS 253

One of the main concerns they stated in the paper is the impact of the overhead
of neighbourhood pixels on the processing time. They proposed a heuristic method
for data partitioning which comprises four steps: assuming that t is the number of
sub-images (tiles) that the image will split into;

1. If t=1 then fetch another sub-image of whose t¿1,
if there is no such a sub-image left then terminate.

2. If t is even, divide image into sub-images A and B,
equally (with the ratio of 1:1)
horizontally or vertically by keeping overlap minimum.

3. If t is odd, divide image into two sub-images A and B
with the ratio of (t/2):(t/2)+1,
horizontally or vertically by keeping overlap minimum.

4. Go to the first step for both sub-image A and sub-image B.

They compared their heuristic method with three standard partitioning methods:
cross, column-wise, and row-wise. They indicated that the heuristic method is better
than row (or column) partition method but not so good as cross partition. This heuris-
tic method is a divide and conquer type of approach which could lead to undesired
partition especially because of the third step of the partition algorithm.

The Core of the Proposed Approach

In order to find a better way of partitioning, we believe the decision should be made
considering the original size of the image instead of dividing it into partitions recur-
sively as in the divide and conquer type of approach.

Eq. 1 defines the overhead. If n is a constant as number of partitions, one needs to
minimise a+b to minimise the data overhead for C = a*b. Since C, load per partition,
can be computed for a given n, one can define a generic minimisation problem for the
issue: For a given C, C=a*b , find Min(a+b) . This is a well known minimisation
problem having a solution of

a = b =
√
C (2)

Eq. 2 shows that the minimum is achieved for a = b, i.e., for a square. In other words,
square is the optimal shape for a constant area and minimum circumference. However,
it is not always possible to divide a given image into squares of size k for any given
number of partitions. Actually it is unlikely to have such a perfect partition except for
a few special cases. The partition would comprise a mixture of squares and rectangles
of different width and height. For achieving an acceptable solutions the height-width
ratio of the rectangles should be close to one.

Two Proposed Algorithms: AST and ASTwar

To solve the above problem, two heuristic algorithms, Almost Square Tiles Data Parti-
tioning Algorithm (AST) and Almost Square Tiles Data Partitioning Algorithm with
aspect ratio (ASTwar), have been developed. Let k, the square of an integer, be the
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Figure 2: Internal steps of splitting in image of 576*720 into 11 partitions: a=192,
ar=288, b=196, and bp=132 pixels.

least number which is greater than or equal to the number of data partitions p to be
produced. The frame is split into k tiles with the concern that the height-width ratio
of the rectangles should be close to one as much as possible. By changing the width
and the height of sub-images afterwards, a partition producing minimum overhead is
produced.

Both of the algorithms start by splitting the frame into k = n2, n an integer
providing that k is the smallest number greater than or equal to p. There is the
possibility of reducing the number of rows (or columns with respect to the aspect
ratio) by one for some cases which satisfy n(n− 1) > p. The algorithm than proceeds
to reduce the number of tiles by changing the size of the tiles column-wise.

For example, the above explained steps are shown in Figure 2, for 11 partitions:
(a) The frame is split into 16 (4*4) initially although 11 is required, (b) For this
particular case, the number of rows is reduced by one since 4(4−1) > 11, (c) Column-
wise changing on the width and reducing the number of tiles to 11 is the latter step
of the overall algorithm. This third step comprises computing of height of the rows,
i.e., the a family consists of a, ap, ar and arp, and computing width of the columns,
i.e, the b family consists of b,bp, and bpp (Figure 3).

Computing the a family values is quite simple as number of rows for regular
columns are known and number of rows for irregular columns is one less than reg-
ulars. ap and arp are the last tile heights (residues) of the regular and irregular
columns respectively. For data balancing the area of tiles should be almost the same,
i.e, a ∗ b = ar ∗ bp . On the other hand, width = b ∗ reg cols + bp ∗ irr cols. The
solution of these two equations gives the value for b and bp.

Almost Square Tiles Data Partitioning Algorithm

In the AST algorithm it is assumed that the width of the frame is equal to or larger
than its height. The flow of the developed algorithm can be summarised as follows:
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1) k ← least greater or equal square(partitions)
2) first square ← squareroot(k) (A)
3) cols ← first square
4) if (partitions is a square of an integer) rows ← first square (B)

else if ((rows-1)*cols partitions) rows ← first square -1
5) irr col ← cols * rows - partitions (C)
6) a ← image height/rows
7) ap ← image height - a * (rows -1)
8) ar ← image height/num rows - 1 (D)
9) arp ← image height - ar * (rows - 2)
10) b ← (image width/((ar/a) * (cols-irr cols) + irr cols)) * (ar/a)
11) bp ← ( image width - b * (cols-irr cols) ) / irr cols (E)
12) bpp ← image width - b * (cols-irr cols) - bp * (irr cols - 1 )

Algorithm could be thought in five functional blocks from A to E. Lines 1 and 2
are to determine the maximum number of columns and rows. The number of tiles
is assumed to be a square of an integer. If the number of partitions, partitions, is
a square number, the number of columns, columns, and the number of rows, rows,
would be the same. Set the number of columns for every row(Line 3). By the end of
Block A, the number of column which equals the number of rows is known.

Line 4 is to search for the possibility of dividing the data into less rows than the
current value of rows. If /em partitions is not a square number then there is such a
possibility as shown in Figure 2. The final value of the rows is set while terminating
Block B.

Block C (Line 5)is to compute the number of irregular columns which is one less
than the regular ones.

Block D comprises lines to compute the values of the a family, i.e., a,ap,ar, and apr.
a and ar are tile height for regular and irregular columns respectively where ap and arp
are the last tile heights (residues) of the regular and irregular columns respectively.
Computing values for the a family members is quite simple as image height is known,
the number of rows for regular columns is computed in previous blocks, and the number
of rows for irregular columns is one less than regulars. The height of a regular tile, a,
can be computed by dividing the image height by the number of the rows (Line 6).
Line 7 is to check out whether there is a residue row having different height, ap. If
there is an irregular column, there will be a repeating tile height as well, which is ar
(Line 8). There might be a residue row having different height than ar, which is arp
(Line 9).

The b family members are computed through Block E. Line 10 possesses the so-
lution of two equations to numerate b and bp. In order to make the areas of most
of the tiles equal: a*b=bp*ar. Since image width should be covered by columns:
width = cols ∗ b+ irr cols ∗ bp. As a, ar, cols, and irr cols are computed previously b,
in Line 10, and bp, in Line11 can be numerated. Block E ends with checking out for
size of the residue column.

Thus, one could produce at most six different types of tiles through the given
algorithm. Tile type names and sizes are (Figure 3):



256 ALTILAR, PAKER

Figure 3: All possible tiles and sizes of tiles to be produced by the proposed algorithms

RST - regular standard ones (a ∗ b),
RET - regular excess ones (ap ∗ b),
IST - irregular standard one (bp ∗ ar),
ICET - irregular column excess ones (bpp ∗ ar),
IRET - irregular row excess ones (bp ∗ arp),
IRCET - irregular double excess one (bpp ∗ arp);

where
a is the standard tile height, ap is the height of the last standard tile in a regular

column, ar is the height of irregular column tiles, arp is the height of the last tile in
an irregular column, b is the width of the tile of standard regular column, bp is the
width of the tiles of irregular columns, bpp is the width of the tiles of the last irregular
column.

Almost Square Tiles with aspect ratio Data Partitioning Algo-
rithm

The aspect ratio of the image is taken into account in the ASTwar algorithm. There-
fore instead of dividing image into the same number of columns and rows initially, con-
sidering the aspect ratio, an image can be divided into different numbers of columns
and rows ensuring that widths and heights of rectangles should be as close as possible.

The ASTwar requires the overall ratio for the image. The aspect ratio of the image
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Figure 4: Partition patterns for 142 tile: (a)Lee-Hamdi, (b)ATS, (c)ATSwar

is multiplied by the ratio of the number of rows to columns to compute the overall
ratio: overall ratio = aspect ratio of image ∗ (num rows/num cols)

In the ASTwar algorithm overall ratio to be close to 1 where in the AST number
of columns is equal to the number of rows as the image ratio is expected as one (or
close to one) implicitly. Thus, the ASTwar algorithm is the same as the AST except
the block (A) which comprises a loop to set a value for the overall ratio as close as
possible to 1.

Comparison of the Algorithms

Both AST and ASTwar data partitioning algorithms provide better solution than the
one suggested in Lee and Hamdi. The actual values of data overhead for a neighbour-
hood of 16 pixels are given in Table 1. Even for a neighbourhood of 16 pixels, two
proposed algorithms reduce I/0 data amount by upto 10%. Obviously more significant
reductions are available for larger values of n.

Lee-Hamdi AST ASTwar
Partitions (A) (B) (C) (A)-(B) (A-C) (B-C)

12 78336 74496 74496 3840 3840 0
24 112128 107904 107520 4224 4608 384

110 249792 237200 244544 12592 5248 -7344
130 275072 268672 259440 6400 15632 9232
142 290816 283264 282336 7552 8480 928

Table 1: Actual data overhead in pixels for an image of 576x720 requiring neighbouring
pixels of 16.

Partition patterns for 142 partitions are drawn in Figure 4. One should pay at-
tention to the irregularity of shapes in Figure 4a and regularity in Figure 4b and
Figure 4c.
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Conclusion and Further Research

Two new algorithms, AST and ASTwar, have been introduced to reduce this overhead
for data transmission for parallel algorithms requiring neighbourhood pixels. They are
both based on the concept that the more tiles are close to squares the less data overhead
is to be introduced. Therefore, a global data partition pattern creation, keeping every
rectangles height and width as close as possible is the basic approach lying under the
two algorithms. ASTwar is slightly different from the first one as it takes the image
aspect ratio into account as well. The partition patterns and numerical analysis have
shown that the ASTwar algorithm has better performance than the AST algorithm.
All of the algorithms are currently being tested for images of different aspect ratios
for image/video processing area. These two algorithms for optimal data partitioning
are also applicable to other types of parallel applications since optimisation is on
overlapped (shared) data. Applying these two algorithms is for parallel numerical
solution of partial differential equations is in progress.
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28. The Mortar Element Method for 3D Maxwell’s
equations: analysis and application to
magnetodynamics

A. Buffa1 , Y. Maday2 3 , F. Rapetti3

Introduction

In this paper, we describe the main ideas of the mortar element method combined with
H(curl)–conforming finite elements for the numerical approximation of Maxwell’s
equations. This method turns out to be a new non–conforming, non–overlapping do-
main decomposition technique where non–matching grids are allowed at the interface
between adjacent sub–domains. We report the results on the method’s convergence
and error estimate together with the description of the main implementation details
and some numerical results.

Position of the problem

We are interested in a system that can be modeled by the set of Maxwell’s equations
when the displacement currents are neglected:

(a) curlE = −∂tB in Ω×]0, T [

(b) curlH = J in Ω×]0, T [

(c) J = σE in Ω×]0, T [

(d) B = µ H in Ω×]0, T [

(1)

where Ω ⊂ R3 is bounded, E, H are the electric and magnetic fields, B the magnetic
induction and J the current density. In system (1), ∂t stands for the first derivative
in time.

The physical parameters of the problem are: the magnetic permeability µ and the
electric conductivity σ. Without loss of generality we assume that µ is a positive
constant and σ is simply bounded. We set C = supp{σ} the conducting part and we
assume that C is simply connected.

In three–dimensional magnetodynamic applications, system (1) is usually refor-
mulated in terms of a primary variable which is either the magnetic field H or the
magnetic vector potential A. In both cases, by re–writing system (1) in terms of
the chosen primary variable, we obtain the following parabolic equation which is the
object of our study:

∂t(α u) + curl (β curl u) = f in Ω×]0, T [ , (2)

1Università degli Studi di Pavia, Dip. di Matematica, annalisa@ian.pv.cnr.it
2Laboratoire d’Analyse Numérique BC187, Université Pierre et Marie Curie, maday@ann.jussieu.fr
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with α and β two functions related to the physical parameters σ and µ and f related
to the external sources. Equation (2) can be non–strictly parabolic: this may occur
when working with the magnetic vector potential. In this case, a jauge condition (e.g.,
div(u) = 0 where α = 0) has to be added to equation (2) to ensure the uniqueness of
the solution. Moreover, we assume:

u ∧ n = 0 on ∂Ω×]0, T [ and u(x, 0) = 0 a.e. in x ∈ C. (3)

We introduce the following Hilbert spaces (endowed with the corresponding graph
norms)

H(curl,Ω) =
{
u ∈ L2(Ω)3 | curl u ∈ L2(Ω)3

}
,

H0(curl,Ω) =
{
u ∈ H(curl,Ω) | (u ∧ n)|∂Ω = 0

}
.

(4)

The variational formulation of the problem (2) reads:

Find u ∈ H0(curl,Ω) such that ∀v ∈ H0(curl,Ω) :∫
Ω ∂tα u · v dx +

∫
Ω β curl u · curl v dx =

∫
Ω f · v dx .

(5)

It can be proved that this problem admits a unique solution when suitably interpreted
in time and a jauge condition is imposed where α = 0. Note that when α = 0
everywhere, (2) is the magnetostatic problem and (5) its variational formulation.

The main concern of our work is to propose an efficient domain decomposition
method for this type of equations, discretized by using edge element approximation in
three dimensions which allows for non-matching grids. The outline of the paper is the
following: in the second section the mortar element method is proposed, the analysis
is sketched and some details of the implementation are given. The third section is
devoted to the applications: we present some preliminary numerical results in the
magnetostatic case and the governing equations for the magnetodynamic problem in
moving geometries. Numerical simulations in the latter case are in progress.

Definition and analysis of the mortar element method

Since the definition and analysis of a domain decomposition procedure for (2) is strictly
related to the choice of the spatial discretization, in this section, without loss of
generality, we consider the following model problem:

Find u ∈ H0(curl,Ω) such that ∀ v ∈ H0(curl,Ω)∫
Ω

curl u · curl v dx +
∫
Ω

u · v dx =
∫
Ω

f · v dx . (6)

This problem admits obviously a unique solution in H0(curl,Ω) and it is worth
noting that it is strictly related to (2): when the parameters of the problem are set
equal to 1 and an implicit time stepping procedure is applied, (6) is the problem that
we have to solve at each time step. The case of vanishing α will be the object of
further remarks.
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Approximation spaces

Partition of the domain and local spaces

Assume here that the domain Ω is a convex bounded (Lipschitz) polyhedral4 subset
of R3. Let Ωk ⊆ Ω, for 1 ≤ k ≤ K, be a non–overlapping, polyhedral partition of Ω,
that is:

Ω = ∪Kk=1Ωk with Ωk ∩ Ωl = ∅ if k �= l. (7)

For every k (1 ≤ k ≤ K) we denote by nk the outer normal to Ωk and we call{
Γk,i

}
1≤i≤F (k) the F (k) faces of the polyhedron Ωk. We define the skeleton Σ as

Σ = ∪Kk=1 ∪Kl=1 ∂Ωk \ ∂Ω . Let τk,i be the counterclockwise tangential vector to ∂Γk,i;
we define also the outer normal to ∂Γk,i as nk,i = τk,i ∧ nk.

Among several possibilities we choose a splitting of the skeleton Σ as the disjoint
union of some closed faces {Γk,i}k,i that we call slave faces. A unique set of indices
corresponds to this choice and we denote it by:

IM =
{
m = (k, i) such that Γk,i is a slave face

}
.

To shorten the notations we denote the slave faces by Γm (1 ≤ m ≤ M) and, as
prescribed, we have: Σ ≡ ∪Mm=1Γ

m
and Γm ∩ Γn = ∅ if m �= n. Moreover we set:

γl,k = ∂Ωl ∩ ∂Ωk . We define the following “broken” space:

X :=
{
u ∈ L2(Ω)3 | u|Ωk ∈ H(curl,Ωk) , (u ∧ n)| ∂Ω∩∂Ωk = 0 1 ≤ k ≤ K

}
. (8)

As standard, X is a Hilbert space endowed with the following broken norm:
||u||2H,curl :=

∑K
k=1 ||u|Ωk ||2curl,Ωk

.
For each index k (1 ≤ k ≤ K), we introduce a regular quasi–uniform triangulation

T kh(k) on the sub–domain Ωk and we denote by h the maximum of the mesh sizes.
These partitions can be composed either of tetrahedra or parallelepipeds; they are
completely independent and thus, in general, non–matching at the interfaces {γk,l}k,l.

Let K̂ be the reference tetrahedron or cube. For every Ki ∈ T kh(k), we denote by

Fi : K̂ → Ki a bijective mapping from K̂ to Ki. These mappings can be chosen as
linear both in the case of tetrahedra and parallelepipeds: Fi(x̂) = Bix̂ + ci where
Bi ∈ R3×3 is an invertible matrix and ci ∈ R3 is a constant field. Over each sub–
domain Ωk we define the finite dimensional space which is at the base of the domain
decomposition method:

Y kh := {vkh ∈ H(curl,Ωk) | BTi (vkh |Ki
◦ Fi) ∈ Pp(k) ∀Ki ∈ T kh(k)}, (9)

where Pp(k) denotes a family of Nédélec type finite elements for Maxwell’s equations
of degree p(k) (see [N8́0, N8́6] for a complete definition). Furthermore we set:

Xh :=
{
vh ∈ X | vkh := vh |Ωk ∈ Y kh and (vkh ∧ n)∂Ω\∂Ωk = 0

}
, (10)

and in the following we denote the elements vh ∈ Xh both as functions and as K-
uplets vh = (v1

h,v
2
h, · · · ,vKh ) where vkh ∈ Y kh (1 ≤ k ≤ K). We use both notations

4The whole theory applies even when Ω is a regular bounded subset of R3. Of course, in this case
the subdomain {Ωk}k, defined afterwards, can not be polyhedra but curved polyhedra.
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since it is never misleading. Since we deal with tangential traces of these vector fields,
we introduce some further definitions. For any index m = (k, i) ∈ IM , we set T k,ih ={
(vkh ∧ nk)|Γk,i | vkh ∈ Y kh

}
and its subset T k,ih,0 =

{
λh ∈ T k,ih | (λh · nk,i) |∂Γk,i = 0

}
.

Let Γm be a slave face with m = (k, i) the corresponding indices and vh ∈ Xh: for
almost every x ∈ Γm there exists an l (1 ≤ l ≤ K , l �= k), such that x ∈ Γm ∩ γk,l.
At this point x, we have two fields, namely vkh and vlh. In general, since the macro–
decomposition is non–conforming, the value of l depends on the point x and we denote
by Im the set of indices l (1 ≤ l ≤ K , l �= k) such that Γm ∩ γk,l �= ∅. We then set
v−kh (x) = vlh(x), ∀x ∈ Γm∩γk,l, l ∈ Im. The function v−kh (x) is defined at almost
every x ∈ Γm. Due to the non–conformity of the macro–decomposition, v−kh (x) is not
in general the tangential trace at Γm of a field v in H(curl,Ωk).

Constraint problem and matching condition

Let v ∈ H0(curl,Ω), we have that (v−k ∧ n)|Γm = (vk ∧ n)|Γm in
(
H

1/2
00 (Γm)

)′. The
purpose of this section is to express how to impose this condition on the discrete
broken space in a weak sense. To this aim, we define, for any m ∈ Im, Mm

h ⊆
Tmh , dim{Mm

h } = dim{Tmh,0}. We set:

Mh :=
{
ψh ∈ L2(Σ)2 | ∀m ∈ Im , ψh |Γm ∈ Mm

h

}
. (11)

As before we also adopt the vector notation ψh = (ψ1
h, ψ

2
h, . . . , ψ

M
h ) when it is con-

venient. Then, we propose the following non–conforming approximation space for
H0(curl,Ω):

Xc
h =

{
v ∈ Xh | ∀m ,

∫
Γm

(vkh ∧ nk − v−kh ∧ nk) · ψh dΓ = 0 ∀ψh ∈ Mm
h

}
. (12)

The discrete problem reads: find uh ∈ Xc
h such that ∀ vh ∈ Xc

h:

K∑
k=1

[∫
Ωk

curl ukh · curl vkh dx +
∫
Ωk

ukh · vkh dx
]
=
∫
Ω

f · vh dx ∀ vh ∈ Xc
h.

(13)

The numerical properties of the space Xc
h depend strongly on the choice of the

Lagrange multiplier space Mh. In the following, we discuss our choice for this space
and, we proceed to the analysis of the method. We refer to [Hop99] for a different
approach using the first family of edge elements.

Thanks to the locality in the definition (11) of Mh, we focus our attention on a
single slave face Γm. Γm is decomposed by T kh(k)|Γm either into triangles or paral-
lelograms. For every parallelogram (resp. triangle) of T kh(k)|Γm , there exists a linear

mapping Fi satisfying Ti = Fi(T̂ ) where T̂ is the reference square ]− 1, 1[2 (resp. the
reference triangle T̂ := {(x, y) ∈ R2 | 0 < x < 1 , 0 < y < 1− x}). The construction
of Mm

h consists in imposing additional constraints at Tmh on the parallelograms (resp.
triangles) which meet the boundary ∂Γm. We denote by BTm the set of all these ele-
ments Ti and assume that the mapping Fi associates to (one of) the boundary edge(s)
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(T i ∩ ∂Γm) an edge of T̂ that is parallel to a Cartesian axis (this is exhaustive up to
a rotation). Our choice of the Lagrange multiplier space turns out to be:
Case of parallelograms:

Mm
h :=

{
λmh ∈ Tmh | B−1

i (λmh ◦ Fi) ∈ Qp,p(Ŝ)× Qp,p−1(Ŝ) , Ti ∈ BTm
}

(14)

where Qp,p′ denotes the space of polynomials which are of degree p in the first variable
and of degree p′ in the second one. Of course, if a corner of Γm belongs to the
parallelogram T i, then the Lagrange multiplier λmh is chosen so that B−1

i (λmh ◦ Fi) ∈
Qp−1,p(Ŝ)× Qp,p−1(Ŝ).
Case of triangles:

Mm
h :=

{
λmh ∈ Tmh | B−1

i (λmh ◦ Fi) ∈ Pp(T̂ )× Pp−1(T̂ ) , Ti ∈ BTm
}
. (15)

As before, if a corner of Γm belongs to the triangle T i, then the Lagrange multiplier
λmh is chosen so that B−1

i (λmh ◦ Fi) ∈ Pp−1(T̂ )× Pp−1(T̂ ).
The spaces Tmh and Mm

h are H(div)–conforming and the degrees of freedom are
related to the normal components of the fields along the edges. We refer to [BBM00]
for a complete characterization.

The following proposition holds in both cases of triangles and parallelograms:

Proposition 1 Let Πmh : L2(Γm)2 → Tmh,0 be defined by∫
Γm

(u−Πmh u) · ϕh dΓ = 0 ∀ϕh ∈ Mm
h . (16)

There exists a constant C independent of h such that the following stability estimate
holds:

∀u ∈ L2(Γm)2 , ||Πmh u||0,Γm ≤ C ||u ||0,Γm . (17)

Remark 1 If one deals with the first family of Nédélec type finite elements (see
[N8́0]), then at the interface Γm the space Tmh is of Raviart-Thomas type and the
Lagrange multiplier space can be similarly defined (see [Hop99]).

Convergence result

In this section we simply state the convergence results concerning problem (13) whose
proofs can be found in [BBM00]. We have

Theorem 1 Let u ∈ H0(curl,Ω) be the solution of problem (6) and uh the solution
of problem (13) with Mh defined by (14) or (15). We assume that uk ∈ Hp+1(Ωk)
with curl uk ∈ Hp+1(Ωk) (1 ≤ k ≤ K) and we suppose that there exists a uniform
constant γ such that maxk{hk} ≤ γ mink{hk}. We set h := maxk{hk}. The following
estimate holds:

||u− uh||H,Ω ≤ C1 h
p

(
K∑
k=1

||u||2p+1,Ωk

) 1
2

+ C2 h
p
√
| lnh|

(
K∑
k=1

||curl u||2p+1,Ωk

) 1
2

(18)

where C1, C2 are uniform constants depending only on the macro-decomposition.
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Note that the first term comes from the best approximation error and the second one
from the consistency error.

Remark 2 The same error estimate holds when the coefficients are not set equal to
one but they jump through the different sub–domains: the constant in front of the right
hand side will depend on the size of their jumps.

Remark 3 - Imposing a jauge condition - When the parameter α is vanishing
on a part of the domain, equation (6) must be replaced by:∫

Ω

αu · v dx +
∫
Ω

β curl u · curl v dx =
∫
Ω

f · v dx ; div (u)|{α=0} = 0. (19)

The definition of the proposed method in this case would involve a non–conforming
mortar element approximation of the mixed problem related to (19) which is still not
understood. Nevertheless, it is worth noticing that when the partition (7) is chosen in
a way that α = 0 in one sub–domain only, say Ωk̄, the sub–domains are decomposed
in polyhedra and none of the faces of Ωk̄ is slave; then problem (19) can be suitably
approximated. The discrete problem is: find uh ∈ Xc

h such that ∀vh ∈ Xc
h and ph ∈

Sp+1(T k̄h ,Ωk̄) ∩H1
0 (Ωk̄):∫

Ω\Ωk̄
αuh · vh dx +

∫
Ω

β curl uh · curl vh dx =
∫
Ω

f · vh dx (20)

and
∫
Ωk̄

uh · grad ph dx = 0 (21)

where Sp+1(T k̄h ,Ωk̄) is the standard scalar space of Lagrange finite elements of degree
p+ 1. Making use of the approximation results proved in [ABDG98] and the ones of
the previous section, it can be proved that (20)–(21) admits a unique solution and the
error estimate (18) holds true when u is solution of (19) and uh of (20)–(21).

On the other hand, when the quantity of interest is the magnetic vector potential,
a unique solution can be selected by using a suitable iterative solver and expressing
J = curl T for a vector T. Note that only the curl of the magnetic vector potential
is needed: so, the magnetic induction is uniquely determined in any case.

Reduction of the computational cost

The use of the second family of Nédélec type finite elements is often out of range in
realistic three–dimensional computations and the use of the first family is often pre-
ferred. In the standard approximation context, with respect to the first one, the second
family does not give a substantial improvement in the accuracy while it increases the
number of degrees of freedom. In this section we show how these two families of edge
elements can be merged in a way to obtain, on one hand, “quasi-optimal” convergence
of the mortar element method and, on the other hand, a sensible reduction in the
algebraic system dimension. We consider here the case where each sub–domain is
discretized by a finite number of tetrahedra, first or second order edge elements are
chosen and we will focus the attention on one slave face Γm.
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First family: six degrees of freedom per tetrahedron – Given a tetrahedron K,
let rj (j=1,4) be the position vectors of its vertices and λj(r) be the barycentric coor-
dinate of a point P ∈ K (with vector position r) with respect to the vertex j. It is clear
that λj(r) is a linear function in the tetrahedron with λj(rk) = δjk (j, k ∈ {1, 2, 3, 4}).
The vector basis function corresponding to an edge eij going from ri to rj , is given by

wij(r) = λi(r) grad λj(r) − λj(r) grad λi(r) , i, j = 1, 2, 3, 4, i < j ; (22)

let us denote by P1(K) the space generated by the basis functions settled in (22). The
interpolating function uh on K for the vectorial state variable u ∈ (C0(K))3 has the
following form

uh =
3∑
i=1

4∑
j=i+1

wij αij(u) with αij(u) = |eij | (u · teij )(xMij )

where |eij | is the length of eij , xMij its midpoint and teij its tangent unit vector.

Second family: twelve degrees of freedom per tetrahedron – A complete linear
interpolation of a three-dimensional vector in a tetrahedron needs twelve degrees of
freedom. The corresponding edge element can be obtained by taking two unknowns
over each edge of the tetrahedron. Keeping the same notations as the ones used to
introduce the first family of edge elements, one of the possibilities is to define the
vector basis functions corresponding to an edge eij going from ri to rj , as follows

wij(r) = λi(r) grad λj(r) , i, j = 1, 2, 3, 4, i �= j ; (23)

let us denote by P2(K) the space generated by the basis functions defined in (23).
The interpolating function uh on K for the vectorial state variable u ∈ (C0(K))3 has
the following form

uh =
4∑
i=1

4∑
j �=i,j=1

wij βij(u) with
βij(u) = |eij | (u · teij )(xi)
βji(u) = |eij | (u · teij )(xj)

where xi and xj are the end points of the edge eij .

Merging the two families – In paper [BBM00], the authors have shown that the
mortar method combined with edge elements in three dimensions leads to an approxi-
mation which is slightly sub-optimal with the second family and give indications that
with the first family non-optimal results could be feared. On the other hand, by using
the second family of edge elements in one domain, the number of unknowns for a
given mesh is multipled by two. To overcome the difficulties, the idea is based on the
following two facts:

• taking the difference of wij and wji defined in (23) we get the old element wij
defined in (22); moreover, one element v ∈ P1 can be thought as an element
v ∈ P2 with the corresponding degrees of freedom (βij , βji) = (αij ,−αij);

• the Lagrange multipliers of the mortar method are defined locally on Γm.
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The compromise to have a good approximation without too many unknowns is to limit
the use of the second family to all edges that belong to the interface Γm. The first
family is then adopted to approximate the problem solution along all edges that do not
belong to the interface (i.e. over each tetrahedron that does not meet the interface).
The space of edge elements P involved in the definition (9) is the following:

P(K) = {u |u|e ∈ P1 , ∀e /∈ ∂K ∩ Γm and u|e ∈ P2 , ∀e ∈ ∂K ∩ Γm } . (24)

From the implementation point of view, the merging can be done by introducing
a rectangular matrix RK that depends on the current tetrahedron K as follows:

RK ∈ M(6, 12) ∂K ∩ Γm = ∅ or reduced to one point

RK ∈ M(7, 12) ∂K ∩ Γm consists of one edge of K ,

RK ∈ M(9, 12) ∂K ∩ Γm consists of one face of K ,

RK ∈ M(11, 12) ∂K ∩ Γm consists of two faces of K .

M(n,m) denotes the set of matrices with n rows and m columns. Moreover, the local
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TR =
K

-1   0     0     0     0     0     0    0    0

0     0     0    -1    0     0     0    0    0

0     0     0     0   -1     0     0    0    0

Figure 1: The elements of matrix RTK for a given tetrahedron K; to each edge among
those with numbers 1, 3, 4, is associated one circulation and to those with numbers
2, 5, 6, are associated two.

stiffness matrix associated to each tetrahedron is built using the second family for only
those elements K that meet the interface, i.e. SK ∈ M(12, 12) if ∂K ∩ Γm �= ∅ nor
to one point. In this case, the assembling process does not involve the full matrix SK
but the smaller one given by RKSKRTK (we have got rid of the additional unknowns
for all edges of K that do not lie on Γm).

Dealing with the first family

The use of the first family inside each sub-domain together with the second one at
the interface glued together with the mortar element method as defined in the second
section does not pollute the general accuracy of the problem. In order to analyse this
we refer to the standard tool for the analysis of non-conforming approximation: the
Berger-Scott-Strang Lemma. This Lemma allows to state:

|u− ũh|∗,Ω ≤ inf
vh∈X̃c

h

|u− uh|∗,Ω + sup
vh∈X̃c

h

∑K
k=1〈vkh ∧ nk, curl u〉− 1

2 ,
1
2 ,∂Ωk

|vh|∗,Ω
(25)
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where X̃c
h denotes the subspace of Xc

h composed of all functions that are of the first
family inside the subdomains as described in the previous subsection, and ũh denotes
the solution of problem (13) where Xc

h is replaced by X̃c
h. The first contribution

is known as the best fit of u by elements of X̃c
h and the second contribution is the

consistancy error. This second contribution is exactly the same as in the analysis of
problem (13) while the former is analyzed following the same steps of the proof of
Theorem 2.3: starting from the local approximation od u|Ωk by elements of the first
family (e.g. the interpolation Ikhu|Ωk), we correct the trace value on the slave side of
the interfaces by substructing from Ikhu|Ωk the function obtained by prolongating by
0 the difference Πmh (Ikhu|Ωk − I−kh u|Ω−k) between the current value on the slave face
and the value derived from the application of the mortar condition.

Since the local interpolation operator has the same asymptotic approximation
properties in the first and second family, the previous correction is optimal and we
can state that the same error bound holds for ũh as what is stated in Theorem 2.3.

Applications

The flexibily and performance of a numerical method for the simulation of electro-
magnetic field distributions relies, in several cases, on the possibility of working with
non-matching grids at the interface between adjacent sub–domains. One example is
given by the treatment of moving structures. Our choice is to work in Lagrangian
ones, dealing with non-conforming discretizations at the level of the sliding interface
between the stator and the rotor. The second choice is less expensive from the com-
putational point of view if we use a method that avoids re-meshing or interpolation
procedures. Another example is the optimization of the structure shape for an electro-
magnetic device. We can re-mesh either the whole domain or only a region containing
the shape to be optimized: in the second case it may be useful to work with non-
matching grids to simplify the local re-meshing task and successive solution of the
problem. A third example consists in the possibility of coupling variational methods
of different others or with unknowns associated to different geometric entities.

Some preliminary results in magnetostatics

Currently, the work in progress consists in applying the described method to compute
the distribution of induced currents in moving structures: this is an information of
great importance for performances prediction and devices design. Nevertheless, the
magnetostatic problem is of great interest due to the fact that we have to face all
the difficulties of the method’s implementation even if the geometry does not move.
The movement treatment would add the additional cost of discretizing the coupling
condition at each new position of the free part.

As an example of application, we present some results obtained by solving the
magnetostatic problem in terms of the magnetic vector potential A, i.e. the equation
curl (µ−1curlA) = J, with homogeneous boundary conditions. We consider a hexa-
hedrical domain divided into two sub–domains which are discretized by non–structured
tetrahedrical coarse meshes. The computational domain in presented in Figure 2 while
the magnetic induction B = curlA computed on matching and non–matching grids
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is displayed in Figure 3. In both cases, the information (i.e. the tangential component
of the unknown) is well transmitted from one domain to the other.
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Figure 2: The domain Ω: a flat interface separates the two sub–domains.
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Figure 3: Field B on the plane y = .25 computed on matching (left) and non-matching
(right) grids. The stored magnetic energy is ≈ 1.9 MJ in both cases.

Formulation and discretization of the magnetodynamic problem

We are given with a domain Ω ⊂ R3, decomposed in a rotating part (rotor) Ω1 and
a static one (stator) Ω2 = Ω \ Ω̄1. Ω1 is a cylinder that turns around its axis. Let
θ ∈ C1(0, T ) be the law of rotation, i.e., θ(t) denotes the rotation angle at time t and
rt : Ω1 → Ω1 the rotation operator which turns the domain Ω1 with an angle θ(t) and
r−t its inverse. Here we suppose for simplicity that α > 0 everywhere.

In both domains Ω1 and Ω2, we have to solve the equation (2) while the transmis-
sion conditions at Γ take into account the movement. They are:

rtu1(r−tx, t) ∧ nΓ = u2(x, t) ∧ nΓ , (26)

rtβ(r−tx, t)curl u1(r−tx, t) ∧ nΓ = β(x, t)curl u2(x, t) ∧ nΓ . (27)

Set H = H(curl,Ω1)×H0,∂Ω(curl,Ω2), we then are led to introduce

Ht = {u = (u1,u2) ∈ H | rtu1(r−tx, t) ∧ nΓ = u2(x, t) ∧ nΓ ∀x ∈ Γ}. (28)
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The problem obtained by considering equation (2) in both domain together with ho-
mogeneous boundary condition at ∂Ω and the transmission conditions (26-27) admits
a unique solution u ∈ L∞(0, T,H) ∩ H1(0, T, L2(Ω)) when suitably interpreted in a
variational sense both in time and space. Note that here the essential transmission
condition (26) is strongly imposed in the definition of the functional space, while
the natural one (27) is weakly imposed through the variational formulation (this is
a consequence of the integration by parts). We are now in the position of making a
discretization of this problem and the key point will be the discrete counterpart of the
time-dependent constraint characterizing the definition of the space Ht.

The mortar element method proposed in the second section provides an “optimal”
spatial discretization of the stated problem. The computational domain is split up into
two sub–domains Ω1 and Ω2 and the skeleton consists of 3 interfaces (see the Figure
4). Over each sub–domain, we consider the finite element discretization derived in the

Figure 4: Interfaces for the definition of the mortar element method.

first part of the second section. We call Hth the resulting broken edge element space.
The Lagrange multiplier spaces are chosen according to the second section , namely
we have M i

h, i = 1, 2, 3. At each interface, the matching condition turns out to be
time-dependent, namely, for any i = 1, 2, 3 and uh = (u1,h,u2,h) ∈ Hth we have:∫

Γi

(
rtu1,h(r−tx, t)− u2,h(x, t)

)
∧ nΓ · ψihdΓ = 0 ∀ψ ∈ M i

h.

The problem is then discretized in time by means of an implicit Euler method. The
analysis of such a formulation is available in the 2D case together with some numerical
results (see [BMR99], [Rap00]), and it is in progress for the 3D problem.
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29. Solving non-linear electronic packaging problems
on parallel computers using domain decomposition

P.Chow1, C.Bailey2, C.Addison1

Introduction

Miniaturisation of electronic equipment, such as those found in a notebook computer,
palm held devices, cell phones etc., requires high-density packing of electronic com-
ponents onto printed circuit boards (PCB). To join the interconnections, solder ma-
terials are used to bond microprocessor chips and board during assembly. In the
Reflow process case, the board assembly passes through a furnace where the solder
bump initially in the form of solder paste, melts, reflows, and then solidifies to bond
the interconnections. A number of defects may occur during and after this process
such as, respectively, bridging of the liquid solder and cracking of solder joint, chip
or board. With the increasing drive towards miniaturisation and smaller pitch sizes
(gap between interconnection of solder bumps), these are serious issues to industry in
manufacturing and component reliability in operation.

Finite Element Analysis (FEA) is used extensively in the electronic packaging com-
munity to calculate stress of solders and components, for reliability analyses [Lau93]
[SYS97]. Computer simulations, together with some experiments, provides an effective
design and optimization route to reducing these defects and in assessing solder and
board integrity and reliability. For models to fully characterise the physical phenom-
ena of the process that govern the integrity of the final joints requires the representing
physics of:

• Heat transports with solder solidification involving latent heat evolutions

• Residual stress evolution involving thermal miss-match between materials.

Also, an integrated solution procedure is needed to solve governing equations of
temperature, evolving solder shape, solidification, and stress, as they are interde-
pendent. For example, stress analysis is dependent on temperature changes in solid
regions. While for the solder joint formation, the solder material will initially, after
heating, be liquid and when the board exits the furnace it starts to solidify and stress
developments begin.

A microprocessor chip commonly has large number of interconnects that bonds to a
circuit board. The general modelling practice is to take a Macro-Micro approach that
simulates a single interconnect or assumes each interconnect behaves like a beam in the
finite element analysis. In the Macro-Micro case, there is a data transfer between the
models at each time step, see Figure 1. A detailed 3D model requires a sizeable mesh
and long computing time, i.e. solving non-linear equations of thermal and mechanical
systems; thereby, constraining the number of the number of cycles possible for the

1Fujitsu European Centre for Information Technology Ltd, UK, {chow, addison}@fecit.co.uk
2University of Greenwich, UK, c.bailey@gre.ac.uk
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Figure 1: Solder Modelled as Beams (Macro) and Continuum (Micro)

design and optimization process. In the multiple chips case, it can easily leads to
models with mesh sizes having millions of elements.

Parallel computing technology opens up the possibility of undertaking such detailed
and large-scale analyses, and delivers the solution in a practical timeframe. In appli-
cation areas such as automobile and aerospace, parallel computing has significantly
reduced the time for analyses and increased the size of models (both of physical mod-
els and mesh sizes) that can be performed. Such success is also due to the advances
in the Domain Decomposition method, now a key element in the majority of parallel
models such as mesh or domain partitioning, linear and non-linear solver strategies,
and matching and non-matching overlapping grids. Here, we show some parallel com-
putations of 3D electronic packaging models that involves cooling, solidification, and
residual stresses of solder joints and throughout the component during assembly. All
the computations are performed on a Fujitsu AP3000 system using up to 12 processing
elements, with the largest model completed having over 1 million elements.

Heat Transport Equations

The equations governing the physics of heat transport and solidification can be ex-
pressed as:

ρc
∂T

∂t
+∇ · (ρcvT ) = ∇ · (k∇T ) + S

where T , t, ρ, c, k, v and S are the temperature, time, density, specific heat, thermal
conductivity, velocity vector, and source term, respectively. The equation for evolution
of latent heat during solidification is represented by the source term, and expressed
by:

S = −Lρ
∂f

∂t
− Lρ∇(vf)

where L and f are the latent heat and liquid-fraction, respectively. The relationship
between the liquid-fraction and temperature describes how the material (here it is the
solder) solidifies between the liquidus and solidus temperatures range. For isothermal
materials the latent heat release is instantaneous; this means liquidus and solidus
temperatures are the same and translates to a vertical jump in the curve between
liquid-fraction and temperature. Such numerical discontinuity needs to be addressed
properly to maintain energy conservation, if not, it is possible to artificially gain or lose
energies in the system. To fully conserve energy, the Enthalpy Source-Based method
[VS91] is used to address such discontinuity.
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Stress-Strain Equations

For stress analysis, the incremental equilibrium equations governing solid deformation
are [ZT89] [TBC95]:

∆σij,j = 0 (i, j = x, y, z)

where ∆σij,j are the Cartesian components of the Cauchy stress tensor. The incre-
mental stress ∆σ , (∆σxx ∆σyy ∆σzz ∆σxy ∆σxz ∆σyz) is due to the elastic strain
given by:

∆σ = [D]∆eel

where ∆eel and [D] are the elastic strain vector and elastic materials matrix respec-
tively. The elastic strains are dependent on the total ∆e, thermal ∆eth, and visco-
plastic strain ∆evp vectors given by:

∆eel = ∆e−∆eth −∆evp

For small strains, the total strain, ∆e, is given by the gradient in displacements, which
in matrix form is:

∆e = [L]∆d

where [L] is the matrix of differentials and ∆d is the displacement vector. The visco-
plastic strains in this analysis are represented by the Perzyna [Per66] constitutive
model give by:

ėvp =
∂evp

∂t
=

2λ
3σeq

(
σeq

σy
− 1

)n
Sij

where λ, σeq, σy , n and Sij are the fluidity, von-mises stress, yield stress, strain
rate sensitivity, and deviatoric stress, respectively. Within a time increment, ∆t, the
incremental visco-plastic strain is:

∆evp = ∆tėvp

An Integrated Procedure

The solution procedure for the coupling of solidification and stress, plus others such
as thermal convection (not included in the solder for the present study) is given in
reference [BCF+96], and is in the PHYSICA toolkit. Figure 2 shows the coupled
solution procedure for transient analysis of temperature, solidification, and stress.

Within the time step loop the thermal variables, temperature and liquid-fraction,
are first solved and the temperature changes, ∆T , calculated. To account for latent
heat evolution during solidification, and other non-linearity, an iterative procedure is
generally used. Next, the resulting changes of temperature and liquid-fraction are
used in the stress calculations.
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Figure 2: Coupled solution procedure in PHYSICA

Based on temperature changes the incremental displacements are calculated. Us-
ing the new displacements and current total stress, σo, the incremental total and
viscoplastic strains can be calculated. The incremental elastic strain and stress can
then be obtained for the time step. This incremental stress will update the total stress
(σn = σo+∆σ) that will change the values for viscoplastic strain. Due to non-linearity
and coupling, an iterative procedure is commonly used.

After the thermal and stress variables have been solved within the time step, the
values for these become the old values for calculations at the next time step. As
cooling progresses the liquid solder region solidifies and the resulting ”solid” elements
becoming eligible for stress calculations. The solution procedure continues until the
simulation finishes.

Software & Parallel Model

The PHYSICA toolkit [Phy] [CCB+96] from University of Greenwich is used for the
study. It has an open single-code component-based software framework [CBM+99] for
coupled and Multiphysics applications. The code is 3D, unstructured mesh, with anal-
ysis models for fluid flow, heat transfer, solidification, elastic/visco plastic, combustion
and radiosity. PHYSICA’s parallel model (see refs [CBM+99] [MCJ97]) is based on
the Single Program Multiple Data (SPMD) paradigm, where each processing element
runs the same program on a sub-portion of the model domain. The mesh, representing
the model domain, is partitioned using the graph-partitioning tool JOSTLE [Jos] into
sub-domains that are minimized for data exchanges between the overlapped region.
Message passing is then used to perform any data exchange needed between these
sub-domains on each processing element (PE).

For parallel codes to scale well for performance, the non-scalable portions needs to
be eliminated - if not possible, it will be a point of concern in the solution procedure’s
critical path. Some common examples of non-scalable parts are, reading and writing
to files (parallel input and output are currently system dependent, if available), and
global summation operatives commonly found in popular linear solvers. In the version
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Table 1: Parallel performance for electronic package case
CPU time in minutes

PE Solution time Total time Speedup
1 17.40 17.92
4 6.00 6.75 2.65
8 4.87 5.62 3.19

of PHYSICA used for this work, the embedded JOSTLE is scalar and it is a critical
point in the overall scalability. Also, by default, the whole mesh is first read into
memory for JOSTLE to perform the partitioning before distribute to the PEs for
processing. For larger model sizes this non-stop processing can be inappropriate due
to memory demands by JOSTLE and PHYSICA - together, the optimal performance
configuration of the computing system can degrade significantly. In this work, the
mesh partitioning and analysis are executed separately for all the large models; first
partitioning the mesh and save the PE index for each mesh element to file, then the
analysis phase reads the save index data and distributes the mesh element to each PE
for processing. For multiple run cases with the same number of PEs, this ”partition
and save” approach may, in some instances, be more advantages than the non-stop
approach; since for any amount of multiple runs the partitioning only occurs once. A
parallel version of JOSTLE is underway to address the non-stop processing and other
related matters.

Parallel Results

Table 1 shows the computing times for a model solve in electronic packing (consisting
of 21,413 vertices, 57,577 faces and 18,150 elements) in CPU minutes for 1, 4 and 8
PEs. For this model the total time for 8 PEs is a speedup of 3.19 over a single PE,
the solution speedup (without initial setup, such as mesh partitioning, and reading
and writing to files) is 3.57. This means the non-solution portion takes about 11 and
13 percents of the total CPU time, respectively for 4 and 8 PEs, compared to 0.03
percent for single PE.

Figure 3 shows one quarter of a chip bonding to a PCB example being modelled
during the reflow process, and Figure 4 showing an enlarged view of the solder bumps
with two different attachment materials at top and bottom. The model consists of
273,504 vertices, 1,133,207 faces and 425,890 elements. Figure 5 shows the solidifica-
tion fronts of the solder bumps during cooling phase of the reflow process. The corner
solder bump is solidifying at a rate faster than its neighbours as indicated by the so-
lidification front in dark colours. Figure 6 shows the magnitude of visco-plastic strain
and deformation throughout the solder bumps at the end of reflow when all the solder
bumps are solid. Again the corner solder bump has a higher amount of strain than
all the other solid bumps. The deformation, as shown by the inclining solder bump, is
board contracting more than the chip because of different thermal coefficients in the
material properties.

Table 2 gives the computing times from 2 up to 12 PEs in CPU hours. The model
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Figure 3: Chip bonding to PCB Figure 4: Solder bumps

Figure 5: Solidifying solder bumps Figure 6: Solder bumps deformation

is too big for single PE on the AP3000, as it reports out of memory. The CPU runtime
for 2 PEs is under 7 hours and 12 PEs is under 2 hours. This gives a speedup factor
of about 8 for 12 PEs, representing a saving of about 5 hours in analysis time or an
extra 1 to 2 cycles in the design and optimization process. For lower PE runs the
speedup factor moves nearer to the linear scaling mark.

To get an idea of a single PE runtime, the same model was run on a Sun Enterprise
10000 (E10000) with 2GB memory in scalar mode. With UltraSPARC processors
inside the AP3000 and E10000 systems, U170 and U250 respectively, a total CPU
time of 15.34 hours was reported on the E10000 with solution time being 15.24 hours.
If we put the E10000 result with the 12 PEs of AP3000, it represents a saving of over
13 hours in analysis time or giving an extra 5 to 6 cycles in the design & optimization
process. In terms of speedups, it represents a factor of 9 (compared to 8) for analysis
time and 11 (compared to 9) for the solution period. Figures 7 and 8, respectively,
show graphs of parallel performance for total and solution times; the triangle markers
indicates an idea of the true speedup if the 1 PE time had been possible. These
estimates are obtained by substituting the E10000 single PE result in the calculation
for speedups.

From the performance graphs, it is encouraging to see the curve for total time
shows there are potential gains for this model case by adding more PEs (12 PEs is
the highest we have access to at present). A downside is the non-solution portion of
the analysis time is also increasing with PEs, some 19 percent (or 20 minutes) for the
12 PEs case. To see how larger models may fair, a similar problem with model size of
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Table 2: Parallel performance for a chip bonding to a PCB example
CPU time in hours

PE Solution time Total time Speedup
2 6.281 6.748
3 4.233 4.621 2.921
4 3.261 3.648 3.699
5 2.703 3.070 4.397
6 2.350 2.701 4.997
7 2.082 2.488 5.425
8 1.816 2.153 6.268
9 1.684 2.023 6.671
10 1.530 1.848 7.305
11 1.460 1.762 7.658
12 1.379 1.698 7.951

Figure 7: Total time performance Figure 8: Solution time performance
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1,205,997 vertices, 3,504,048 faces and 1,149,312 elements was conducted on 12 PEs.
The parallel performance reports an analysis time of 6.01 hours with a solution period
of 4.94 hours, representing some 18 percent or 1 hour for non-solution activities. This
is encouraging, as the percentage figure has not altered significantly.

Conclusion

The above results indicate significant reduction in analysis time for electronic packag-
ing applications, even for a model mesh size of 18,000 elements. As for larger models
with elements in the millions, such as multiple chips on board cases, it can exceed the
memory capacity of today’s workstations. Parallel computing with domain decompo-
sition offers a solution to run and deliver the analysis within a design and development
timeframe.

The numerical experiments conducted indicate some 20 percent of the analysis
time on 12 PEs are in non-solution activities, such as data retrieving and saving to
files and setup period for parallel computation. Therefore, there is great potential
in reducing this figure even further and improving parallel performance by removing
the present scalar events in the procedure’s critical path such as having parallel IO
and parallel mesh partitioning. Memory usage is lot higher in mechanical analysis
section than in the thermal section; a ratio of about 2 to 1 has been observed - this
is primarily due to the segregated method used in thermal analysis section as to the
full-system employed in the mechanical.
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30. A heterogeneous domain decomposition for
initial– boundary value problems with conservation
laws and electromagnetic fields

C.A. Coclici, W.L. Wendland1, J. Heiermann, M. Auweter–Kurtz2

Introduction

In this paper a nonoverlapping domain decomposition method for the numerical treat-
ment of compressible viscous plasma flows inside a self–field magnetoplasmadynamic
(MPD) accelerator is developed. The high–enthalpy magneto–plasma flow is modelled
by a system of conservation laws extended by partial differential equations describ-
ing the electromagnetic field. Due to the tremendous computational time needed for
the numerical solution of the complex equations, the flow–field domain is decomposed
into two model zones, characterized by different physical properties of the flow. The
complete model of the extended Navier–Stokes equations in the near field of the ac-
celerator is coupled with a simplified model of the extended Euler equations in the far
field. The coupling is realized by appropriate transmission conditions at the artificial
coupling boundary.

Cathode
Anode

Insulator

Figure 1: MPD thruster

The principle of a self–field thruster is
shown in Figure 1. A cold gas (argon)
enters the accelerator and is heated up
by an electric discharge to a hot plasma.
The plasma expands thermally and accel-
erates into a test tank in the laboratory.
In addition, the plasma is accelerated by
electromagnetic Lorentz forces. The flow
is described by the conservation equations
for mass, momentum and energy for the
heavy particles (argon atoms Ar0 and ions
Ar1+, Ar2+), by the conservation equa-
tion for the electron and the ionization
energy, and by the Maxwell equations of
classical electrodynamics.

Furthermore, reaction equilibrium, thermal non–equilibrium (two–fluid model), and
laminar flow are assumed at this time.
The complete system of governing equations is employed within an essentially smaller
near–field region Ω1, containing the thruster, and is coupled by appropriate

1Mathematical Institute A, University of Stuttgart, { coclici, wendland }@mathematik.uni-
stuttgart.de

2Institute of Space Systems, University of Stuttgart {heierman, auweter }@irs.uni-stuttgart.de
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Figure 2: Decomposition of the compu-
tational domain

transmission conditions across the ar-
tificial boundary Γ with a simplified
model in the complementary far field
Ω2, corresponding to the test tank.
Generally, the far–field simplifications
should be chosen in such a way, that
on one hand the flow in the far–field
domain is still modelled accurately
enough, and on the other hand, the
numerical treatment can be performed
efficiently.

The axisymmetric plasma flow is described in cylindrical coordinates by the vector–
valued function

W = W(r, z; t) :=
[
w, pH , TH ; we; wEB

]&(r, z; t), (r, z) ∈ Ω, t ∈ [0, T ].

Here, w=(ρ, ρvr, ρvz , EH)& collects the conservative variables with the density ρ, the
velocity vector v=(vr, vz)&, and the energy of the heavy particles EH . The pressure
and the temperature of the heavy particles are denoted by pH and TH , respectively.
The function we=(eei , pe, Te)& describes the electron component of the plasma, with
eei containing the electron and the ionization energy, and with pe and Te representing
the pressure and the temperature of the electron component, respectively. Finally,
wEB = (E,B, j)& contains the electromagnetic field (E,B) and the electric current
density j.

Modelling of the near field

The heavy–particle flow is modelled by the compressible Navier–Stokes equations
which are extended due to the influence of an arc discharge. They take in cylindrical
coordinates the form

∂w1

∂t
+ div(r,z)F(W1) = div(r,z)R(w1,∇(r,z)w1) +G(W1) in Ω1 × [0, T ]. (1)

The function F contains the convective part of the Navier–Stokes equations (here,
with the pressure field p = pH + pe), and, in addition, an electromagnetic pressure
term derived from the source terms. We represent F as

F = (Fr,Fz)(W) = (fr, fz)(w,we) + (gr,gz)(wEB),

where, with the purely azimuthal magnetic field B = (0, B, 0)& and with the magnetic
permeability of vacuum µ0 > 0,

fr(w,we) :=
(
ρvr, ρv2r + (pH + pe), ρvrvz, [EH + (pH + pe)] vr

)&
,

fz(w,we) :=
(
ρvz , ρvzvr, ρv2z + (pH + pe), [EH + (pH + pe)] vz

)&
,

gr(wEB) :=
(
0, B2, 0, B2vr

)&/(2µ0), gz(wEB) :=
(
0, 0, B2, B2vz

)&/(2µ0).
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The viscous terms are collected in the function R = (Rr,Rz)(w,∇(r,z)w) where

Rr(w,∇(r,z)w) :=
(
0, τrr, τrz, τrrvr+τrzvz+λH ∂TH/∂r

)&
,

Rz(w,∇(r,z)w) :=
(
0, τzr, τzz, τzrvr+τzzvz+λH ∂TH/∂z

)&
,

with the heat conductivity λH > 0 of the heavy–particle flow, and with

τrr = µ

[
2
∂vr
∂r

− 2
3
div v

]
, τrz = τzr = µ

[
∂vr
∂z

+
∂vz
∂r

]
, τzz = µ

[
2
∂vz
∂z

− 2
3
div v

]
defining the components of the viscous part of the stress tensor; µ > 0 represents
the viscosity coefficient. The function G contains the electromagnetic force and heat
terms as well as quantities describing the heat transfer due to the collisions between
the plasma components:

G(W) :=
(
0,

1
r

[
pH + pe −

2
3
µ
(
2
vr
r
− ∂vr

∂r
− ∂vz

∂z

)
− B2

2µ0

]
, 0,

(
pe +

B2

2µ0

)
divv − vr

r

B2

µ0
+

2∑
ν=0

nνneαeν(Te − TH)
)&
.

Here, nν (ν=0, 1, 2) and ne are the densities of the heavy particles and of the electrons,
respectively, and αeν are heat transfer coefficients. Note that, by including the Lorentz
terms j×B as B2/(2µ0) in the fluxes, our formulation observes as much conservation
as possible. Consequently, conservative numerical methods (as e.g. the finite volume
method) are good candidates to be used for the numerical treatment of the problem.
The conservation of the electron and ionization energy is given in Ω1 × [0, T ] by

∂eei
∂t

+ div (eeiv)− div (λei∇Te) = −pe div v +
5
2
k

e
j · ∇Te −

1
nee

j · ∇pe

+
2∑
ν=0

nνneαeν(TH−Te)+
|j|2
σ

. (2)

Here, λei denotes the heat conductivity for the electron component of the flow, k is
the Boltzmann constant, and σ is the electric conductivity. The Maxwell equations
and Ohm’s law for plasmas read

rotB = µ0j, rotE = −∂B
∂t

, divB = 0; E =
j
σ
− v ×B+ β j×B− β ∇pe

(β – Hall parameter), leading to the discharge equation

∂2B

∂r2
+

∂2B

∂z2
+
[
1
r
− µ0σvr

]
∂B

∂r
− µ0σvz

∂B

∂z
−
[
1
r2

+ µ0σ
(∂vr

∂r
+

∂vz
∂z

)]
B = FB ,

(3)

where FB = FB(σ, pe, µ0) denotes a source term. Additional equilibrium reactions are
incorporated into our model but, for brevity, they are not given here explicitly (for
more details, see e.g. [Sle99]).
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In order to get a more profound understanding of the complex physical processes in-
volved, theoretical and numerical investigations have been performed [Sle99, WKAK98].
Continuing this work, the mathematical formulations of the conservation equations
have been extended in [HAKE+99], where an advanced numerical finite–volume code
has been written in order to capture the plasma flow physics accurately.

However, due to the high complexity of the model and the tremendous computational
costs, the system has been discretized only in the vicinity Ω1 of the MPD thruster,
identified here as the near field. Γ is there considered as outflow (freestream) boundary
and characteristic boundary conditions, using data obtained from measurements, are
used. In that model one faces the problem that a certain amount of ambient (cold)
far–field gas recirculates into the hot plasma jet in the near field. Consequently, parts
of the outflow boundary Γ get “inflow” properties and require additional information
about the flow quantities. This makes the numerical treatment of the plasma flow
in the far field Ω2 necessary. We consider in Ω2 a simplified model which takes into
account the physical properties of the flow, and couple this model to the complete
system in Ω1. Our coupling procedure extends previous work on heterogeneous do-
main decomposition in aerodynamics (see, e.g. [QS95, Coc98, CW01]) to the case of
compressible magneto–plasma flows.

Simplified modelling of the far field

In a first approximation we assume that far away from the MPD accelerator the shear
stresses τrr, .., τzz and the heat conduction terms λH∂r(z)TH , defining the quantity R,
are strongly dominated by the convective part. Hence, we assume the heavy–particles
flow to be inviscid in Ω2. At the moment, we also assume that the magnetic field B
vanishes identically in Ω2. The system of conservation laws takes the simplified form

∂w2

∂t
+ div(r,z)(fr , fz)(w2,we,2) = H(w2,we,2) in Ω2 × [0, T ], (4)

with the simplified source term

H(w2,we,2) :=
(
0,

pH + pe
r

, 0, pe divv +
2∑
ν=0

nνneαeν(Te − TH)
)&
.

Furthermore, as a consequence of j = rotB/µ0 ≡ 0 in Ω2, the equation of conservation
of electron and the ionization energy (2) becomes in Ω2 × [0, T ]

∂eei
∂t

+ div (eeiv) − div (λei∇Te) = −pe div v+
2∑
ν=0

nνneαeν(TH−Te). (5)

Transmission conditions

These conditions should be chosen in such a way, that on one hand, the fundamental
physical laws are respected, and on the other hand, the resulting coupled problem
is well–posed and consistent with the full original problem. The continuity of the
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characteristic variables could be chosen as transmission condition, but according to
the theory of hyperbolic equations, this can be required only across that part of the
interface, where the corresponding characteristics enter the hyperbolic region, see e.g.
[Hir88]. We also refer to [QS95, Coc98, CW01], where the continuity of the Riemann
invariants across the inflow part and compatibility conditions across the outflow part
of the boundary are used. In accordance with the conservation laws, the continuity
of the normal flux yields a transmission condition on the complete interface Γ: the
total flux associated with the full model in Ω1 (containing the inviscid as well as the
viscous contributions) is set equal to the normal inviscid flux, that results from the
simplified equations in Ω2:

−
[
Rr(w1,∇w1)nr +Rz(w1,∇w1)nz

]
+
[
fr(w1,we,1) + gr(wEB,1)

]
nr

+
[
fz(w1,we,1) + gz(wEB,1)

]
nz = fr(w2,we,2)nr + fz(w2,we,2)nz (6)

across Γ. The flux condition has successfully been used for pure flow problems (see, for
example, [QS95, CW01]). However, it implies that the solutions of the coupled problem
may exhibit jumps at the interface, depending on the magnitude of the viscosity and
heat transfer terms neglected in the far field (for more details, see [Coc98]). Since the
solution of the original problem should satisfy the natural transmission conditions at
the artificial interface (i.e. continuity of the solution and of the total normal flux),
the approximate extended Navier–Stokes / extended Euler solution can only be a
first approximation and needs to be corrected by special terms accounting for the
loss of continuity and maintaining the continuity of the normal flux. A boundary
layer correction for a simplified transmission problem is presented in [CW00] in the
framework of singular perturbation theory. This analysis is extended for the problem
under consideration in [CMW00].
In order to assure the electron heat transfer across the interface, we impose the con-
tinuity of the co–normal derivative of the electron temperature Te:[

λei, 1
∂Te, 1
∂n

]
(r, z) =

[
λei, 2

∂Te, 2
∂n

]
(r, z) for all (r, z) ∈ Γ. (7)

Finally, we impose B ≡ 0 on Γ.

Numerical aspects and results

In the numerical code, the extended conservation laws (1) and (4), describing the
heavy–particle motion, as well as the electron and the ionization energy equations
(2) and (5) are solved on an unstructured, dual mesh by using a second–order finite
volume upwind scheme based on explicit Euler time–stepping. The discharge equation
(3) is currently solved by triangular finite elements with linear ansatz functions using
an SOR scheme. For a detailed description we refer to [HAKE+99]. A finite volume
formulation is in preparation for this conservation equation.

The full computational domain including the near field of the MPD accelerator and
the far field corresponding to the tank, are shown in Figure 3. The area of the far
field is about 80 times larger than that of the near field, emphasizing the necessity of
simplifying the mathematical model in the far field.
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Figure 3: Full computational domain

Figure 4: Isolines of vz

The isolines of the axial velocity component vz give an overall impression of the plasma
flow: The plasma is accelerated in the MPD accelerator, then it is expanded into the
tank, and finally it flows out of the tank at the far right.

The coupling domain, where dual cells on both sides of the coupling boundary touch
each other, is shown in Figure 5 (left). Both meshes are produced with an advancing
front algorithm. The mesh generator enforces the global mesh to be conforming at
the artificial coupling boundary.

Cathode

Anode

Insulator

Cathode

Anode

Insulator

Figure 5: Computational domain for the coupling (left); isolines of vz (right)

The isolines of the longitudinal velocity vz for the coupled solution are presented on
the right. Obviously, the coupling method works very well for the central, hot plasma
jet. Up to one nozzle radius above the centerline, vz passes smoothly the coupling
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boundary Γ. However, farther away from the centerline, the isolines become slightly
discontinuous and do not cross the interface smoothly.

It turns out that the neglection of the heat conduction terms corresponding to the
heavy–particle flow is significant, see Figure 6 (left). While the isolines of the heavy–
particle temperature TH behave smoothly across the part of the interface Γ contained
in the central plasma jet, we can see the discontinuities of the solution in the region
above very clearly. The explanation for this is that the heavy–particle heat conduction
is still physically relevant with respect to the inviscid Euler energy flux, such that the
heavy particle heat conduction cannot be neglected in this geometrical decomposition.
The local discontinuity of TH also causes a slight discontinuity and non–smoothness
of vz in the critical region. Therefore, the far field domain will be further decomposed
into a small intermediate domain attached to the near field and the complementary
far–field region. In the intermediate field, the heavy–particle heat conduction will be
considered, while the components of the viscous stress tensor will be neglected. Also
a rigorous dimension analysis of the flow quantities is necessary to justify the use of
the intermediate model.

Cathode

Anode

Insulator

Cathode

Anode

Insulator

Figure 6: Isolines of the heavy–particles temperature TH (left) and of the electron
temperature Te (right)

The approximate coupled solution also shows that the electron temperature Te passes
the artificial interface smoothly, as can be seen in Figure 6 (right). Thus, the natural
transmission condition (7), used for the coupling of the equations (2) and (5) is justified
also numerically.

Finally, we outline that by using the heterogeneous domain decomposition, the very
complex compressible magneto–plasma flow has been computed for the first time
within the whole MPD accelerator plus tank configuration, and that the influence of
the far field through the recirculating amount of gas has been simulated numerically.
Our investigation shows that the heterogeneous domain decomposition method is an
excellent tool which can be efficiently used in the numerical treatment of nonlinear
boundary value problems of high complexity.
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31. A Defect Correction Method for the Retrieval of
Acoustics Waves

G.S. Djambazov1, C.-H. Lai2, K.A. Pericleous3

Introduction

For a given mathematical problem and a given approximate solution, the residue or
defect may be defined as a quantity to measure how well the problem has been solved.
Such information may then be used in a simplified version of the original mathematical
problem to provide an appropriate correction quantity. The correction can then be
applied to correct the approximate solution in order to obtain a better approximate
solution to the original mathematical problem. Such idea has been around for a long
time and in fact has been used in a number of different ways.

A famous example of defect correction is the computation of a solution to the
nonlinear equation f(x) = 0. Suppose x̄ is an approximate solution, then −f (x̄) is the
defect. One possible version of the original problem is to define f̄(x) ≡ f ′(x̄)(x− x̄)+
f(x̄) = 0. In fact, if one replaces x−x̄ as v, then v is the correction which is obtained by
solving f ′(x̄)v = −f (x̄) and an updated approximation can be obtained by evaluating
x := x̄+v. Most defect correction are used in conjunction with discretisation methods
and two-level multigrid methods [BS84]. This paper is not intended to give an overview
of defect correction methods but to use the basic concept of a defect correction in
conjunction with fluctuations in flow field variables for sound and noise retrieval.

Recall that sound waves - manifested as pressure fluctuations - are typically sev-
eral orders of magnitude smaller than the pressure variations in the flow field that
account for flow acceleration. Furthermore, they propagate at the speed of sound in
the medium, not as a transported fluid quantity. A decomposition of variables was
first introduced in [DLP97] and has been further examined in [Dja98] to include three
types of components. These components include (1) the mean flow, (2) flow pertur-
bations or aerodynamic sources of sound, and (3) the acoustic perturbation. We have
demonstrated the accurate computation of (1) and (2) in [DLP98]. Mathematically,
the flow variable U may be written as ū+ u where ū denotes the mean flow and part
of aerodynamic sources of sound and u denotes the remaining part of the aerodynamic
sources of sound and the acoustic perturbation.

While flow perturbation or aerodynamic sources of sound may be easier to recover,
it is not true for the acoustic perturbation because of its comparatively small magni-
tude. In fact, the solutions of the Reynolds averaged Navier-Stokes equations reveal
only a truncated part of the full physical quantities. This paper follows the basic
principle of the defect correction as discussed above and applies the concept to the
recovery of the propagating acoustic perturbation. The method relies on the use of
a lower order partial differential equation defined on the same computational domain

1University of Greenwich, G.Djambazov@gre.ac.uk
2University of Greenwich, C.H.Lai@gre.ac.uk
3University of Greenwich, K.Pericleous@gre.ac.uk
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where a residue exists such that the acoustic perturbation may be retrieved through
a properly defined coarse mesh.

This paper is organised as follows. First, derivation of a lower order partial differ-
ential equation resulting from the Navier-Stokes equations is given. Second, accurate
representation of residue on a coarse mesh is discussed. The coarse mesh is designed
in such a way as to allow various frequencies of noise to be studied. Suitable interpola-
tion operators are studied for the two different meshes. Third, 1-D and 2-D examples
are used to illustrate the concept. Finally, future work is discussed.

The Defect Correction Method

The aim here is to solve the non-linear equation

LU := L(ū + u) = 0 (1)

where L is a non-linear operator depending on U := ū + u. Using the concept of
decomposition of variable, U is now written as ū+ u, where ū is the mean flow and u
is the acoustic perturbation. Note that u A ū. In the case of sound generated by the
motion of fluid, it is natural to imagine L as the Navier-Stokes operator. For a 2-D
problem,

ū =

 ρ̄
v̄1
v̄2

 u =

 ρ
v1
v2


where ρ is the density of fluid and v1 and v2 are the velocity components along the
two spatial axes. Using the summation notation of subscripts, the 2-D Navier-Stokes
problem Lu = 0 is written as

∂ρ

∂t
+

∂ρvj
∂xj

= 0

and
∂vi
∂t

+ vj
∂vi
∂xj

+
1
ρ

∂P

∂xi
− fi

ρ
= 0

where P is the pressure and fi is the external force along i-th axis.
Suppose (1) may be split and re-written as

L(ū + u) ≡ Lū+ E{ū}u+K[ū, u] (2)

where E{ū} is an operator depending on the knowledge of ū and K[ū, u] is a func-
tional depending on the knowledge of both ū and u. Following the concept of defect
correction, ū may be considered as an approximate solution to (1). Hence one can
evaluate the residue of (1) as

R ≡ L(ū + u)− Lū = −Lū

which may then be substituted into (2) to give

E{ū}u+K[ū, u] = R (3)
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In many cases, K[ū, u] is small and can then be neglected. In those cases, the problem
in (3) is a linear problem and may be solved more easily to obtain the acoustics
fluctuation u. A non-linear iterative solver is required in order to obtain u for cases
when K[ū, u] is not negligible. Finally, to obtain the approximate solution ū, one only
needs to solve Lū = 0.

Expanding L(ū + u) = 0 for L being the Navier-Stokes operator and re-arranging
we obtain

∂ρ

∂t
+ v̄j

∂ρ

∂xj
+ ρ̄

∂vj
∂xj

+ [vj
∂(ρ̄+ ρ)

∂xj
+ ρ

∂(v̄j + vj)
∂xj

] = −[
∂ρ̄

∂t
+ v̄j

∂ρ̄

∂xj
+ ρ̄

∂v̄j
∂xj

]

and
∂vi
∂t

+ v̄j
∂vi
∂xj

+
1
ρ̄

∂P

∂xi
− fi

ρ̄

+[
ρ

ρ̄

∂(v̄i + vi)
∂t

− (vj +
ρ

ρ̄
(v̄j + vj))

∂(v̄i + vi)
∂xj

] = −[
∂v̄i
∂t

+ v̄j
∂v̄i
∂xj

+
1
ρ̄

∂P̄

∂xi
− f̄i

ρ̄
] (4)

It can be seen that (4) may be written in the form of (3) where

E{ū}u =

[
∂ρ
∂t + v̄j

∂ρ
∂xj

+ ρ̄
∂vj
∂xj

∂vi
∂t + v̄j

∂vi
∂xj

+ 1
ρ̄
∂P
∂xi

− fi
ρ̄

]
(5)

K[ū, u] =

[
vj
∂(ρ̄+ρ)
∂xj

+ ρ
∂(v̄j+vj)
∂xj

ρ
ρ̄
∂(v̄i+vi)
∂t − (vj + ρ

ρ̄(v̄j + vj))
∂(v̄i+vi)
∂xj

]
(6)

R =

[
−[∂ρ̄∂t + v̄j

∂ρ̄
∂xj

+ ρ̄
∂v̄j
∂xj

]

−[∂v̄i∂t + v̄j
∂v̄i
∂xj

+ 1
ρ̄
∂P̄
∂xi

− f̄i
ρ̄ ]

]
≡ −Lū (7)

From the knowledge of physics of fluids, the acoustic perturbations ρ and vj are of
very small magnitude (this is not true for their derivatives), therefore, K may be con-
sidered negligible due to the reason that any feedback from the propagating waves to
the flow can be completely ignored, except in some cases of acoustic resonance, which
is impossible to occur in the examples of this paper. Hence the equation E{ū}u = R,
with E given by (5), which is known as the linearised Euler equation, can be solved in
an easier way. The remaining question is to obtain the approximate solution ū to the
original problem (2). It is well known that CFD analysis packages provide excellent
methods for the solution of Lū = 0. Therefore one requires to use a Reynolds aver-
aged Navier-Stokes package supplemented with turbulence models such as [CPC95]
to provide a solution of ū. Physically, one requires ū to be as accurate as possible to
capture all the physics such as turbulence and vortices.

A Two-Level Numerical Scheme

In order to simulate accurately the approximate solution, ū, to the original problem,
LU = 0, the QUICK differencing scheme [Leo79] is used which produces sufficiently
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accurate results of ū for the purpose of evaluating the residue as defined in (7). A
sufficiently fine mesh has to be used in order to preserve vorticity motion. How-
ever, situations are different for the numerical solutions of linearised Euler equations
[DLP97][Dja98], where the mesh has to be much coarser in order to obey Courant
limit and to account for the fact that the acoustic wavelength is larger than the vortex
diameter. An account on various high order finite difference schemes and its mesh
requirements for the numerical solution of linearised Euler equations can be found in
[Dja98]. After evaluating the residue on the fine mesh, it is then required to transfer
these residuals onto the coarser mesh. Physically, the residue is in fact the sound
source that will disappear without the proper retrieval technique as discussed in this
paper.

Let h denote the mesh to be used in the Reynolds averaged Navier-Stokes solver.
Instead of evaluating ū, one would solve the discretised approximation Lhūh = 0
to obtain ūh. The residue on the fine mesh h can be computed as Luh by means
of a higher order approximation [Dja98]. Let H denote the mesh for the linearised
Euler equations solver. Again instead of evaluating u, one would solve the discretised
approximation EH{ūH}uH = RH to obtain uH . Here RH is the projection of R onto
the mesh H . Let I{h,H} be a projection operator to project the residue computed on
the fine mesh h to the coarser mesh H . The projected residue can then be used in
the numerical solutions of linearised Euler equations. Let I{H,h} be an interpolation
operator to interpolate the acoustic signals from the coarser mesh back to the finer
mesh. Therefore the two-level numerical scheme is

For non-resonance problems:
Solve Lhūh = 0
RH := −I{h,H}Lūh
ūH := I{h,H}ūh
Solve EH{ūH}uH = RH
uh := I{H,h}uH
ū := ūh + uh

Note that RH cannot be computed as LI{h,H}ūh because L is a non-linear operator.
In the actual implementation, a pressure-density relation which also defines the

speed of sound c in air is used:

∂P

∂ρ
= c2 ≈ 1.4

P̄

ρ̄
(8)

and the first component of the linearised Euler equations in (5) becomes

∂P

∂t
+ v̄j

∂P

∂xj
+ ρ̄c2

∂vj
∂xj

= −c2[
∂ρ̄

∂t
+ v̄j

∂ρ̄

∂xj
+ ρ̄

∂v̄j
∂xj

] (9)

The purpose of this substitution is to make sure that the new fluctuations P and vi do
not contain a hydrodynamic component, and hence it allows them to be resolved on
regular Cartesian meshes [Dja98] which is essential for the accurate representation of
the acoustic waves or the fluctuation quantity u. On the other hand, an unstructured
mesh is usually used to obtain ūh. The two different meshes overlapped one another on
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the computational domain. The computational domain for the linearised Euler equa-
tions is not necessarily exactly the same as the one for the CFD solutions. However,
the computational domain for the linearised Euler equations must be large enough to
contain the longest wavelength of a particular problem under consideration. The nu-
merical examples as shown in next section do not involve any solid objects, therefore
I{h,H} and I{H,h} are simply arithmetic averaging processes.

Numerical Examples

To test the feasibility of this approach the simple 1-D example is considered of an
initial-value wave propagation problem with exact solution

P = f(x− ct) + f(x+ ct)
ρ̄cv1 = f(x− ct)− f(x+ ct)

f(x) =
{

A
2 (1 + cos 2π xλ ), |x| <

λ
2

0, |x| ≥ λ
2

(10)

where A is the amplitude and λ is the wavelength of the pressure pulses that start
from the origin (x = 0) at t = 0.
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Figure 1: Analytic and preliminary CFD solutions of test problem

For the fine grid problem, Lhūh = 0, the initial conditions P = 2f (x) and v̄1 = 0
were prescribed for the CFD solution which uses a structured finite volume code
[CHA95] with QUICK differencing scheme for the momentum equations. The time
dependent result pictured in Figure 1 agrees with the analytic solution only in phase,
but not in amplitude. Refining of the mesh does not improve the result at all. Since
the problem is symmetrical with respect to the origin, only the right part (x > 0) is
shown (and solved for). Uniform mesh was used to avoid averaging of the residual
sources with this test. The time step of the CFD simulation can be several times
larger than the time step of the explicit Euler solver (which has to obey the Courant
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limit). In this example the CFD makes 12.5 time steps per cycle with 20 points per
wavelength. In fact, time steps smaller than this produce greater numerical errors
over the same propagation distance. This is most probably due to the false diffusion
of the CFD schemes which accumulates with every time step.
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Figure 2: Defect corrected solution of test problem

The coarse grid solver, EH{ūH}uH = RH , or the acoustic module starts with zero
initial conditions, and gradually accumulates the differences between the real pressure
and velocity fields and their CFD representations. This process is driven by the source
terms of (4) which are discretised in a time-accurate way. The solution in Figure 2 is
obtained with second order approximation of the CFD quantities along the temporal
axis, and its maximum error is about 2%. If linear approximations are used (which
require only two stored CFD steps) the overall error becomes a little higher than 6%.

There are no external sources of mass and no external forces are acting on the fluid
in this example. Also, the viscous stresses can be completely ignored with these 1-D
sound waves: fi = 0 (see equation 4).

In Figure 2 the defect corrected solution (which is the sum of the CFD solution
and the linearised Euler solution) is shown at regular intervals in order to trace the
wave propagating from left to right. The time step with the acoustic module is 4 times
smaller than the CFD step, and this is equivalent to 50 time steps per cycle. Since the
acoustic procedure is fully explicit, these correction steps are computationally very
inexpensive (the acoustic module needs less than 10 s to compute the correction of
this example including the input and output of disk files). It can be seen that the
result of this one-dimensional test is very encouraging.

As a more realistic example, a 2-D production of sound waves due to the generation
of a vortex series within a flow medium as depicted in Figure 3 is examined. There
are no solid bodies in the flow domain, and no acoustic source cells have been pre-
defined. The vortices are initiated by the time-dependent source patch in the middle
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of the left boundary of the CFD domain. There is a background flow at a rate of
160 m/s from left to right which is not shown in Figure 3. An additional source of
mass is associated with the sinusoidal in time (with an amplitude of 12 m/s) source
of momentum in the vertical direction, active during time steps 1–30. Both of these
cooperate in the production of acoustic waves which originate at the source patch.
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Figure 3: Vortex generation and acoustic correction pressure contours (positive - solid
lines, negative - dashed lines, spacing: 20 Pa). Velocity vector scale: 3 m/s to 0.2 m.
Vertical dashed line marks vortex generation source patch.

The same fully-implicit in time CFD code [CHA95] with QUICK differencing
scheme for the momentum equations was used to simulate the generation and the
convection of vortices. The mesh density is indicated in Figure 3 by the density of the
arrows representing velocity vectors. As expected, no acoustic waves can be identified
in the resulting CFD pressure field. After the correction steps (re-discretisation, map-
ping of residuals, and linearised Euler solution), the missing part of the pressure field
is obtained, and it is shown in Figure 3 by contours. In this case of regular meshes
with no solid objects, the mapping procedure is simple: two CFD cells in the vertical
direction constitute one acoustic cell, and simple arithmetic averaging is used for the
mapping.

Figure 3 shows clearly the acoustic waves that have been produced at the vortex
generation patch propagating upwards, downwards, and out of the domain. There
is no analytical validation for this example, but the results obtained are physically
correct.

Conclusions

A framework of defect correction has been established for computational aeroacoustics.
Based on this defect correction framework, it is possible to study aerodynamic sound
generation in a systematic way. A 1-D example with validation and a 2-D example
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with physically correct results are shown. The authors are currently investigating a
2-D example with proper validation and are extending the concept to 3-D problems.
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32. Numerical solution of vascular flows by
heterogeneous domain decomposition methods

L. Fatone1, P. Gervasio2, A. Quarteroni3

Introduction

In this note we investigate a problem arising from fluid dynamics for hemodynamics,
using heterogeneous domain decomposition techniques. In particular we will cou-
ple Navier-Stokes equations with Oseen or Stokes equations, as advocated in papers
[FGQ99] and [FGQ00].

Our interest is twofold. On one hand we would like to assess the quality of the
coupled heterogeneous models; in particular we want to compare two options where
the Oseen flux or the Stokes flux is matched continuously at the interface. On the
other hand, we wish to carry out iterative substructuring method to solve the coupled
problem. This iterative procedure has been introduced and analyzed in [FGQ00] for
a general problem.

More generally in multi-field domain decomposition problems, different physical,
mathematical or numerical models are adopted in different parts of the computational
domain. One motivation is to develop parallel algorithms, the other is to provide an
efficient way to reduce the complexity of the problem in certain regions, by using there
a simpler mathematical model.

Given a bounded domain Ω ⊂ R2, with a Lipschitz boundary ∂Ω, T > 0, a vector
field f , a constant viscosity ν > 0, we are interested in approximating the velocity
field u = u(x, t) and the pressure field p = p(x, t) for the incompressible Navier-Stokes
equations:

∂tu− ν∆u+ (u · ∇)u+∇p = f , ∇ · u = 0 in Ω× (0, T ) (1)

by a multi-field approach. The idea is to consider two disjoint subregions Ω1 and Ω2

of Ω such that Ω1 ∪Ω2 = Ω, and to couple the Navier-Stokes equations (1) restricted
to the subregion Ω1 with the following linear Oseen equations

∂tu− ν∆u+ (u∞ · ∇)u+∇p = f , ∇ · u = 0 in Ω2 × (0, T ), (2)

where u∞ is a prescribed solenoidal vector field. Sometimes the Oseen equations can
be replaced by the Stokes equations, which are a special case of (2) with u∞ = 0.

The Navier-Stokes subregion Ω1 can be a suitable internal domain of Ω and the
Oseen subregion Ω2 an exterior subdomain. Otherwise Ω1 can be the part of Ω where
the flow is quite perturbed by the presence of an obstacle. On the common boundary
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of the two subdomains, Γ := ∂Ω1 ∩ ∂Ω2, correct transmission conditions have to be
imposed.

The mathematically admissible transmission conditions at subdomain interfaces
have been determined and analyzed in [FGQ99]. A Dirichlet/Neumann iterative proce-
dure among subdomains has been proposed to solve the coupled Navier-Stokes/Oseen
(or Navier-Stokes/Stokes) problem and its analysis was carried out in [FGQ00].

In the first and second Sections we recall the general problem, while in the last
Section we carry out the numerical results and the assessment of the proposed method.

Multi-domain formulations and transmission condi-
tions

We consider a vector field w : Ω :→ R2 such that wi = w|Ωi , for i = 1, 2 and

w1 = u|Ω1 and w2 is equal either to u∞|Ω2 or to 0. (3)

The multi-domain formulation corresponding to (1) (restricted to Ω1) - (2), is: find
ui : Ωi → R2 and pi : Ωi → R, for i = 1, 2 satisfying

∂tui − ν∆ui + (wi · ∇)ui +∇pi = f , in Ωi × (0, T ) i = 1, 2 (4)
∇ · ui = 0 in Ωi × (0, T ) i = 1, 2 (5)
u1 = u2 on Γ× (0, T ) (6)

−p1n+ ν(n · ∇)u1 = −p2n+ ν(n · ∇)u2 on Γ× (0, T ) (7)

and suitable boundary conditions on ∂Ω × (0, T ), where ui = u|Ωi , pi = p|Ωi , for
i = 1, 2, and n denotes the normal unit vector on Γ directed from Ω1 to Ω2.

The choice w1 = u1 and w2 = 0 corresponds to a Navier-Stokes/Stokes coupling,
while the choice w1 = u1 and w2 = u∞|Ω2 corresponds to a Navier-Stokes/Oseen
coupling.

The transmission conditions (6) and (7) ensure the continuity of the velocity field
and the continuity of the normal stress across the interface, respectively.

For the Navier-Stokes/Oseen coupling, the transmission condition (7) can be re-
placed on Γ by the following one [FS98]:

−p1n+ ν(n · ∇)u1 −
1
2
(w1 · n)u1 = −p2n+ ν(n · ∇)u2 −

1
2
(w2 · n)u2, (8)

and it is associated to the skew-symmetric form of the convective term in (4).
Besides, from now on, given a sufficiently regular vector field w, we set:

TS(u, p)n = −pn+ ν(n · ∇)u Stokes normal stress,

TO(w;u, p)n = −pn+ ν(n · ∇)u− 1
2 (w · n)u Oseen normal stress.

(9)

The mathematical justification for the use of either (7) or (8) is provided in [FGQ99].
The time-dependent system (4)-(7) can be discretised in time, e.g., by a finite-

difference scheme, so that a steady problem has to be solved at each time step. The
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discretisation of time derivative gives rise to a mass term with constant coefficient α
dependent from the time scheme.

The boundary conditions we will consider for the coupled problem (4)-(7) will be
of Dirichlet type on ∂ΩD (e.g., no-slip boundary conditions u = 0 on fixed walls, or
inflow conditions u = g, for a suitable given vector field g) and of Neumann type on
∂ΩN (such as TS(u, p)n = 0).

Dirichlet/Neumann iterations

In order to solve the multi-domain problem (4)-(7) an iterative procedure was intro-
duced in [FGQ99], based on the solution of a sequence of boundary value problems on
each subdomain, plus relaxation conditions at the interface Γ, (see [QV99], Ch. 3). In
the current case, the idea consists of solving problems like (4)-(5) for every i = 1, 2, for
which the transmission conditions (6) and (7) (or (8)) provide Dirichlet and Neumann
boundary conditions on the interface Γ, respectively.

Precisely, a Dirichlet/Neumann iteration scheme for problem (4)-(5) with trans-
mission conditions (6), (8), can be set up as follows: given λ0 defined on Γ, for each
k ≥ 1 find (uk1 , p

k
1) such that:

αuk1 − ν∆uk1 + (wk1 · ∇)uk1 +∇pk1 = f , ∇ · uk1 = 0 in Ω1

uk1 = λk−1 on Γ
(10)

then find (uk2 , p
k
2) such that:

αuk2 − ν∆uk2 + (wk2 · ∇)uk2 +∇pk2 = f , ∇ · uk2 = 0 in Ω2

TO(w2;uk2 , p
k
2)n = TO(wk1 ;u

k
1 , p

k
1)n on Γ

(11)

where, for k ≥ 1, the interface values are updated as follows:

λk = θuk2|Γ + (1− θ)λk−1 on Γ,

and θ is a positive relaxation parameter that will be determined in order to ensure,
and possibly, to accelerate the convergence of the iterative scheme. We note that the
restrictions uk2|Γ will be understood in the sense of the traces and in the linear case,
(i.e. when w is given independently of u), wk1 = w1 for all k ≥ 1.

In the case in which the Stokes interface condition (7) is considered, the last equa-
tion in (11) is replaced by

TS(uk2 , p
k
2)n = TS(uk1 , p

k
1)n on Γ. (12)

We point out that “parallel” versions of the previous iterative schemes are obtained
replacing uk1 by uk−11 and pk1 by pk−11 (and wk1 by wk−11 ) in the last set of equations
(11) (in (12)).

The convergence of this iterative scheme for a suitable range (0, θ∗) of relaxation
parameters has been proven in [FGQ00], using Schauder fixed point theorem for the
Steklov-Poincaré operator in the space of traces on Γ.
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Numerical results

We consider the two dimensional model of pulsatile Newtonian flow in the human
carotid bifurcation. This model problem is considered in biomechanical literature as a
simplification of the more complex 3-D problem. The computational domain is shown
in Fig. 3. The basic shape of the model agrees with the model of Bharadvaj et al.
([BMG82]) and the geometry parameters are based upon the data described by Ku et
al. ([KGZG85]). Using the common carotid diameter D = 0.62cm as characteristic
length and a reference blood viscosity ν = 0.035, the maximum Reynolds number
within a period of the motion is Remax 3 800. The assumed pulse frequency is 72
strokes per minute, so that the motion is periodic with period T = 5/6.

At the inflow boundary (the left vertical side) a fully developed time-dependent
velocity profile g(x2, t), such that g2(x2, t) = h(x2) · φ(t), is prescribed (where φ(t)
is the function described in Fig. 1 (top) and h(x2) is a parabolic profile); at the
rigid walls the no-slip condition u = 0 is applied, while at the outflow boundary a
no-friction condition is imposed (i.e. TS(u, p)n = 0).

The two-domains formulation (10)-(11) is here extended to four subdomains (see
Fig. 2): one Navier-Stokes domain and three Oseen domains with u∞(t) = uStokes(t),
that is the Stokes solution subjected to the fully developed time-dependent velocity
profile g(x2, t). The Euler Semi-Implicit (ESI) finite difference scheme is used to
discretise the time derivative, with ∆t = 10−2. At each time step of the ESI scheme,
we make use of the Dirichlet/Neumann algorithm. The relaxation parameter θ was
chosen dinamically so as to minimize the interface error at each D/N step. In order
to test the convergence of the D/N algorithm we check that

max
i=1,2

[
‖uki − uk−1i ‖H1(Ωi)/‖uki ‖H1(Ωi)

]
≤ 5 · 10−6,

where k is the iteration counter. The numerical approximation is carried out by
considering stabilised Spectral Element Methods, with 25 elements and polynomial
degree N = 5.

In Fig. 1 the two components of the velocity are shown for the full Navier-Stokes
approximation and the NS/OS coupling with either Oseen flux or Stokes flux across
the interfaces. Note that the coupling based on the Stokes flux at the interfaces provide
a much more accurate solution, as already noticed in [FGQ99] for other problems.

In Fig. 2 (bottom) we show the number of D/N iterations needed to converge, at
each time step, for the NS/OS coupling with either Oseen or Stokes flux across the
interfaces.

In Fig. 3 we report the relative errors between the NS/OS (uNS/OS) and the
full Navier-Stokes (uNS) solution for the two different decompositions illustrated in
Fig. 4. We denote by Ω0 the domain of the left decomposition of Fig. 4 in which
Navier-Stokes equations are solved, and we define the error as:

eH1(Ω0) =
‖uNS − uNS/OS‖H1(Ω0)

‖uNS‖H1(Ω0)
.

As expected, the second partition, featuring Navier-Stokes subdomain larger than
in the first one, provides more accurate results.
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Figure 1: First (left) and second (rigth) components of the velocity for the full Navier-
Stokes solution (top), the NS/OS coupling with Oseen flux at the interfaces (interme-
diate), the NS/OS coupling with Stokes flux at the interfaces (bottom). The results
refer to t = .3 when the difference between the full Navier-Stokes solution and the
coupled NS/OS solution is maximum.
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Figure 2: The fully developed time-dependent velocity profile (top) and the D/N
iterations for the coupling with either Oseen or Stokes flux.
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Figure 3: The errors eH1(Ω0) between the NS/OS coupling and the full Navier-Stokes
solution, with either Oseen or Stokes flux across the interfaces.



HETEROGENEOUS DOMAIN DECOMPOSITION 303

0 1 2 3 3.565
−0.7018

0

1

1.625

NS

OS

OS

OS

0 1 2 3 3.565
−0.7018

0

1

1.625

NS

OS

OS

OS

Figure 4: The two decompositions used for the error analysis of Fig. 3.
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33. Domain decomposition methods for a coupled
vibration between an acoustic field and a plate

Xiaobing Feng1, Zhenghui Xie2

Introduction

The coupled vibration between an acoustic field and a plate is encountered in many
engineering and industrial applications. The interaction between the wind and a
windshield of a car is an interesting example found in the automobile industry. Math-
ematically, such an interaction is described by the coupled system of the second order
scalar wave equation and the fourth order plate vibration equation. Since the thick-
ness of the plate is negligible, the plate serves a dual role in the model. It is the solid
medium and in the same time it is the interface between the acoustic field and the
solid (so it is a part of the boundary of the acoustic field), where they interact each
other.

Let Ω ⊂ R3 be a three-dimensional acoustic field and Γ0 ⊂ R2, a part of the
boundary ∂Ω, denote the domain of the plate. Let Γ1 = ∂Ω\Γ0 be the remaining
portion of the boundary of Ω. Let p = p(x1, x2, x3) denote the pressure function of
the fluid in the acoustic field Ω and u = u(x′) (x′ = (x1, x2)t) denote the vertical
displacement of the plate Γ0. Then the governing partial differential equations of the
fluid–plate interaction is given by [CS76]

1
c2 ptt −∆p = f, in Ω× (0, T ), (1)
1
cpt +

∂p
∂n = 0, on Γ1 × (0, T ), (2)

∂p
∂n + ρfutt = 0, on Γ0 × (0, T ), (3)

ρsutt +D∆2
Γ0

u = p, on Γ0 × (0, T ), (4)

u = ∂u
∂ν = 0, on ∂Γ0 × (0, T ), (5)

p(x, 0) = p0(x), pt(x, 0) = p1(x), in Ω, (6)
u(x′, 0) = u0(x′), ut(x′, 0) = u1(x′), on Γ0, (7)

where c is the sound speed in the fluid, D flexural rigidity of plate. ρf and ρs are the
air mass density and plate mass density, and n and ν are the outward normal vector
on Γ0 and ∂Γ0, respectively. ∆2

Γ0
stands for the biharmonic operator defined on Γ0 in

variables x1, x2.
In the model, equations (3) and (4) are the interface condition which describe the

interaction between the acoustic field and the plate. Equation (2) is the first order
absorbing boundary condition for the acoustic wave. We use this boundary condition,
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instead of the Dirichlet condition as used in [CS76], to limit the (computational) size
of the acoustic domain. Using the energy method it is not hard to show the following
theorem.

Theorem 1 For f ∈ H−1(Ω), pj ∈ H1−j(Ω), and uj ∈ H2−j(Γ0), j = 0, 1, the
problem (1)–(7) has a unique solution (p, u) ∈ L2(H1(Ω))∩H1(L2(Ω))×L2(H2(Γ0))∩
H1(H1(Γ0)).

The goal of this paper is to develop some parallelizable non–overlapping domain
decomposition iterative methods for effectively solving the problem (1)–(7). Due to
the heterogeneous nature of the problem, the non–overlapping domain decomposition
approach is a very practical and natural way to solve the problem. In §2 we introduce
two classes of domain decomposition iterative methods to decouple the problem into
fluid and plate subdomain problems. In §3 we establish usefulness of these methods
by showing their strong convergence in the energy norm of the underlying problem.
Finally, in §4 we present some numerical models based on finite difference methods, and
some numerical tests to validate the theory and to show effectiveness of the methods,
in particular, with respect to different choices of the relaxation parameter.

Domain decomposition methods

In this section we first propose a family of new interface conditions which are equivalent
to the original interface condition (3). This is the key step towards developing non-
overlapping domain decomposition methods for the problem. Based on these new
interface conditions, we then introduce two classes of parallelizable non-overlapping
domain decomposition iterative algorithms for solving the system (1)–(7) and show
their strong convergence in the energy norm of the underlying interaction problem.
The methods and the analysis of this paper are inspired by its companion paper
[Fen98], where non-overlapping domain decomposition methods were developed for a
general fluid–solid interaction problem in which the solid is a 3–dimensional elastic
body. For applications of domain decomposition methods to other heterogeneous
problem, we refer to [CF99, Fen98, QPV92] and references therein.

To decouple the problem on the interface, we rewrite the interface condition (3) as

∂p

∂n
+ αpt = −ρfutt + αpt, on Γ0 × (0, T ), (8)

for any nonzero constant α.

Hence, the problem (1)–(7) is equivalent to the problem consisting equations (1),
(2), (8), and (4)–(7). That is,
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1
c2 ptt −∆p = f, in Ω× (0, T ), (9)
1
cpt +

∂p
∂n = 0, on Γ1 × (0, T ), (10)

∂p
∂n + αpt = −ρfutt + αpt, on Γ0 × (0, T ), (11)

ρsutt +D∆2
Γ0

u = p, on Γ0 × (0, T ), (12)

u = ∂u
∂ν = 0, on ∂Γ0 × (0, T ), (13)

p(x, 0) = p0(x), pt(x, 0) = p1(x), in Ω, (14)
u(x′, 0) = u0(x′), ut(x′, 0) = u1(x′), on Γ0. (15)

Domain decomposition algorithms

Based on the above new form of the interface conditions we propose the following two
types of iterative algorithms. The first one resembles to block Gauss-Seidel iteration
and the other resembles block Jacobi iteration.

Algorithm 1
Step 1: ∀p0 ∈ H1(L2(Γ0)).
Step 2: Compute {(uk, pk)}k≥1 by solving

ρsu
k
tt +D∆2

Γ0
uk = pk−1, on Γ0 × (0, T ), (16)

uk = ∂uk

∂ν = 0, on ∂Γ0 × (0, T ), (17)
uk(x′, 0) = u0(x′), ukt (x′, 0) = u1(x′), on Γ0 × (0, T ); (18)

1
c2 p

k
tt −∆pk = f, in Ω× (0, T ), (19)

∂pk

∂n + αpkt = −ρfu
k
tt + αpk−1t , on Γ0 × (0, T ), (20)

∂pk

∂n + 1
cp
k
t = 0, on Γ1 × (0, T ), (21)

pk(x, 0) = pk0(x), pkt (x, 0) = p1(x), in Ω. (22)

Algorithm 2
Step 1: ∀H2(L2(Γ0))×H1(L2(Γ0)).
Step 2: Compute {(uk, pk)}k≥1 by solving

ρsu
k
tt +D∆2

Γ0
uk = pk−1, on Γ0 × (0, T ), (23)

uk = ∂uk

∂ν = 0, on Γ0 × (0, T ), (24)
uk(x′, 0) = u0(x′), ukt (x

′, 0) = u1(x′), on Γ0 × (0, T ); (25)
1
c2 p

k
tt −∆pk = f, in Ω× (0, T ), (26)

∂pk

∂n + αpkt = −ρfu
k−1
tt + αpk−1t , on Γ0 × (0, T ), (27)

∂pk

∂n + 1
cp
k
t = 0, on Γ1 × (0, T ), (28)

pk(x, 0) = p0(x), pkt (x, 0) = p1(x), in Ω. (29)
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Convergence analysis

In this subsection we shall establish the utility of Algorithm 1 and 2 by showing their
strong convergence. Since the proof of the convergence of Algorithm 1 and 2 are
similar, we only give the proof for Algorithm 1.

Define the error functions ek = p − pk, rk = u − uk. It follows from (1)–(7) and
(9)–(15) that

ρsr
k
tt +D∆2

Γ0
rk = ek−1, on Γ0 × (0, T ), (30)

rk = ∂rk

∂ν = 0, on Γ0 × (0, T ), (31)
rk(x′, 0) = rkt (x

′, 0) = 0, in Ω× (0, T ); (32)
1
c2 e

k
tt −∆ek = 0, in Ω× (0, T ), (33)

∂ek

∂n + αekt = −ρfr
k
tt + αek−1t , on Γ0 × (0, T ), (34)

∂ek

∂n + 1
ce
k
t = 0, on Γ1 × (0, T ), (35)

ek(x, 0) = ekt (x, 0) = 0, in Ω. (36)

Lemma 1 For ∀τ ∈ (0, T ], we have∫ τ
0

∫
Γ0

ek−1t rkttdsdt =
1
2 [‖

√
ρsr

k
tt(·, τ)‖20,Γ0

+ ‖
√
D∆Γ0r

k
t (·, τ)‖20,Γ0

]. (37)∫ τ
0

∫
Γ0

∂ek

∂n ekt dsdt =
1
2

[∥∥1
ce
k
t (·, τ)

∥∥2
0,Ω

+ ‖∇ek(·, τ)‖20,Ω
]
+
∫ τ
0

∥∥∥ 1√
c
ekt (·, t)

∥∥∥2
0,Γ1

dt.(38)

Proof: Testing (30)) against rktt after taking one derivative with respect to t, we
get ∫

Γ0

ek−1t rkttdsdt =
1
2

d

dt
‖√ρsr

k
tt‖20,Γ0

+
1
2

d

dt

∥∥∥√D∆Γ0r
k
t

∥∥∥2
0,Γ0

. (39)

Integrating (39) in t from 0 to τ yields (37).
Similarly, test (33) against ekt , we get

∫
Γ0

∂ek

∂n
ekt ds =

1
2

d

dt

[∥∥∥∥1c ekt
∥∥∥∥2
0,Ω

+
∥∥∇ek

∥∥2
0,Ω

]
+
∥∥∥∥ 1√

c
ekt

∥∥∥∥2
0,Γ1

. (40)

Integrating (40) in t from 0 to τ gives (38).
Notice that in the proof we have used the fact that

rk(·, 0) = rkt (·, 0) = rktt(·, 0) = ∆Γ0r
k(·, 0) = ekt (·, 0) = ek(·, 0) = 0, ∇ek(·, 0) = 0.

Next, define the “pseudo-energy”

Ek(τ) ≡
∥∥∥∥∂ek∂n

+ αekt

∥∥∥∥2
L2((0,τ),L2(Γ0))

=
∫ τ

0

∫
Γ0

[
∂ek

∂n
+ αekt

]2
dsdt. (41)

By a direct calculation, we can show that {Ek(τ)} satisfy the following identity.
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Lemma 2 For k ≥ 1 there holds the following identity

Ek(τ) = Ek−1(τ) −Rk−1(τ), (42)

where

Rk−1(τ) =
∥∥∥∥∂ek−1∂n

∥∥∥∥2
L2((0,τ),L2Γ0))

− ρ2f‖rktt‖2L2((0,τ),L2(Γ0))
(43)

+2α
∫ τ

0

∫
Γ0

∂ek−1

∂n
ek−1t dsdt+ 2αρf

∫ τ

0

∫
Γ0

ek−1t rkttdsdt.

An immediate consequence of Lemma 1 is the following lemma.

Lemma 3 For k ≥ 1 there holds the equality

Rk−1(τ) = [αρf‖
√
ρsr

k
tt(·, τ)‖20,Γ0

− ρ2f‖rktt‖2L2((0,τ);L2(Γ0))
] (44)

+α

[
ρf‖

√
D∆Γ0r

k
t (·, τ)‖20,Γ0

+
∥∥∥∥1c ekt (·, τ)

∥∥∥∥2
0,Ω

+ ‖∇ek(·, τ)‖20,Ω

]

+
∥∥∥∥∂ek−1∂n

∥∥∥∥2
L2((0,τ);L2(Γ0))

+ α

∫ τ

0

∥∥∥∥ 1√
c
ekt (·, t)

∥∥∥∥2
0,Γ1

dt.

Theorem 2 If α > Tρf/ρs, then
(1) pk → p strongly in L2((0, T );H1(Ω)) ∩H1((0, T );L2(Ω)).
(2) uk → u strongly in H1((0, T );H2(Γ0)) ∩H2((0, T );L2(Γ0)).

Proof: It is easy to check that (42) implies that∫ T

0

Ek(τ)dτ =
∫ T

0

E0(τ)dτ −
k−1∑
l=0

∫ T

0

Rl(τ)dτ. (45)

Since

∫ T

0

‖rktt‖2L2((0,τ);L2(Γ0))
dτ =

∫ T

0

(∫ τ

0

‖rktt(·, t)‖20,Γ0
dt

)
dτ ≤ T ‖rktt‖2L2((0,T );L2(Γ0))

,

(46)

we have

∫ T
0

[
αρf‖

√
ρsr

k
tt(·, τ)‖20,Γ0

− ρ2f‖rktt‖2L2((0,τ);L2(Γ0))

]
dτ (47)

≥ ρf (αρs − Tρf)‖rktt‖2L2((0,T );L2(Γ0))
.

Hence, if α > Tρf/ρs, every term on the right hand side of (43) is a nonnegative
term. Now it follows from (45) that

∞∑
l=0

∫ T

0

Rl(τ)dτ < ∞,
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which implies that

lim
l→∞

∫ T

0

Rl(τ)dτ = 0. (48)

Finally, the proof is completed by combining (44), (47) and (48).

Numerical experiments

We shall present some numerical tests for the domain decomposition algorithms de-
veloped in the previous sections. Finite difference methods are used to discretize the
differential equations. The acoustic field is chosen as the unit cubic Ω = [0, 1]3 and the
plate domain is the unit square Γ0 = [0, 1]2 on the x1x2– plane. Zero source function
f ≡ 0 and the parameters c = 2.5, D = 2, ρf = 5, ρs = 50 are assumed in all tests.
Also, the uniform meshes are used in both acoustic domain and the plate domain.
The mesh size of the acoustic domain is ∆x1 = ∆x2 = ∆x3 = 0.1 and the mesh size
of the the plate domain is ∆x1 = ∆x2 = 0.05. The time step size ∆t = 0.01 is used
in all tests. Finally, we choose the following initial conditions.

p0(x) = 1, p1(x) = 0.1, u0(x1, x2) = sinπx1 sinπx2, u1(x1, x2) = 0.1.

Figure 1 shows the plate displacement (u) profiles at four different time steps, in
which (a)–(d) are plots of u at t = 4∆t, 8∆t, 12∆t, 16∆t, respectively. Figure 2 gives
the pressure (p) profiles on the interface x3 = 0 at (a) t = 4∆t, (b) t = 8∆t, (c)
t = 12∆t, (d) t = 16∆t, which show the acoustic wave action on the plate. Figure
3 shows the contour plots of the pressure p on the cross section of Ω at x1 = 0.5
at (a) t = 4∆t, (b) t = 8∆t, (c) t = 12∆t, (d) t = 16∆t. Figure 4 presents a
comparison of the iteration numbers for different choices of the relaxation parameter
α at various time steps. Graph (a) compares the iteration numbers for α = 10−9 and
α = 10, while Graph (b) compares for α = 1 and α = 100. The criterion used to
stop the domain decomposition iteration at all time steps is that the relative error
of successive iterates should be less than 10−3. These comparisons suggest that the
algorithms perform better with large relaxation parameter α, which is predicted by
the convergence analysis. It is also interesting to note that for a fixed α the number of
iterations required at different time steps varies significantly. We believe that this is
caused mainly by the fact that the solution varies significantly at different time steps.
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Figure 1: Plate displacement profiles at different time steps
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Figure 2: Pressure profiles on the interface at different time steps
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34. Domain Decomposition for Kalman Filter
Method and Its Application to Tidal Flow at
Onjuku Coast

Maki FUJIMOTO 1, Mutsuto KAWAHARA 2

Introduction

Recently remarkable progress has been done in the civil engineering field and many
hi-level public works have been carried out. With these progress, numerical analysis in
the field of civil engineering also advances more and more, and it plays an important
role in the building of many kinds of structures. To grasp actual phenomenon about
civil engineering more faithfully and briefly by using numerical analysis, it is necessary
to further make progress customary analysis procedure. We have been studying tidal

domain
decompose

sub-domain1

sub-domain2

overlapped domain

Fmatrix

Fmatrix1

Fmatrix2

< Domain >

< Finite element matrix >

reduce

CUT !!

Figure 1: Image of domain decomposition

flow using Kalman filter method. But we have a serious problem that Kalman filter
using FEM cannot be computed about problem with huge analytical domain. Then
we decide to apply domain decomposition for Kalman filter with FEM. Using domain
decomposition, finite element matrix becomes smaller and memory is economized.
Computational time becomes very short and numerical examples with small mesh
can be calculated. Kalman filter using FEM with many nodes could be calculated.
Schwarz Alternating Procedure (SAP),one of domain decomposition technique, is used
in this case. SAP is easy to treat and to apply for Kalman filter.

In this analysis, applying domain decomposition for actual problem of tidal flow,
we verify effectiveness of this technique.

1Civil Engineering, Chuo University
2Civil Engineering, Chuo University
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Finite Element Method

Basic Equations

Linear shallow water equations, which consist of momentum equation and continuity
equation, are shown as follows ;

u̇i + gη,i = 0, (1)

η̇ + hui,i = 0, (2)

where ui are velocities, η is water elevation , h is water depth and g is the gravity
acceleration.

Boundary Conditions

The boundary of water region consists of two parts S1 and S2. S1 is the land boundary
and S2 is the open boundary. The boundary conditions are shown as follows ;

un = ul + vm = ûn on S1, (3)

η = η̂ on S2, (4)

where we useˆto represent the given values.

Finite Element Equations

To obtain finite element equations, the shallow water equations can be discretized
spatially and temporally. As regards spatial directions, Galerkin method with triangles
finite element is used. As regards numerical integration in time, explicit method with
BTD term is used. Then finite element equations can be obtained in the following
form.

M̄αβu
n+1
β = Mαβu

n
β −∆t{gSαβ,xηnβ +

∆t

2
gh(Hα,xβ,xunβ +Hα,xβ,yv

n
β )}, (5)

M̄αβv
n+1
β = Mαβv

n
β −∆t{gSαβ,yηnβ +

∆t

2
gh(Hα,yβ,xunβ +Hα,yβ,yv

n
β )}, (6)

M̄αβη
n+1
β = Mαβη

n
β −∆t{h(Sαβ,xunβ + Sαβ,yv

n
β ) +

∆t

2
gh(Hα,xβ,xηnβ +Hα,yβ,yη

n
β )},

(7)

where BTD(Balancing Tensor Diffusivity) term is numerical viscosity.
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Kalman Filter

Basic Equations

The basic equations of Kalman filter are shown as follows;

xk+1 = Fkxk +Gkwk, (8)

yk = Hkxk + vk. (9)

Eq.8 and Eq.9 are called system equation and observation equation respectively.
Where xk is the state vector, yk is observed vector, Fk is state transition matrix that
is called as finite element matrix, Hk is the observation matrix which has information
about placement of observation points, Gk is driving matrix, wk is the system noise
and vk is the observation noise. wk and vk are the white noise which are independent
each other.

Domain Decomposition Technique

An Introduction to Schwarz Alternating Procedure(SAP)

Schwarz Alternating Procedure(SAP) is one of many Domain Decomposition Tech-
niques. The decomposed domain with overlapping area is performed in this method.
In order to define the SAP algorithm, computational domain Ω is decomposed into
some overlapping subdomains. It is assumed that Ω is partitioned into J ≥ 2 inter-
secting subdomains which can be written as follow;

Ω =
⋃J

k=1
Ωk, (10)

where Ωk is subdomain. The overlapping area is shown by Ωk ∩ Ωk+1 for k =
1, 2, · · · , (J − 1). And the boundaries of Ωk are defined as;

Γk = ∂Ωk ∩ Γ, k = 1, 2, · · · , J (11)

where ∂Ωk is whole boundary of subdomain Ωk, Γk is internal boundary which is
written in another way from Eq.(9);

Γk = ∂Ωk\(∂Ωk ∩ ∂Ωk+1), k = 1, 2, · · · , J,

and Γ is a set of internal boundary Γk. This is written as follow;

Γ =
⋃J

k=1
Γk. (12)
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Domain Ω

Ω

Decompose

k
Subdomain Ω

Ω
k Γ k

k+1Ω

Γ k+1

Ωk+1

Overlapping domain Ωk UΩk+1

Figure 2: Model of Decomposed Domain

Application for Finite Element Method

If Domain Decomposition Technique with SAP, which was explained above, was ap-
plied for Finite Element Method, basic equation could be written as follows;

u̇ki + gηk,i = 0, η̇k + huki,i = 0 in Ωk

ukn = ukl + vkm = ûkn on ∂Ωk1 ,

η = η̂k on ∂Ωk2 ,

k = 1, 2, · · · , J.

In order to obtain finite element equations about this case, these equations are
discretized in each domain. And using finite element equations that are obtained by
the discretization, we carry out numerical analysis.

Numerical Example

Case 1

Computational domain is Onjuku Coast in Chiba Prefecture. This domain is divided
into 300 nodes and 526 elements. In this analysis, two types of examples computed and
these results are compared. One is the case where the analytical domain is decomposed
into 2 sub-domains and the other is that not using SAP. Time increment ∆t is 0.0020,
system noise Q is 0.020 and observation noise R is 0.0010. Calculation is carried out
by using observation data from July 16, 1997 to July 20 at 5 observation points.

In this case, computational domain decomposed into 2 subdomains with overlap-
ping area is used. Sub-domain 1 has 169 nodes and sub-domain 2 has 173 nodes.
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subdomain 1
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Onjuku Coast

No.3
No.4

No.5

No.1

N

X

Y

Figure 3: Computational domain of case 1

Algorithm of Case 1

Kalman filter with FEM applying SAP is calculated as following algorithm:

1. Kalman-gain is calculated about sub-domain 1 and converged.

2. Kalman-gain is calculated about sub-domain 2 and converged.

3. Using Kalman-gain converged at 1., optimal estimated value is computed about
sub-domain1.

4. Using Kalman-gain converged at 2., optimal estimated value is computed about
sub-domain2.

5. In overlapping area, results at 3. and 4. are compared.
If difference between these results is not small enough, go to 3..

6. Results are written.
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Figure 4: Algorithm of Kalman filter using SAP
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Numerical Result
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Figure 5: Comparison about water elevation

(a)With SAP (b)Without SAP

Figure 6: Velocity distribution (Residual flow)

Fig.5 shows comparing two results, one is using SAP and the other is not using
SAP. According to this figure, it is recognized that difference between two values is
very small. Fig.6 shows velocity distributions of residual flow. Fig.6(a) is result of
analysis with SAP and Fig.6(b) is that without SAP. Comparing two figures, flow
conditions are almost the same each other.
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Case 2

Computational domain is simple model of channel. This domain is divided into 33
nodes and 40 elements. Time increment ∆t is 0.0020, system noise Q is 0.000001 and
observation noise R is 0.50. Quasi-observation data is given for 3 observation points.

In this case, computational domain decomposed into 3 subdomains with overlap-
ping area is used. Each sub-domain has 15 nodes.

C D E G

A

B

subdomain1

subdomain3

   nodes:33
element:40

overlapping domain

F

subdomain2

Figure 7: Computational domain of case 2

Numerical Result

Fig.8 shows comparing two results, one is using SAP and the other is not using SAP.
According to this figure, it is recognized that difference between two values is very
small. Fig.9 shows velocity distributions of residual flow. Fig.9(a) is the result of
analysis with SAP and Fig.9(b) is that without SAP. Comparing two figures, small
difference exists but direction of velocities can be estimated.

Conclusion

In this analysis, domain decomposition is applied for model problem of shallow water
flow and actual tidal flow problem using Kalman filter.

In case 1, comparing results of two computations, two values almost agree (Fig.5
and Fig.6). These results show that algorithm of SAP with two sub-domains is es-
tablished. And CPU time becomes 3 times shorter than that without SAP. In case2,
time histories of results of water elevation also agree each other (Fig.8). Comparing
velocity distributions using SAP and without using SAP shows that small difference
exists. The estimation using SAP is smaller than that not using SAP. But direction of
velocity is almost the same. If we refine the iteration method, more faithful analysis
could be carried out.

Not only water elevation but also velocity distribution show that SAP with three
sub-domains is not perfect. It seems that cause of this failure is overlapping areas are
plural. If overlapping areas exist more than one, values obtained by calculation are
not reflecting results of whole domain.

Algorithm of Kalman filter using SAP with three sub-domains has to be estab-
lished. If we would succeed, CPU time becomes shorter.
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Figure 9: Velocity distribution (Residual flow)
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35. Two level Domain Decomposition for
Multi-clusters

M. Garbey , D. Tromeur-Dervout 1 2

Introduction

We discuss the design of parallel algorithms to solve elliptic problems on multi-clusters
computers. Multi-clusters can be seen as two-level parallel architecture machines,
since communication between clusters are usually much slower than communication
or access to memory within each of the clusters. We introduce special algorithms
that use two levels of parallelism and match the multi-cluster architecture. Efficient
parallel algorithms that rely on fast uniform communication have been extensively
developed in the past: we intend to use them for parallel computation within the
clusters. On top of these local parallel algorithms, new robust and parallel algorithms
are needed that can work with few clusters linked by a slow communication network.
We present a two level domain decomposition algorithm that uses Aitken or Steffensen
acceleration procedure combined to Schwarz for the outer loop and standard parallel
domain decomposition for the inner loop. We demonstrate finally the interest of our
algorithm for metacomputing.

We consider the design of parallel algorithms for multi-cluster architecture with few
heterogeneous clusters linked by an affordable network of order 10Mb/s bandwidth.
Each cluster can be a shared multiprocessors machine or an MIMD computer with a
fast internal Network. The elapse time to access memory from a given processor to a
given data on such architecture is then strongly dependent on the location of the datas.
Fast scalable parallel algorithm for the Laplace problem with domain decomposition
and/or multigrid on a uniform MIMD architecture have usually very poor efficiency
on multi-cluster machine with slow inter-cluster network.

On the contrary a numerically unefficient iterative domain decomposition algo-
rithm such as the classical additive Schwarz procedure for the Laplace problem, is
easy to implement, robust and scalable on multi-cluster architecture. So our goal is
the design of an acceleration procedure for iterative domain decomposition analogous
to additive Schwarz that increases the numerical efficiency of the basic underlined
algorithm but stay easy to implement, robust and scalable on multi-clusters. The
common procedure to accelerate additive Schwarz method is the introduction of a
coarse-grid operator [LSFQ97]. The resulting modified Schwarz algorithms becomes
numerically efficient but the coarse grid computation might be a bottle neck for the
parallel processing. We adopt here a different point of view and try to extract from
a finite sequence of the interfaces generated by the Schwarz iterative procedure or
analogous relaxation method, an accurate prediction of the interface’s limit. We will
show in simple case as finite difference approximation of Elliptic operator with con-

1This work was supported by the Région Rhône Alpes
2CDCSP/ISTIL - University Lyon 1, 69622 Villeurbanne, France

{garbey,dtromeur}@cdcsp.univ-lyon1.fr, http://cdcsp.univ-lyon1.fr
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stant coefficient on regular grids, that we can obtain a fast direct solver so called
Aitken-Schwarz procedure. In more complex situation, we shall derive a fast iterative
solver by alternating few Schwarz iterations with Aitken acceleration [SB80]. We will
call this methodology Steffensen-Schwarz following the spirit of the Steffensen method
in non-linear context [Hen64]. The main advantage of our approach is that the new
algorithm requires only the coding of an independent subroutine that processes the
sequences of interfaces generated by the basic domain decomposition method. In ad-
dition, we will show that this subroutine does not require too many communications
and performs efficiently on multi-clusters with slow inter-cluster network. We will re-
port in particular on a successful metacomputing experiment with distanced parallel
computers.

The plan of this article is as follows. Next section presents a new family of do-
main decomposition algorithms in the one dimensional case. Then we generalize the
method to multidimensional elliptic operator with strip domain decomposition, before
presenting in an another section some extension of the results to linear elliptic oper-
ator with varying coefficients and non linear elliptic operators. Some results on large
scale parallel computing are reported in the last section before our conclusion.

Basic idea in one D

two subdomains with Dirichlet-Dirichlet BC

Let us consider a linear problem

L[U ] = f in Ω, U|∂Ω = 0. (1)

L can be the continuous problem or the discrete one. We restrict ourselves to two
subdomains and start with the additive Schwarz algorithm. For simplicity of the
description of the method, we assume implicitly in the following notations that the
homogeneous Dirichlet boundary condition in (1) is satisfied by all intermediate sub-
problems.

L[un+1
1 ] = f in Ω1, un+1

1|Γ1
= un2|Γ1

, (2)

L[un+1
2 ] = f in Ω2, un+1

2|Γ2
= un1|Γ2

. (3)

We observe that the operator T,

uni|Γi − UΓi → un+2
i|Γi − UΓi (4)

is linear.
Let us consider first the one-dimensional case Ω = (0, 1): the sequence u2ni|Γi is a

sequence of real numbers. Note that as long as the operator T is linear, the sequence
un+2
i|Γi has pure linear convergence (or divergence); that is, it satisfies the identity

un+2
i|Γi −U|Γi = δ(uni|Γi−U|Γi), where δ is the amplification factor of the sequence. Let us

assume δ �= 1. The Aitken acceleration procedure gives the exact limit of the sequence
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on the interface Γi based on three successive Schwarz iterates uji|Γi , j = 1, 2, 3, and
the initial condition u0i|Γi , namely,

u∞Γi =
u0i|Γiu

3
i|Γi − u1i|Γiu

2
i|Γi

u3i|Γi − u2i|Γi − u1i|Γi + u0i|Γi
.

An additional solve of each subproblem (2,3) with boundary conditions u∞Γi gives
the solution of (1). The Aitken acceleration thus transforms the additive Schwarz
procedure into an exact solver regardless of the speed of convergence of the original
Schwarz method.

With the previous algorithm, we do need 3 solves of each subproblem to apply the
Aitken acceleration and an additional solve of each subproblem to get the solution.
We can derive a more numerically efficient algorithm that requires 3 solves of each
subproblems in the following way: we have

un+1
1|Γ2

− U|Γ2 = δ1(un2|Γ1
− U|Γ1), (5)

un+1
2|Γ1

− U|Γ1 = δ2(un1|Γ2
− U|Γ2), (6)

where δ1 (resp δ2) is the damping factor associated to the operator L in subdomain
Ω1 (resp Ω2) [Gar96]. Consequently

u21|Γ2
− u11|Γ2

= δ1(u12|Γ1
− u02|Γ1

),

u22|Γ1
− u12|Γ1

= δ2(u11|Γ2
− u01|Γ2

),

So except if the initial boundary conditions u02|Γ1
or u01|Γ2

matches with the exact
solution U at the interfaces Γi , the amplification factors δ1 and δ2 can be computed
from (5) and (6). Then if δ1δ2 �= 1 the limit U|Γi , i = 1, 2 is obtained as the solution
of the linear system (5, 6).

We observe that δ1, δ2 are dependent only on the operator and the partitioning of
the domain. δ1 for example can be computed before hand as follows. Let v1/2 be the
solution of

L[v1/2] = 0 in Ω1/2, v|Γ1/2
= 1. (7)

We have δ1/2 = v|Γ2/1
. When δ1/2 is a priori known, we need only one Schwarz iterate

to accelerate the interface and an additional solves for each subproblems. This is a
total of two solves per subdomain. This feature is particularly attractive when the
elliptic problem (1) has to be solved many times.

two subdomains with Dirichlet-Newman BC

It is interesting that the same idea applies to other well-known iterative procedures
such as the Dirichlet-Newman iterative procedure that has the advantage of using
non overlapping partitioning but the disadvantage of possible divergence. The relax-
ation procedure of the Funaro-Quarteroni algorithm [FQZ88], can fix this convergence
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problem when the relaxation parameter is chosen correctly. However the Aitken ac-
celeration procedure may solve the artificial interface problem whether the original
Dirichlet-Neumann iterative procedure converges or diverges, as long as the sequence
of solution at the interface behaves linearly! To be more specific let us consider for
example the Helmholtz problem:

− d2

dx2
U + µU = f in Ω, U = 0 on ∂Ω.

The domain Ω is split into two non overlapping subdomains that share the interface
Γ. We consider the iterative procedure,

− d2

dx2
un1 + µun1 = f in Ω1, un1 = un2 on Γ, (8)

− d2

dx2
un2 + µun2 = f in Ω2,

∂un2
∂x

=
∂un1
∂x

on Γ. (9)

We approximate this problem with 2d order finite differences for (8) and one side first
order finite differences for the boundary condition in (9). The computation of each
subproblems (8) and (9) is a priori a sequential process. The sequence of real numbers
un1 generated by this algorithm has linear convergence to UΓ or linear divergence
depending on the interface location Γ, that is un+1

1|Γ − U|Γ = δ(un1|Γ − U|Γ), where δ is
the amplification factor of the sequence. Once again the Aitken acceleration procedure
gives the exact limit of this sequence no matter the value of δ �= 1, with

u∞Γ =
u01|Γu

2
1|Γ − u11|Γu

1
1|Γ

u21|Γ − 2u11|Γ + u01|Γ
.

So far, we have restricted ourselves to domain decomposition with two subdomains.
Next we will introduce a generalized Aitken acceleration technique that can be applied
to an arbitrary number q > 2 of subdomains.

more than 2 subdomains case with Dirichlet-Dirichlet BC

Let Ωi = (xli, x
r
i ), i = 1..q be a partition of Ω with xl2 < xr1 < xl3 < xr2, ..., x

l
q < xrq−1.

We consider the additive Schwarz algorithm

for i = 1..q, do
L[un+1

i ] = f in Ωi, un+1
i (xli) = uni−1(x

l
i), un+1

i (xri ) = uni+1(x
r
i ),

enddo

Let us denote ul,n+1
i = un+1

i (xli), ur,n+1
i = un+1

i (xri ) and ũn (respt ũ) be the n
iterated (respt exact) solution restricted at the interface, i.e

ũn = (ul,n2 , ur,n1 , ul,n3 , ur,n2 , ..., ul,nq , ur,nq−1)

The operator ũn → ũn+1 is linear. Let us denote P its matrix. P has the following
pentadiagonal structure:
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0 δr1 0 0 ....
δl,l2 0 0 δl,r2 ...
δr,l2 0 0 δr,r2 ...

... δl,lq−1 0 0 δl,rq−1

... δr,lq−1 0 0 δr,rq−1

... 0 0 δrq 0

δr1 and δrq can be computed as in the two subdomain cases.

The subblocks Pi =
δl,li δl,ri
δr,li δr,ri

i = 2..q − 1 can be computed with 3 Schwarz

iterates as follows.
We have (ur,n+1

i−1 − ũri−1, u
l,n+1
i+1 − ũli+1)

t = Pi(u
l,n
i − ũli, u

r,n
i − ũri )

t. Therefore(
ur,n+3
i−1 − ur,n+2

i−1 ur,n+2
i−1 − ur,n+1

i−1
ul,n+3
i+1 − ul,n+2

i+1 ul,n+2
i+1 − ul,n+1

i+1

)
= Pi

(
ul,n+2
i − ul,n+1

i ul,ni − ul,ni
ur,n+2
i − ur,n+1

i ur,ni − ur,ni

)
(10)

In practice the last matrix on right hand side of the previous equation is non singular
and Pi can be computed, but it cannot be guaranty. However, one can always compute
before hand the coefficients of Pi as follows. Let v be the solution of

L[v] = 0 in Ωi, v(xli) = 1, v(xri ) = 0, (11)

and w be the solution of

L[w] = 0 in Ωi, w(xli) = 0, w(xri ) = 1. (12)

We have then δl,li = v(xri−1), δl,ri = v(xli+1) δr,li = w(xri−1) and δr,ri = w(xli+1). We
observe that this computation of the subblocks Pi can be done in parallel.

In addition, for the Helmotz operator L[u] = u′′−λu, or generally speaking elliptic
problems with constant coefficients, the matrix P is known analytically.

From the equality
ũn+1 − ũ = P (ũn − ũ),

one writes the generalized Aitken acceleration as follows:

ũ∞ = (Id− P )−1(ũn+1 − P ũn). (13)

If the additive Schwarz method converges, then ||P || < 1 and Id−P is non singular.
The algorithm is then

• step1 : compute analytically or numerically in parallel each subblocks
Pi from each subproblems (11,12).
• step2: apply one additive Schwarz iterate.
• step3: apply generalized Aitken acceleration on the interfaces based
on (13) with n = 0.
• step4: compute in parallel the solution for each subdomain.

Algorithm I
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From the point of view of parallelism step1 and step4 does not requires any communi-
cation. step2 requires local communication between subdomains that overlap. Step3
on the contrary requires global communication. We will see in the next section, how
theses basic ideas can be extended on multidimensional elliptic operators and how to
minimize the global communications involved in step3.

Multidimensional elliptic operator

general formal framework

Next, let us consider the multidimensional case with the discretized version of the
problem (1). We restrict ourselves for simplicity to the two overlapping subdomain
case and the additive Schwarz algorithm (2, 3). Let us denote Ehi , i = 1, 2 some finite
vector space used to approximate the solution restricted to the artificial interface
Γi, i = 1, 2. Let bji , j = 1..N be a set of basis functions for this vector space and P be
the corresponding matrix of the linear operator T

uni|Γi − UΓi → un+2
i|Γi − UΓi .

We denote by uni,j , j = 1, .., N the components of uni|Γi , and we have then

(un+2
i,j − Uj|Γi)j=1,..,N = P (uni,j − Uj|Γi)j=1,..,N .

let us suppose that the interface sequence is such that the matrix
(u2(j+1)
k,i − u2jk,i)i=1,..,N,j=0,..,N−1 is non singular. Let Id be the matrix for the identity

operator. We introduce a generalized Aitken acceleration with the following formula:
first

P = (u2(j+1)
k,i − u2jk,i)i=1,..,N,j=1,..,N(u

2(j+1)
k,i − u2jk,i)

−1
i=1,..,N,j=0,..,N−1, k = 1, 2,

and second, if Id− P is non singular, the trace of the exact solution (uk,i)i=1,..,N on
interface Γk, k = 1, 2 is the solution of the linear system

(Id− P )(u∞k,i)i=1,..,N = (u2N+2
k,i )i=1,..,N − P (u2Nk,i )i=1,..,N .

If this generalized Aitken procedure works, it should be a priori independently of
the spectral radius of P , that is, the convergence of the underlined Schwarz additive
iterative procedure is not needed. In conclusion, 2N + 1 Schwarz iterates produce a
priori enough data to compute via this generalized Aitken acceleration the interface
value U|Γk , k = 1, .., 2. This computation is amenable to N+1 Schwarz iterates, if one
accelerates the sequence of coupled interfaces corresponding to the linear mapping

(un1|Γ1
− UΓ1 , u

n
2|Γ2

− UΓ2) → (un+1
1|Γ1

− UΓ1 , u
n+1
2|Γ2

− UΓ2).

However, we can expect that the matrix (u2(j+1)
k,i − u2jk,i)i=1,..,N,j=0,..,N−1 is ill-

conditioned and that the computed value of P is very sensitive to the data. In ad-
dition N or 2N Schwarz iterates is too many iterates to be considered as an efficient
procedure.
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Nevertheless, we have numerical evidence that this procedure can perform on two
dimensional linear elliptic problems with stiff coefficients [GTD99]

We are currently investigating diverse strategies to make this algorithm useful and
efficient in the framework of unstructured grid but we will restrict ourselves in this
paper to the case of regular grids for which sine or cosine expansion of the traces
generated by additive Schwarz is a natural tool.

Aitken-Schwarz method for Elliptic Operator

Let us consider first the Poisson problem uxx + uyy = f in the square (0, π)2 with
Dirichlet boundary conditions. We partition the domain into an arbitrary number nd
of overlapping strips: Ω =

⋃
j=1..ndΩj . We introduce the regular discretization in the

y direction yi = (i − 1)h, h = 1
N−1 , and central second-order finite differences of the

uyy derivative. Let us denote by ûi (resp. f̂i) the coefficient of the sine expansion of u
(resp. f). The Poisson problem decomposes then intoN independents semi-discretized
equation corresponding to sinus waves sin(iy), i = 1..N ,

ûi,xx − 4/h2 sin2(i
h

2
) ûi = f̂i, (14)

The matrix P for the set of basis functions bi = sin(i yπ ) is therefore diagonal. The
Aitken Schwarz algorithm is very similar to the algorithm derived in the one dimen-
sional case. In particular the coefficients of each wave number of the trace of the
solutions generated by the Schwarz algorithm has its own linear rate of convergence,
the high frequencies terms being damped the fastest. The algorithm writes:

• step1 : compute analytically or numerically in parallel each sub-
blocks Pi from each subproblems (11,12) and each operator Li[v] =
vxx − 4/h2 sin2(ih2 ) v.
• step2: apply one additive Schwarz iterate to the Poisson problem with
block solver of choice i.e multigrids, FFT etc...
• step3:

- compute the sine expansion ûnj|Γi , n = 0, 1 of the traces on the ar-
tificial interface Γi, i = 1..nd for the initial boundary condition
u0|Γi and the solution given by one Schwarz iterate u1|Γi .

- apply generalized Aitken acceleration based on (13) with n = 0
separately to each wave coefficients in order to get û∞j|Γi .

- recompose the trace u∞j|Γi in physical space.
• step4: compute in parallel the solution in each subdomains Ωj , with
new inner BCs and block solver of choice.

Algorithm II

This algorithm has a very high potential of parallelism. step 1 and 4 are fully par-
allel. Step 2 requires only local communication and scale well with the number of
processors. Step 3 requires global communication of interfaces in Fourier space. But
high frequency have very fast decay and little influence on the final solution. There-
fore one can restrict adaptively the Aitken acceleration process of step3 to a subset
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ûnj , j = 1..M , with M < N , and minimize the amount of global communications.
In addition the arithmetic complexity of step3 that is the kernel of the method is
negligible compare to step2. Further, this procedure works independently of the dis-
cretization and grids in x direction as long as the block solvers for each subproblems
are exact. The same idea can be applied to Elliptic problems with constant coefficients
or x dependent coefficients since the matrix P in such cases stays diagonal. Let us
notice that for Elliptic problem with homogeneous Neumann BC instead of Dirichlet
BC, one has to accelerate the cosine expansion of the interface’s sequence. For Elliptic
problem with non homogeneous BC, it is convenient to work on a shifted sequence
that satisfies the homogeneous BC.

To exemplify the Aitken Schwarz procedure with a slightly more difficult case, let
us consider the transmission problem:

−µ1∆u1 + u1 = f in (0,
π

2
)× (0, π) (15)

−µ2∆u2 + u2 = f in (
π

2
, 1)× (0, π) (16)

with homogeneous Dirichlet boundary conditions. µ1 and µ2 are positive constants.
Let us discretize this simple problem with second order central differences and iterate
with a Dirichlet-Neumann domain decomposition. For µ1 = 1 and µ2 = 8 this pro-
cedure is linearly divergent, but the following Aitken acceleration applied to the sine
expansion of the trace of the solution u1(., y) at x = π

2 ,

û∞k = û0k −
(û1k − û0k)

2

û2k − 2û1k + û0k
,

generates the sine expansion of the exact interface solution modulo the residual error
of each subdomain solve. Fig 1 reports on the numerical result obtained with matlab
for a small test case i.e 25 by 25 grid points. This example is interesting because the
convergence history has not the classical behavior that one may expect!.

Let us now describe briefly some key aspect of the stability of the Aitken Schwarz
algorithm.

sensitivity analysis

It is interesting to understand how behaves the Aitken-Schwarz method if one use
inexact block solver or approximation of the matrix of operator T . This is obviously
related to the stability of the acceleration procedure with respect to perturbation of
P or perturbation of ũn. Let us summarize briefly the results we found for discrete
linear elliptic operators that satisfies a maximum principle. Extension of the results
and details of the analysis will be available in a forthcoming paper.

We assume for simplicity a uniform strip domain decomposition and writes(
δ1 0 0 δ2
δ2 0 0 δ1

)
(17)
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Figure 1: Dirichlet-Newman Algorithm for a Transmission Problem. Solid line (resp.
-o- line) gives the log10 (error in maximum norm) on the discrete solution additive
with basic procedure (resp. new method)

the generic subblock of P for a given wave number k.
Let P̃ be an approximation of P . The relative error on the artificial interface

vector ũ is then bounded by

2
||(Id− P )−1||2||(P − P̃ )||
1− ||(Id− P )−1(P − P̃ )||

+ ||(Id− P )−1(P − P̃ )||.

Since the operator L satisfied a maximum principle, this corresponds to the global er-
ror. A straightforward application of this estimate is the minimization of the commu-
nication constraint in step 3 of Aitken-Schwarz’Algorithm, if one neglects interactions
between subdomains that are not neighbors. It is equivalent to approximate P with
the following matrix P̃ for acceleration:

0 δ1 0 0 ....
δ1 0 0 0 ...
0 0 0 δ1 ...

... δ1 0 0 0

... 0 0 0 δ1

... 0 0 δ1 0

The error on the corresponding predicted wave amplitude of the interface given by the
incomplete Aitken acceleration is then bounded by (2δ2 1+δ11−δ1 + δ2)/(1− δ21). It is clear
that δ1 and δ2 decrease as the corresponding frequency increases. One can therefore
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decouple adaptively the computation depending on the wave number, preserving the
overall accuracy of the method.

One can also analyze the impact of inexact sub-block solver. Let us restrict our-
selves to the Poisson problem in two space dimensions with five point schemes. If Pi
is computed either analytically or independently with high accuracy, the numerical
error is then bounded by η

h where η stands for the maximum error in each inexact
block solves and h for the time step. If P is computed numerically from Schwarz iter-
ates with inexact sub-block solve the situation is more complicated. The acceleration
procedure is much more sensitive and we get an upper bound of order η

h3 .
Because the accuracy of the Aitken-Schwarz procedure deteriorates with the un-

complete construction of the matrix P or the inexact sub-block solve, it is natural to
apply the same acceleration procedure in a loop until appropriate convergence. We
name this procedure a Steffensen-Schwarz algorithm and we are going to show that
this algorithm is suitable to solve elliptic problems far more complicated than the
Poisson problem.

Steffensen-Schwarz method for linear and non linear
elliptic operator

Let us consider first the Linear case L = −∆u + a(x, y)u, with a varying smooth
coefficient a. In all numerical experiments, thereafter, we will consider strip domain
decomposition with minimum overlap, i.e one mesh overlap.

Linear Elliptic operator

For simplicity of the presentation, we consider (4) with only two overlapping subdo-
mains. The elementary methods described for the Poisson problem in Section Multi-
dimensional elliptic operator fails to be an exact solver if the grid has a non constant
space step in the y direction or if the operator has coefficients depending on the x and
y variable, because P is no longer diagonal but rather a dense matrix!. However if one
approximates the coefficients a by its Z truncated Cosine expansions as follows,

a(x, y) ≈ Σk=1..Z âk(x)cos((k − 1)y),

matrix P is then a sparse matrix of bandwidth 2Z + 1. Our heuristic strategy is
therefore to try to rebuild from the sequence of 2Z+1 consecutive interfaces generated
by Schwarz, a band approximation PZ of P. We look then for PZ such that,

(û2Z+2
i − û2Z+1

i , ..., û3i − û2i , û
2
i − û1i ) = (Pi,i−Z , ..., Pi,i+Z)× SB, (18)

where SB is the following subblock


û2Z+1
k−Z − û2Zk−Z ...û1k−Z − û0k−Z

. ...

. ...

û2Z+1
k+Z − û2Zk+Z ...û1k+Z − û0k+Z

 (19)
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provided by the Schwarz iterative process. (18) holds for Z < i ≤ N − Z. Similar
equation can be written with appropriate reduced dimension for the end terms of the
diagonal of PZ that is when i ≤ Z or i > N − Z. If SB is non singular, the kieme

row of PZ is well defined. Otherwise, we have to decrease Z for this specific row until
the subblock is non singular. In practice the conditioning of the subblock deteriorates
when the frequency increases but only low frequencies needed to be accelerated since
high frequencies are damped very fast by the Schwarz method itself.

Fig 2a and Fig 2b give numerical illustration of the method for different coeffi-
cient functions a(x, y) and different choices for the bandwidths. Convergence curves
are commented with + sign for Z=1, o sign for Z=2 and v sign for Z=3. We have
chosen coefficients a = 1 + y and a = 1. + exp(sin(y) that have cosine expansion
with growing speed of convergence. Our numerical experiment seems to confirm that
the faster the cosine expansion of a(x, .) converges, the faster converges the Stef-
fensen approximation with the diagonal approximation Z = 1 of P . On the contrary
the Z = 3 approximation improves best the convergence compare to the algorithm
with Z = 1, when the convergence of the Fourier expansion of a is slow -see Fig 2a.
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Fig 2a: a(x, y) = 1.+ y
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Fig 2b: a(x, y) = 1.+ exp(sin(y))

Fig 3a and Fig 3b report on similar results but for the Poisson problem on an
irregular domain that is a square except on one side, that is replaced by a reentry
corner.
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the non linear case

We consider a one dimensional nonlinear problem that is a simplified model of a
semiconductor device [Sel84]. The model writes

∆u = eu − e−u + f, in(0, d), (20)

f = tanh(20(
x

d
− 1

2
)), x ∈ (0, d), (21)

u(0) = asinh(
f(0)
2

) + uo, u(d) = asinh(
f(d)
2

) (22)

The problem is discretized by means of second-order central finite differences. We
apply Steffensen-Schwarz method with two subdomains and minimum overlap. In
particular, we solve a non linear problem in each subblock at each iteration step
of additive Schwarz. Fig 4a reports on the numerical results with 80 grid points.
The convergence history shows that the closer the iterate gets to the final solution,
the better is the result of the Aitken acceleration. This Newton like property of
convergence of the algorithm can be actually proven using the monotonicity of the
discrete non linear operator -see also [Hen64].
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Fig 4a: One D semi conductor problem
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Convergence for the two-D Bratu problem

We consider second the Bratu problem [Wie96],

−∆u = λeu, in Ω = (0, 1)2, (23)
u|∂Ω = 0 (24)

This problem has a smooth solution for λ ∈ (0, 6.81). We have experimented the
Steffensen Schwarz algorithm for the classical five points finite difference scheme with
strip domain decomposition, an arbitrary number of subdomains and λ = 6. Our nu-
merical experiments have shown that the Steffensen-Schwarz algorithm with diagonal
approximation of P is best. Let us notice that u(xi, .) restricted to artificial inter-
faces of strip domain decomposition is a continuous periodic function of period 1; non
homogeneous boundary conditions might then lead to a different choice for Z.

Fig 4b shows the solution and the convergence of our methods with a grid of
approximatively fixed size 60 × 60 and an increasing number of subdomains from 2
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to 12. It can be seen that unfortunately the one dimensional quadratic convergence
property is lost in multidimensional problems, because the linear approximation of the
operator has coefficients depending on space. As a matter of fact each step between
two plateau in the convergence history has about the same size. However, it is most
interesting to notice that the number of Steffensen-Schwarz iterates required to reach
a given level of accuracy depends slightly on the number of subdomains. The total
number of Schwarz iterates to reach an error less than 10−7 in maximum norm is 24
with 3 subdomains, and 32 with 12 subdomains.

We are going now to return to parallel efficiency of this new domain decomposition
domain that was our motivation.

Application to distributed computing

We report on performance of Aitken Schwarz algorithm for three dimensional Poisson
problem. Each subblock will be solved on a parallel system itself with a ”classical”
parallel algorithm. We will therefore referee to subblocks as macro subblocks since
there are also decomposed into subdomains. To be more precise our Aitken Schwarz
code is part of a 3 dimensional Navier Stokes code and is used to solve simultaneously 3
Laplace problems for each component of the flow speed [TD93]. The Aitken-Schwarz
method in three D is similar to the two D algorithm II, except that we use two
dimensional FFT for interfaces. In addition, the matrix Pi,j corresponding to each
couples of sine waves [sin(iy), sin(jz)] can be precomputed analytically. Each macro
subblock is solved with a parallel algorithm that combines multigrid and Schur dual
complement method (MCSD). This parallel macro-block solver is very efficient and
scalable on large MIMD system with uniform network.

We first compare the Aitken Schwarz method with MCSD on a SGI Origin 2000 sys-
tem thanks to the Centre Informatique National de l’Enseignement Supérieur
support.

Table 1 gives elapse time for 3 Laplace solve with 8388608 grid points. The ”one
Macro-Subdomain row” corresponds to MCSD algorithm. The three next rows corre-
spond to the combination of Aitken Schwarz for the macro domain decomposition and
MCSD in each macro subdomain. Our actual implementation of Aitken Schwarz is
not optimum, since we use blocking communications, redundant interface treatment,
and gather of all the interfaces. However we see that this new method can compete
with our former optimized implementation of MCSD technique.

On large MIMDmachine the salient feature of our multilevel domain decomposition
is not used because we have not been able to allocate the processes in order to get the
best performance of SGI network. In metacomputing experiments, we obtain our main
result: table 2 shows that Aitken Schwarz performs 10 times better than MCSD when
one use two clusters linked by a 10Mb/s network. In this experiment we have used
two different generations of Compaq clusters with one or two 4 ev5 hypernodes called
4100 Dec alpha servers and dual ev6 hypernode called DS20. The elapsed time in this
table are given for 3 Laplace solves and a total of 197000 unknowns. Table 3 shows
that our Aitken Schwarz gives also very good results for a slow non dedicated network
i.e 2Mb/s that is the France Telecom regular link between University Lyon1-Claude
Bernard and Ecole Normale Supérieure of Lyon (ENSL) 10 kilometers away. The
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total number of unknowns in this last experiment is 288000, and we use in addition
to Dec alpha4100 and DS20 alpha servers (respectively CDCSP-MOBY and CDCSP
DS20), the sun Enterprise 10000 parallel computer of the Pole of Numerical Simulation
and Modeling of ENSL (PSMN-SDF1). Let us mention, that in this last case, it is
hopeless to use MCSD.

Number Time Error FFT gather
of Macro Subdomains in second in Maximum norm interface

1 46.5 1.3 E-12

2 71.5 2.0 E-12 2.0s 0.3s

4 56.1 1.0 E-12 4.6s 6.5s

8 59.6 2.6 E-12 11.0s 13.0s

Table 1: Performance of the analytical Aitken Schwarz algorithm on SGI system.

Cluster 1 Cluster 2 Elapse time Bandwidth
3 or 4 processors 2 or 3 or 4 processors in second of network

4 ev5 CDCSP-MOBY 4 ev5 CDCSP-MOBY 28.4s 100 Mb/s

4 ev5 CDCSP-MOBY 2 ev6 CDCSP-DS20 29.4s 10 Mb/s

2 ev5 CDCSP-MOBY 2 ev5 CDCSP-MOBY 220.7s 10 Mb/s
1 ev6 CDCSP-DS20 1 ev6 CDCSP-DS20

Table 2: Performance of the analytical Aitken Schwarz algorithm on intranet.

We are currently running similar experiment with metacomputing between large
parallel systems located in different countries in order to validate our approach on 3D
large scale complex problems.

Conclusion

We have developed in this paper a new two levels domain decomposition method de-
signed to work efficiently on multi-cluster architecture. We have combined fast parallel
solvers such as Multigrids and Schur complement dual that are scalable and efficient
inside the clusters and acceleration of robust solvers as additive Schwarz algorithm
that does not require too many inter-cluster communications. We have shown that



TWO LEVEL DOMAIN DECOMPOSITION FOR MULTI-CLUSTERS 339

Cluster 1 Cluster 2 Cluster 3 Elapse time Bandwidth
4 processors 4 processors 4 or 2 processors in second of network

4 PSMN-SDF1 4 PSMN-SDF1 4 PSMN-SDF1 28.8 s not available

4 ev5 CDCSP-MOBY 4 ev5 CDCSP-MOBY 4 ev5 CDCSP-MOBY 20.7s 100 Mb/s

4 PSMN-SDF1 4 ev5 CDCSP-MOBY 2 ev6 CDCSP-DS20 31.2s 2 Mb/s

Table 3: Performance of the analytical Aitken Schwarz algorithm on City’s Network.

the basic idea of acceleration of relaxation domain decomposition method via Aitken
transform is a possible efficient alternative to acceleration that use multilevel grid
concepts for the efficient solution of Elliptic problem with regular grids and we hope
to extend similar ideas in the context of unstructured meshes.

References

[FQZ88]D. Funaro, A. Quarteroni, and P. Zanolli. An iterative procedure with in-
terface relaxation for domain decomposition methods. SIAM J. Numer. Anal.,
25(6):1213–1236, 1988.

[Gar96]M. Garbey. A schwarz alternating procedure for singular perturbation prob-
lems. SIAM J. Sci. Comput., 17:1175–1201, 1996.

[GTD99]M. Garbey and D. Tromeur-Dervout. Operator splitting and domain decom-
position for multiclusters. In D. Keyes and al editors, editors, Proc. Parallel CFD99,
1999. to appear.

[Hen64]P. Henrici. Elements of Numerical Analysis. John Wiley & Sons Inc, New
York-London-Sydney, 1964.

[LSFQ97]L.Paglieri, A. Scheinine, L. Formaggia, and A. Quarteroni. Parallel conju-
gate gradient with schwarz preconditioner applied to fluid dynamics problems. In
P. Schiano et al., editor, Parallel Computational Fluid Dynamics, Algorithms and
Results using Advanced Computer, Proceedings of Parallel CFD’96, pages 21–30,
1997.

[SB80]J. Stoer and R. Burlish. Introduction to numerical analysis. TAM 12 Springer,
New York, 1980.

[Sel84]S. Selberherr. Analysis and simulation of semiconductor devices. Springer Ver-
lag, Wien, New York, 1984.

[TD93]D. Tromeur-Dervout. Résolution des Equations de Navier-Stokes en Formula-
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36. A Domain Embedding Method for the Direct
Numerical Simulation of Fluidization and
Sedimentation Phenomena

R. Glowinski1, T.-W. Pan2, D.D. Joseph3

Introduction

Motivated by the direct numerical simulation of particulate flow (i.e., of the motion
of fluid-particle mixtures) the authors of this paper, with the assistance of several
collaborators, have introduced some years ago a computational methodology based
on a fictitious domain formulation involving distributed Lagrange multipliers defined
over the particles; this approach allows the flow computations to be done on a fixed
space region of simple shape, giving thus to the practitioners the possibility of very
fast solvers to treat, for example, the diffusion and the incompressibility if we assume
that the fluid is viscous and incompressible. The above methodology will be briefly
discussed in the next section and then applied to the direct simulations of the flu-
idization of 1204 identical rigid solid spherical particles contained in a “bed” of simple
shape and of the sedimentation of 6400 disks in a 2D rectangular box. For more details
on the methodology briefly discussed in this paper and for further numerical results
obtained with it see [GHJ+97, GPH+98, PGH+98, GPHJ99, GPH+99, Pan99].

Mathematical Models for Particulate Flow: A Ficti-
tious Domain Based Equivalent Formulation.

Modeling of the fluid-particle interaction.

Let Ω ⊂ IRd(d = 2, 3) be a space region; we suppose that Ω is filled with an in-
compressible viscous fluid of density ρf and that it contains J moving rigid bodies
P1, P2, ..., PJ (see Figure 1 for a particular case where d = 2 and J = 3). We denote
by n the unit normal vector on the boundary of Ω \ ∪Jj=1P j , pointing outward to the
flow region. Assuming that the only external force acting on the mixture is gravity,
then, between collisions (assuming that collisions take place), the fluid flow is modeled
by the following Navier-Stokes equations
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2Department of Mathematics, University of Houston, Houston, TX 77204-3476, pan@math.uh.edu
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Figure 1: An example of two-dimensional flow region with three particles.


ρf

[
∂u
∂t

+ (u · ∇)u
]
= ρfg + ∇ · σ in Ω \ ∪Jj=1Pj(t),

∇ · u = 0 in Ω \ ∪Jj=1Pj(t),
u(x, 0) = u0(x), ∀x ∈ Ω \ ∪Jj=1Pj(0), with ∇ · u0 = 0,

(1)

to be completed by

u = g0 on Γ with

∫
Γ

g0 · ndΓ = 0 (2)

and by the following no-slip boundary condition on the boundary ∂Pj of Pj

u(x, t) = Vj(t) + ωj(t)×
−−−−→
Gj(t)x, ∀x ∈ ∂Pj(t), (3)

where, in (3), Vj (resp., ωj) denotes the velocity of the center of mass Gj (resp., the
angular velocity) of the jth particle, for j = 1, ..., J. In (1), the stress-tensor σ verifies

σ = τ − pI, (4)

typical situations for τ being

τ = 2νD(u) = ν(∇u+ ∇ut) (Newtonian case), (5)
τ is a nonlinear function of ∇u (non−Newtonian case). (6)

The motion of the particles is modeled by the following Newton-Euler equations
Mj

dVj
dt

= Mjg + Fj ,

Ij
dωj
dt

+ ωj × Ijωj = Tj ,
(7)

for j = 1, ..., J, where in (7):
• Mj is the mass of the jth particle.
• Ij is the inertia tensor of the jth particle.



A DOMAIN EMBEDDING METHOD 343

• Fj is the resultant of the hydrodynamical forces acting on the jth particle, i.e.

Fj = (−1)
∫
∂Pj

σnd(∂Pj). (8)

• Tj is the torque at Gj of the hydrodynamical forces acting on the jth particle,
i.e.

Tj = (−1)
∫
∂Pj

−−→Gjx× σnd(∂Pj). (9)

• We have

dGj

dt
= Vj . (10)

Equations (7) to (10) have to be completed by the following initial conditions:

Pj(0) = P0j , Gj(0) = G0j , Vj(0) = V0j , ωj(0) = ω0j , ∀j = 1, ..., J. (11)

Remark 1 If the flow-rigid body motion is two-dimensional, or if Pj is a spherical
body made of an homogeneous material, then the nonlinear term ωj × Ijωj vanishes
in (7).

A global variational formulation of the fluid-particle interaction
via the virtual power principle.

We suppose, in this section, that the fluid is Newtonian of viscosity ν. Let us denote
by P (t) the space region occupied at time t by the particles; we have thus P (t) =
∪Jj=1Pj(t). To obtain a variational formulation for the system of equations described
as described above, we introduce the following functional space of compatible test
functions:

W0(t) = {(v,Y,θ)|v ∈ (H1(Ω \ P (t)))d, v = 0 on Γ,
Y = {Yj}Jj=1, θ = {θj}Jj=1, with Yj ∈ IRd, θj ∈ IR3,

v(x, t) = Yj + θj ×
−−−−→
Gj(t)x on ∂Pj(t), ∀j = 1, ..., J};

(12)

in (12) we have θj = {0, 0, θj} if d = 2.

Applying the virtual power principle to the whole mixture (i.e., to the fluid and
the particles) yields the following global variational formulation:

ρf

∫
Ω\P (t)

[
∂u
∂t

+ (u · ∇)u
]
· vdx + 2ν

∫
Ω\P (t)

D(u) : D(v)dx

−
∫
Ω\P (t)

p∇ · vdx +
J∑
j=1

MjV̇j ·Yj +
J∑
j=1

(Ijω̇j + ωj × Ijωj) · θj

= ρf

∫
Ω\P (t)

g · vdx +
J∑
j=1

Mjg ·Yj , ∀{v,Y,θ} ∈ W0(t),

(13)
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Ω\P (t)

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω \ P (t)), (14)

u(t) = g0(t) on Γ, (15)

u(x, t) = Vj(t) + ωj(t)×
−−−−→
Gj(t)x, ∀x ∈ ∂Pj(t), ∀j = 1, ..., J, (16)
dGj

dt
= Vj , (17)

to be completed by the following initial conditions

u(x, 0) = u0(x), ∀x ∈ Ω \ P (0), (18)
Pj(0) = P0j , Gj(0) = G0j , Vj(0) = V0j ,ωj(0) = ω0j , ∀j = 1, ..., J. (19)

In relations (13) to (19):

• We have denoted functions such as x → ϕ(x, t) by ϕ(t).

• We have used the following notation

a · b =
∑d
k=1 akbk, ∀a = {ak}dk=1, b = {bk}dk=1,

A : B =
∑d
k=1

∑d
l=1 aklbkl, ∀A = (akl)1≤k,l≤d, B = (bkl)1≤k,l≤d.

• We have ωj(t) = {0, 0, ωj(t)} if d = 2.

• We assume that u(t) ∈ (H1(Ω \ P (t)))d and p(t) ∈ L2(Ω \ P (t)).

A distributed Lagrange multiplier based fictitious domain method.

Following references [GHJ+97, GPH+98, PGH+98, GPHJ99, GPH+99, Pan99] we
introduce the following variant of the virtual power formulation (13)-(19):

For a.e. t > 0, find u(t), p(t), {Vj(t), Gj(t), ωj(t)}Jj=1, such that
ρf

∫
Ω

[
∂u
∂t

+ (u · ∇)u
]
· vdx−

∫
Ω

p∇ · vdx + 2ν
∫
Ω

D(u) : D(v)dx

+
∑J
j=1(1− ρf/ρj)

[
Mj

dVj
dt

·Yj + (Ij
dωj
dt

+ ωj × Ijωj) · θj
]

= ρf

∫
Ω

g · vdx +
∑J
j=1(1− ρf/ρj)Mjg ·Yj , ∀{v,Y,θ} ∈ W̃0(t),

(20)

∫
Ω

q∇ · udx = 0, ∀q ∈ L2(Ω), (21)

u = g0 on Γ, (22)

u(x, t) = Vj(t) + ωj(t)×
−−−−→
Gj(t)x, ∀x ∈ Pj(t), ∀j = 1, ..., J, (23)

dGj

dt
= Vj , (24)

Pj(0) = P0j , Vj(0) = V0j , ωj(0) = ω0j ,Gj(0) = G0j , ∀j = 1, ..., J, (25)
u(x, 0) = u0(x), ∀x ∈ Ω \ ∪Jj=1P0j (26)

u(x, 0) = V0j + ω0j ×
−−−→G0jx, ∀x ∈ P0j , ∀j = 1, ..., J, (27)
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with, in relation (20), space W̃0(t) defined by

W̃0(t) = {(v,Y,θ)|v ∈ (H1
0 (Ω))d,Y = {Yj}Jj=1,θ = {θj}Jj=1, with

Yj ∈ IRd, θj ∈ IR3, v(x, t) = Yj + θj ×
−−−−→
Gj(t)x in Pj(t), ∀j = 1, ..., J}.

In order to relax the rigid body motion constraint (23) we are going to employ a family
{λj}Jj=1 of Lagrange multipliers so that λj(t) ∈ Λj(t) with

Λj(t) = (H1(Pj(t)))d, ∀j = 1., , , .J. (28)

We obtain, thus, the following fictitious domain formulation with Lagrange multipliers:
For a.e. t > 0, find u(t), p(t), {Vj(t), Gj(t), ωj(t), λj(t)}Jj=1, such that{

u(t) ∈ (H1(Ω))d, u(t) = g0(t) on Γ, p(t) ∈ L2(Ω),
Vj(t) ∈ IRd, Gj(t) ∈ IRd, ωj(t) ∈ IR3, λj(t) ∈ Λj(t), ∀j = 1, ..., J,

(29)

and 

ρf

∫
Ω

[
∂u
∂t

+ (u · ∇)u
]
· vdx−

∫
Ω

p∇ · vdx

+2ν
∫
Ω

D(u) : D(v)dx+
∑J

j=1
(1− ρf/ρj)Mj

dVj
dt

·Yj

+
∑J

j=1
(1− ρf/ρj)(Ij

dωj
dt

+ ωj × Ijωj) · θj

−
∑J

j=1
< λj , v −Yj − θj ×

−−→Gjx >j

= ρf

∫
Ω

g · vdx+
∑J

j=1
(1− ρf/ρj)Mjg ·Yj ,

∀v ∈ (H1
0 (Ω))

d, ∀Yj ∈ IRd, ∀θj ∈ IR3,

(30)

< µj , u(t)−Vj(t)− ωj(t)×
−−−−→
Gj(t)x >j= 0, ∀µj ∈ Λj(t), ∀j = 1, ..., J, (31)

completed by relations (21), (24)-(27). The two most natural choices for < ·, · >j are
defined by

< µ,v >j=
∫
Pj(t)

(µ · v + δ2j∇µ : ∇v)dx, ∀µ and v ∈ Λj(t), (32)

< µ,v >j=
∫
Pj(t)

(µ · v + δ2jD(µ) : D(v))dx, ∀µ and v ∈ Λj(t), (33)

with δj a characteristic length (the diameter of Pj , for example). Other choices are
possible as shown in, e.g, ref. [GPHJ99].

On the discretization of problem (29)-(31).

The space approximation (resp., time discretization) of problem (29)-(31) by finite
element method (resp., operator splitting) methods is discussed in refs. [GHJ+97,
GPH+98, PGH+98, GPHJ99, GPH+99, Pan99]; the above references also include a
discussion of the numerical treatment of particle/particle and particle/boundary colli-
sions.
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Numerical Simulations

The Fluidization of a Bed of 1204 Particles.

We consider here the simulation of the fluidization in a bed of 1,204 spherical particles.
The computational domain is Ω = (0, 0.6858)×(0, 20.3997)×(0, 44.577).The thickness
of this bed is slightly larger than the diameter of the particles which is d = 0.635,
so there is only one layer of balls in the 0x2 direction (the above lengths are in
centimeters). In [FJL87] many experimental results related to this type of “almost two-
dimensional” beds are presented. The fluid is incompressible, viscous, and Newtonian;
its density is ρf = 1 and its viscosity is νf = 10−2. We suppose that at t = 0 the fluid
and the particles are at rest. The boundary condition for the velocity field is

u(t) =


0 on the four vertical walls,

5

 0
0

1− e−50t

 on the two horizontal walls.

The density of the balls is ρs = 1.14. We suppose that the fluid can enter and leave
the bed. The mesh size for the velocity field is hΩ = 0.06858 (corresponding to 2×106

vertices for the velocity mesh), while it is hp = 2hΩ for the pressure (corresponding
to 2.9×105 vertices for the pressure mesh). The time step is ∆t = 10−3. The initial
position of the balls is shown in Figure 2. After starting pushing the balls up, we
observe that the inflow creates cavities propagating among the balls in the bed. Since
the inflow velocity is much higher than the critical fluidization velocity (of the order
of 2.5 here), many balls are pushed directly to the top of the bed. Those balls at the
top of the bed are stable and closely packed while the others are circling around at
the bottom of the bed. Those numerical results are very close to experimental ones
obtained at the University of Minnesota and have been visualized in Figures 2 and 3
(where the lengths are in inches this time). In the simulation, the maximum particle
Reynolds number is 1,512 while the maximum averaged particle Reynolds number is
285. The computations were done on an SGI Origin 2000, using a partially parallelized
code; the computational time is approximately 110 sec./time step.

Sedimentation of 6,400 circular particles in a two-dimensional
cavity. Rayleigh-Taylor instability for particulate flow.

The test problem that we consider now concerns the simulation of the motion of 6,400
sedimenting circular disks in the closed cavity Ω = (0, 8)× (0, 12). The diameter d of
the disks is 1/12 and the position of the disks at time t = 0 is shown in Figure 4. The
solid fraction in this test case is 34.9%. The disks and the fluid are at rest a time
t = 0. The density of the fluid is ρf = 1 and the density of the disks is ρs = 1.1. The
viscosity of the fluid it νf = 10−2. The time step is 10−3. The mesh size for the velocity
field is hΩ = 1/192 (the velocity triangulation has thus about 3.5×106 vertices) while
the pressure mesh size is hp = 2hΩ implying, approximately, 885,000 vertices for the
pressure triangulation. For this test problem where many particles ”move around” a
fine mesh is required essentially everywhere. The computational time per time step
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Figure 2: Fluidization of 1,204 spherical particles: positions of the particles at t = 0,
1.5, t = 3 and 4.5 (from left to right and from top to bottom).
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Figure 3: Fluidization of 1,204 spherical particles: positions of the particles at t = 6,
7, 8 and 10 (from left to right and from top to bottom).
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Figure 4: Sedimentation of 6,400 particles: positions at t = 0, 0.4, 0.5, 0.6 (from left
to right and from top to bottom), and visualization of the Rayleigh-Taylor instability.
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Figure 5: Sedimentation of 6,400 particles: positions at t = 2.6, 5, 9, 13 (from left to
right and from top to bottom), and visualization of the Rayleigh-Taylor instability.
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is approximately 10 min. on a DEC Alpha 500-au workstation, implying that to
simulate one time unit of the phenomenon under consideration we need, practically, a
full week. The evolution of the 6,400 disks sedimenting in Ω is shown in Figures 4 and
5. The maximum particle Reynolds number in the entire evolution is 72.64. Figure
4 clearly shows the development of a ”text-book” Rayleigh-Taylor instability. This
instability develops into a fingering phenomenon and many symmetry breaking and
other bifurcation phenomena, including drafting, kissing and tumbling, take place at
various scales and times; similarly vortices of various scales develop and for a while
the phenomenon is clearly chaotic, which is not surprising after all for a 6,400-body
problem. Finally, the particles settle at the bottom of the cavity and the fluid returns
to rest.
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37. Parallel 3D Maxwell Solvers based on Domain
Decomposition Data Distribution

G. Haase1, M. Kuhn2, U. Langer3

Introduction

The most efficient solvers for finite element (fe) equations are certainly multigrid, or
multilevel methods, and domain decomposition methods using local multigrid solvers.
Typically, the multigrid convergence rate is independent of the mesh size parameter,
and the arithmetical complexity grows linearly with the number of unknowns. How-
ever, the standard multigrid algorithms fail for the Maxwell finite element equations
in the sense that the convergence rate deteriorates as the mesh-size decreases. To
overcome this drawback, R. Hiptmair proposed to modify the smoothing iteration by
adding a smoothing step in the discrete potential space [Hip99]. Similarly, D. Arnold,
R. Falk and R. Winther suggested a special block smoother that has the same ef-
fect [AFW00].

The parallelization of these or, more precisely, of appropriately modified multigrid
solvers is certainly the only principle way to enhance the efficiency of these algorithms.
Due to the peculiarities of the multigrid methods for the Maxwell equations, the par-
allelization is not straightforward. In this paper, we propose a unified approach to
the parallelization of multigrid methods and domain decomposition methods. In or-
der to develop a basic parallel Maxwell solver that can be used for more advanced
problems as basic module, it is sufficient to consider the magnetostatic case. In the
magnetostatic case, the Maxwell equation can be reduced to the curl-curl–equation
that is not uniquely solvable because of the large kernel of the curl-operator (poten-
tial fields). In practice, a gauging condition is imposed in order to pick out a unique
solution. The so-called Coulomb gauging aims at a divergence-free solution (vector
potential). The weak formulation of the curl-curl–equation and the gauging condition
together with a clever regularization leads to a regularized mixed variational formula-
tion of the magnetostatic Maxwell equations in H0(curl) × H1

0(Ω) that has a unique
solution. The discretization by the Nédélec and Lagrange finite elements results in
a large, sparse, symmetric, but indefinite system of finite element equations. Elimi-
nating the Lagrange multiplier from the mixed finite element equations, we arrive at
a symmetric and positive definite (spd) problem that can be solved by some parallel
multigrid preconditioned conjugate gradient (pcg) method. More precisely, this pcg
solver contains a standard scaled Laplace multigrid regularizer in the regularization
part and a special multigrid preconditioner for the regularized Nédélec finite element
equations that we want to solve. (see second section). The parallelization of the

1Johannes Kepler University Linz, Institute of Analysis and Computational Mathematics,
ghaase@numa.uni-linz.ac.at

2Johannes Kepler University Linz, SFB “Numerical and Symbolic Scientific Computing”,
kuhn@sfb013.uni-linz.ac.at

3Johannes Kepler University Linz, Institute of Analysis and Computational Mathematics,
ulanger@numa.uni-linz.ac.at
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pcg algorithm, the Laplace multigrid regularizer and the multigrid preconditioner are
based on a unified domain decomposition (dd) data distribution concept that will be
briefly described in the following two sections. From the parallelization point of view,
we prefer Hiptmair’s multigrid method with some modifications for the construction
of the special multigrid preconditioner. We also propose a concept for coupling finite
elements with boundary elements in 3D. As in 2D, a really efficient parallel solver
should be based on a hybrid parallelization concept using some Dirichlet dd precondi-
tioner the components of which are a dd parallelized global multigrid preconditioner
for the finite element part and algebraically parallelized components for the bound-
ary element parts. The final part contains some results of our numerical experiments
on a parallel machine with distributed memory that show the high efficiency of our
approach for a real-life application.

3D Magnetostatic Field Problems

The magnetostatic equations, in which we are interested throughout the paper, can
be rewritten as

curl(H) = J, H = νB, div(B) = 0, (1)

where H and B denote the magnetic field intensity and the magnetic flux density,
respectively. The permeability µ (ν := 1/µ ≥ νmin > 0) and current density J are
given. Furthermore, we note that the current density J is physically divergence-free,
i.e., div(J) = 0. Theoretically, the computational domain Ω coincides with the space
R3 in any case. The behavior of the magnetic field at infinity is described by radiation
conditions. In practice, one may often simplify the problem by considering a bounded,
simply connected computational domain Ω ⊂ R3 with Lipschitz boundary Γ = ∂Ω and
by replacing the radiation condition by the boundary condition

B · n = 0 on ∂Ω, (2)

where n stands for the unit outward normal with respect to ∂Ω. Introducing some
vector potential u for the B-field B = curl(u) and taking into account the Coulomb
gauging condition div(u) = 0 ensuring uniqueness, we arrive at the following mixed
variational formulation that is fundamental for our approach to the numerical solution
of the magnetostatic Maxwell equations (1):
Find (u, p) ∈ X ×M := H0 (curl,Ω)×H1

0 (Ω) such that

a(u, v) + b(v, p) = 〈f, v〉 ∀ v ∈ H0 (curl,Ω), (3)
b(u, q) = 0 ∀ q ∈ H1

0 (Ω), (4)

where a(u, v) :=
∫
Ω ν curl(u)·curl(v) dx, b(v, p) :=

∫
Ω v ·∇p dx, and 〈f, v〉 :=

∫
Ω J ·v dx.

Now it is not difficult to conclude from the Brezzi-Babuška theory that the mixed varia-
tional problem (3) - (4) has a unique solution. Moreover, choosing v = ∇p ∈ H0(curl,Ω)
in (3), we immediately observe that p = 0. This simple observation is crucial for our
approach. Indeed, adding an arbitrary spd bilinear form c(·, ·) : M ×M → R1 to the
second equation of our mixed variational problem (3) - (4) we arrive at the equivalent
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mixed variational problem: Find (u, p) ∈ X ×M such that

a(u, v) + b(v, p) = 〈f, v〉 ∀ v ∈ X, (5)
b(u, q)− c(p, q) = 0 ∀ q ∈ M. (6)

Let now be Xh := N 1
h ⊂ X and Mh := S1

h ⊂ M the lowest order edge element
space (see [N8́6]) and the space of piecewise linear nodal elements on a shape-regular
tetrahedral triangularization of Ω with the mesh-width h, respectively [Cia78]. Then
the mixed fe approximation to the regularized mixed variational problem (5) - (6)
leads us to the following symmetric, but indefinite system(

A BT

B −C

)(
uh
p
h

)
=
(

f
h

0

)
(7)

of linear finite element equations for defining the edge unknowns uh and the nodal
unknowns p

h
, where the matrices A, B, C and the first component f

h
of the right-

hand side are derived from the bilinear forms a(·, ·), b(·, ·), c(·, ·), and the linear form
〈f, ·〉, respectively.

Eliminating p
h
= C−1Buh from the second equation in (7) and inserting it into

the first equation, we obtain the spd Schur complement system

Guh := (A+BTC−1B)uh = f
h
. (8)

Let C̃ be some spd matrix that is spectrally equivalent to C (briefly, C̃ ≈ C). Then the
original Schur complement system (8) is equivalent to the modified Schur complement
system

G̃uh := (A+BT C̃−1B)uh = f
h
. (9)

Instead of solving the symmetric, but indefinite system (7), we solve the spd modified
Schur complement system (9).

Let us choose the spd bilinear form

c(p, q) :=
1

νmin

∫
Ω

∇p∇q dx, (10)

corresponding to the Laplace operator scaled by 1/νmin, and let us consider a spd
preconditioner CH for the spd matrix H := A+M̃ , where M̃ is here the appropriately
scaled mass matrix in Xh defined by (M̃uh, vh) := νmin

∫
Ω
uh vh dx. The discrete LBB–

condition and the spectral equivalence CH ≈ H imply that CH ≈ G ≈ G̃ (see [Kuh98]
for the detailed proof). Once a good preconditioner CH and an appropriate regular-
izer C̃ is available, we can solve the modified Schur complement system (9) by the pcg
method. In practice, we choose the multigrid preconditioner CH := H(I − MH)−1

and the multigrid regularizer C̃ := CC := C(I − MC)−1, where MH and MC are
the corresponding multigrid iteration operators with respect to H and C. Choos-
ing appropriate symmetric multigrid cycles, we can now conclude from the results
of [AFW00, Hac85, Hip99] that the pcg method is asymptotically optimal with re-
spect to the operation count and to the memory demand [JLM+89]. The numerical
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results obtained from the serial implementation of this algorithm confirm this state-
ment [KLS00]. In this paper, we are interested in the parallel implementation of this
algorithm. The parallelization of this algorithm is far from being straightforward be-
cause of the peculiarities connected with the multigrid regularizer CC and with the
special multigrid preconditioner CH .

A Unified Data Distribution Concept

Vector and matrix types

We decompose Ω in P non-overlapping subdomains Ωs which are discretized by a
mesh τh,s, such that the whole triangulation τh =

⋃P
s=1 τh,s of Ω is conform. The

index set of the Ns unknowns in Ωs is denoted by ωs. The mapping of a vector
u ∈ RN in global numbering onto a local vector us ∈ RNs in subdomain Ωs (s = 1, P ) is
represented symbolically by subdomain connectivity matrices As of dimension Ns×N

with entries A[i,j]
s := 1 if j ∈ ω is the global number of i ∈ ωs and A[i,j]

s := 0
otherwise.
The index set of all those subdomains, an unknown u[j], j ∈ ω belongs to, is denoted
by σ[j] := {s | ∃i ∈ ωs : A[i,j]

s �= 0}. We store the data of a vector component u[i] in
the subdomain Ωs if s ∈ σ[i].
There are two opportunities to store those components and finally that vector. A
vector u is called an accumulated vector if each vector component u[i] is stored in all
subdomains Ωs, s ∈ σ[i] with its full value. The local vectors us can be represented
as us := As · u . We name a vector r as distributed vector if it is decomposed into
local vectors rs such that r =

∑P
s=1ATs · rs holds, i.e., all subdomains Ωs, s ∈ σ[i]

store only rs and possess a portion of the full vector value r[i] which can be determined
only by taking the sum. The conversion of a distributed vector v into an accumulated
vector w can be done by evaluating the sum above and restrict the result afterwards,
i.e.,

w ← v : ws := As · w = As ·
P∑
s=1

ATs · vs . (11)

With respect to an element-wise domain decomposition, the matrix defined by the
bilinear form in (3) can also be stored in two ways. A matrix M is called accu-
mulated if its local restrictions Ms possess the full entries of it, and we can write
Ms := As · M · ATs . We call a matrix K distributed if we have locally stored matri-
ces Ks such that K :=

∑P
s=1ATs ·Ks · As holds, i.e., each subdomain Ωs stores only a

part of its full values. We obtain distributed system matrices Ks automatically in our
approach.

Basic operations

The inner product of different type vectors requires one global reduce operation of the
local inner products, for details see [Haa98, Haa99, HLM91]. The multiplication of a
distributed matrix with an accumulated vector results in a distributed vector and its



PARALLEL 3D MAXWELL SOLVERS 357

local realization vs = Ks · ws requires no communication at all:

〈w, r〉 =
P∑
s=1

〈ws, rs〉 and K · w = v . (12)

The situation changes if we use an accumulated matrix M. If the pattern of M fulfills
the condition

∀i, j ∈ ω : σ[i] �⊆ σ[j] =⇒ M[i,j] = 0 , (13)

then no communication is needed for the operations w = M · u and d = MT · r, i.e.,
we performed locally ws = Ms · us and ds = MT

s · rs, ∀s = 1, P .

Basic algorithms

The operations (12) allow us already to formulate a parallel pcg algorithm for solving
the matrix equation Ku = f with a preconditioner CK . Besides the inner products,

Algorithm 1 Parallel pcg method pcg(K, u, f, CK)

repeat
v ← K · s
α ← σ/ 〈s, v〉
u ← u + α · s
r ← r − α · v
w ⇐ C−1K · r
σ ← 〈w, r〉 , β ← σ/σold , σold ← σ
s ← w + β · s

until termination

only the preconditioning step w ⇐ C−1K · r involves communication indicated by using
⇐ instead of ←. In the case of CK = I, i.e., no preconditioning, this step reduces to
a type conversion (11) involving communication. We require that the communication
costs for applying any other preconditioner C−1K are in the same range.

One possible choice for the preconditioner is C−1K = (I−MK)K−1, with MK being
the multigrid iteration operator for K. The parallel multigrid iteration is presented
in Alg. 2, where O denotes the level such that O = 1 stands for the coarsest grid.
The algorithm needs a smoother Smooth with a good parallel performance, e.g.,
a block Jacobi smoother with Gauss-Seidel smoothing in blocks containing interior
unknowns of the subdomains. Furthermore, the interpolation P has to fulfill the
pattern condition (13) and we take PT as restriction. The coarse grid system can be
solved directly or by some iterative method similar to the pcg in Alg. 1. Despite the
coarse grid solver, only the smoothing sweep requires communication.

Parallel Multigrid Maxwell Solver

We want to solve (9) by the pcg algorithm (Alg. 1) using a multigrid preconditioner
(Alg. 2) for the realization of C−1K . In this section, we will discuss how these compo-
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Algorithm 2 Parallel multigrid pmg(K, u, f, O)

if O == 1 then
u ⇐ Solve (

∑P
s=1ATs KsAs · u = f )

else
ũ ⇐ Smooth(K, u, f)
d ← f − K · ũ
dH ← PT · d
wH ⇐ pmg(KH ,wH ← 0, dH , O− 1)
w ← P · wH
u ⇐ SmoothT (K, ũ + w, f)

end if

nents have to be adapted to the case of our Maxwell solver presented in the second
section.

Our reduced primal formulation (9) has been derived from (7). As discussed in the
previous section, the matrices are generated locally, such that the local components
As, Bs, Cs are available. Denoting the subdomain connectivity matrices with respect
to the spaces Xh := Rnh and Mh := Rmh by AX,s and AM,s, respectively, we have the
following relations:

A =
P∑
s=1

AX,sAsATX,s, B =
P∑
s=1

AM,sBsATX,s, C =
P∑
s=1

AM,sCsATM,s.

The system matrix in (9) is defined by G̃ := A+BTC̃−1B, where C̃ is a preconditioner
for C. In order to apply pcg(G̃, u, f, C eG) we explain in Alg. 3 how the matrix-by-vector
operation is defined for the distributed matrix G̃. Hereby, the required operation

Algorithm 3 The operation v ⇐ G̃ · s.
q ← B · s
p ⇐ pmg(C, p, q, O)
v ← A · s + BT · p

C̃−1 is being realized by one multigrid iteration step pmg(C, p, q, O) in the space Mh.
Although the matrix G̃ is distributed, the corresponding matrix-by-vector operation
requires as many communications as one multigrid iteration step for C in Mh.

Furthermore, the operation C−1K in Alg. 1 is now realized by one iteration step of
Hybridpmg(H̃,C, u, f, O) defined in Alg. 4. Comparing Alg. 4 and Alg. 2 we observe
that only the smoother has to be adapted to our special application.

In particular we use a hybrid smoother as proposed in [Hip99] which is suitable for
parallelization. As in [Hip99], we introduce the lifting operator L : Xh → Mh where
L[i,j] := −1, L[i,k] := 1 if the oriented edge with the unknown index i in Xh connects
the two unknowns with the indices j and k in Mh. Otherwise we have L[i,j] := 0.
We observe that LT satisfies the pattern condition (13). Now Alg. 5 is the correct
definition of the parallel hybrid smoother hybridsmooth(H,C, u, f). Note, using the
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Algorithm 4 Parallel hybrid multigrid hybridpmg(H,C, u, f, O)

if O == 1 then

u ⇐ Solve (
P∑
s=1

ATs HsAs · u = f )

else
ũ ⇐ HybridSmooth(H,C, u, f)
d ← f − H · ũ
dH ← PT · d
wH ← 0
w̃
H ⇐ hybridpmg(HH ,CH ,wH , dH , O− 1)

w ← P · w̃H
û ← ũ + w
u ⇐ HybridSmoothT (H,C, û, f)

end if

Algorithm 5 Parallel hybrid smoother hybridsmooth(H,C, u, f)

ũ ⇐ Smooth(H, u, f)
q ← L · (f − H · ũ)
p ← 0
p̃ ⇐ Smooth(ν2min · C, p, q)
u ← ũ + LT · p̃

matrix C derived from (10) for defining the smoother in Mh we have to use the correct
scaling by ν2min corresponding to the definition of scaled mass matrix M̃ . Now, the
smoother Smooth can be any standard smoother with a good parallel performance,
e.g., a block Jacobi smoother with Gauss-Seidel smoothing in blocks containing interior
unknowns of the subdomains. Since HybridSmooth involves at least two smoothing
steps, one in Xh and one in Mh, at least two subsequent communications are required.

Note, the post–smoothing step hybridsmoothT (H,C, u, f). in Alg. 4 is obtained
from Alg. 5 by executing step 1 after steps 2-3-4-5 instead of executing the given order
1-2-3-4-5.

Parallel Domain Decomposition Maxwell Solver

If one is interested in the exterior magnetic field, then the coupling of the FEM with
the BEM is certainly the natural technique to handle this problem. For simplicity
of the presentation, let us consider the case where the magnetic sources and the
ferromagnetic materials are located in some bounded and simply connected Lipschitz
domain ΩF where we will use the FEM for approximating the magnetic field. Thus,
we suppose that in the exterior BEM subdomain ΩB := (Ω̄F )c the electric current
density vanishes, i.e., J = 0, and ν = νB > 0 (air). We can again introduce the vector
potential u for the B–field B = curl(u) in ΩF . However, in the exterior domain ΩB,
the H–field can now be represented as a gradient field of some scalar potential ϕ, i.e.
H = grad(ϕ) in ΩB.
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Therefore, in the exterior subdomain ΩB, the magnetostatic Maxwell equations
(1) are essentially reduced to the scaled Laplace equation for the scalar potential ϕ.
The Cauchy data for the solution of this equation are related by Calderon’s inte-
gral equations ϕ = (12I + K)ϕ − νBVλ and λ = − 1

νB
Dϕ + (12I − K∗)λ on the in-

terface Γ := ∂ΩF = ∂ΩB, where ϕ denotes the trace of the scalar potential on Γ,
λ = 1

νB

∂ϕ
∂n = B · n on Γ, n := outer unit normal to ΩF , V := single layer potential op-

erator on Γ, K := double layer potential operator on Γ, D := hypersingular operator
on Γ.

Using now Coulomb’s gauging condition div(u) = 0 in ΩF and Cauchy’s represen-
tation formula of the Cauchy data together with the interface condition predicting the
continuity of the tangential part H × n of the H–field and of the normal component
B ·n of the B–field, we arrive at the mixed coupled fe-be variational formulation: Find
(u, ϕ, p) ∈ V := X × Φ×M such that:

a(u, ϕ; v, ψ) + b(v, p) = 〈f, v〉 ∀ (v, ψ) ∈ X × Φ, (14)
b(u, q)− c(p, q) = 0 ∀ q ∈ M, (15)

where X := H(curl,ΩF ), Φ := H
1/2
H (Γ), and M := H1

H (ΩF ). The bilinear forms are
defined by the identities

a(u, ϕ; v, ψ) :=
∫
ΩF

ν curl(u) · curl(v) dx+ 〈νBV(curl(u) · n), curl(v) · n〉Γ

−〈(1
2
I +K)ϕ, curl(v) · n〉Γ + 〈 1

νB
Dϕ,ψ〉Γ + 〈(1

2
I + K∗)(curl(u) · n), ψ〉Γ,

b(u, q) :=
∫
ΩF

u · ∇q dx, c(p, q) :=
1

νmin

∫
ΩF

∇p · ∇q dx, 〈f, v〉 :=
∫
ΩF

J · v dx.

The subscribe ”T” means that the function of the corresponding space should be L2–
orthogonal to the constant functions. Again one can show existence and uniqueness
of the solution. Moreover, p = 0 if

∫
ΩF

J ∇q dx = 0 ∀ q ∈ H1
H (ΩF ) (see [Kuh98] for

the proof).
Choosing the finite (boundary) element subspaces Xh := N 1

h ⊂ X , Φh := S1
h ⊂ Φ

andMh := S1
h ⊂ M , we derive from (14) the symmetric coupled fe-be Galerkin scheme:

Find (uh, ϕh, ph) ∈ Vh := Xh × Φh ×Mh such that

a(uh, ϕh; vh, ψh) + b(vh, ph) = 〈f, vh〉 ∀ (vh, ψh) ∈ Xh × Φh, (16)
b(uh, qh)− c(ph, qh) = 0 ∀ qh ∈ Mh, (17)

that is again equivalent to the following symmetric, but indefinite system of coupled
fe-be equations  A KT BT

K −D 0
B 0 −C

 uh
ϕ
h

p
h

 =

 f
h
0
0

 , (18)
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where A = AF + AB consists of the contributions from the first two terms of the
bilinear form a(·, ·). Eliminating again p

h
= C−1Buh from the third equation in (18)

and inserting it into the first equation, we obtain the Schur complement system(
Ã KT

K −D

)(
uh
ϕ
h

)
=
(

f
h
0

)
,

where Ã = AF +AB+BTC−1B. In contrast to the finite element case, here the Schur
complement system remains symmetric and indefinite. Similar to the 2D case discussed
in [Lan94], we can now construct efficient solvers on the basis of the Bramble-Pasciak
transformation [BP88]. In [KS00], M. Kuhn and O. Steinbach describe the ingredients
of the preconditioner and present numerical results showing the high efficiency of this
solver for coupled fe-be equations in 3D.

Numerical Results

In this section, we present an example from magnetostatics and we apply the algo-
rithms presented above. The geometry of our model problem together with the cor-
responding coarse surface mesh is shown in Fig. 1 on the left. We consider the model
of a transformer with a kernel, three coils and the air domain around these parts.
The outer boundary is given by an iron casing of high conductivity that motivates the
boundary condition (2). The magnetic field which is to be computed is generated by
tangential currents within the three coils. The iron core has a permeability of 1000.
The resulting magnetic flux density B is shown in Fig. 1 on the right.

Figure 1: Geometry, initial mesh (left), resulting magnetic flux density B (right).

The basis for our domain decomposition is a tetrahedral mesh generated fully auto-
matically by NETGEN (see [KLS00]). The surface mesh shown in Fig. 1 corresponds
to a volume mesh of 2465 tetrahedra. We apply a modified recursive spectral bisection
(rsb) algorithm which allows to use any number P of subdomains. The use of the rsb
ensures that the elements are distributed almost equally to the P processors being
used. Finer meshes corresponding to the levels O = 2, 3, 4 are obtained from uniform
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refinement resulting in overall 1262080 tetrahedra. This refinement is purely local and
can be realized without communication. However, newly created unknowns at inter-
faces between different subdomains have to be identified uniquely by all surrounding
processors. For this purpose, one root process per interface receives data from all
surrounding subdomains, it identifies all unknowns uniquely and it finally distributes
this information again to all adjacent processors. This setup phase is required once
after each refinement step.

The numerical experiments presented below are carried out on a SGI Origin 2000
machine with 64 CPU R12000, 300 MHz and overall 20 GB main memory. The numer-
ical simulations are carried out using the object oriented C++ code FEPP [KLS00].
The message passing is based on MPI from the SGI Message Passing Toolkit 1.2. The
wall-clock time has been measured by MPI WTIME().

The system (9) has been solved using the pmg algorithm with the relative accu-
racy 10−4. For the multigrid preconditioner CH a V–cycle with 1 pre– and 1 post–
smoothing step hybridsmooth has been used. The multigrid regularisator C̃ has
been realized by a V–cycle with 2 pre– and 2 post–smoothing steps using a standard
smoother with good parallel efficiency as described before. Table 1 shows the corre-
sponding results including number of unknowns (dof), number of iterations (It.) and
wall-clock time in seconds (T[sec]). We increase the number of unknowns from top to
bottom, while the number of processors is increased from left to right. First, we ob-

1 4 16 32 48 60
O dof It. T T T T T It. T
1 3466 5 0.1 0.1 0.1 0.1 0.1 5 0.1
2 26907 8 7.1 2.9 1.5 1.4 1.4 11 1.7
3 212597 9 84 28 7.3 4.7 3.8 13 4.1
4 1691370 11 1398 496 81 42 28 14 24
T(O = 4) 2593 806 160 86 61 54
T(ΣO) 2852 886.4 188.4 108.5 83.8 79.6

Table 1: Wall-clock time T for the solver on each level (upper part), overall wall-clock
time for O = 4 and accumulated for all levels (ΣO) in seconds.

serve that the number of iterations is almost independent of the number of unknowns.
This shows the optimality of our algorithm. However, the number of iterations de-
pends slightly on the number of processors. That is because our smoothers depend on
the partition of the mesh. In particular, the blocks of unknowns at interfaces where
Jacobi steps are performed grow with the number of subdomains. The wall-clock
times for the pcg are given in the upper part for each level O separately. Additionally
we present the overall time for the finest grid (O = 4) and together for all grids (ΣO)
in the lower part of Table 1. This time includes the grid refinement together with
the setup phase for the vector accumulation, the assembling of the matrices and the
solution of the system. Table 2 shows the corresponding speedup results. First the
overall speedup for the accumulated time over all 4 levels is given. It performs well
until P = 16 and is no longer optimal for P = 60. This loss of efficiency is due to the
setup phase for interface unknowns which shows rather bad scalability in the current
implementation. So it scales from 32 sec for P = 16 to 15 sec for P = 60 only. The
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P 1 4 16 32 48 60
ΣO 1.0 3.2 15.1 26.2 34.1 35.6

O = 4 1.0 3.2 16.2 30.0 42.5 48.0
pcg (O = 4) 1.0 2.8 17.2 33.0 49.6 58.5

1 Iter. (O = 4) 1.0 3.3 21.9 42.1 63.2 74.4

Table 2: Speedup results for overall time ΣO, time for O = 4, pcg (solver) for O = 4
and one iteration of pcg for O = 4.

speedup computed for O = 4 shows a slightly better behavior since coarse grid effects
are neglected. However, the speedup computed for the solver and O = 4 only, shows
much better results. Here the speedup is almost optimal for P = 60. For a more
detailed analysis we consider the speedup with respect to one iteration for O = 4. Now
we observe even super-speedups. However this is due to cache effects.
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38. A Fictitious Domain Decomposition Method for
High Frequency Acoustic Scattering Problems

U. Hetmaniuk1, C. Farhat2

Introduction

It is well known that most PDE problems defined over an axisymmetric domain can be
efficiently solved by a Fourier based solution method. However, for many applications,
the underlying computational domain is not entirely axisymmetric, but has one or
several major axisymmetric subdomains. For such problems, an axisymmetric analysis
method is not applicable, and a straightforward one can be inefficient because it does
not exploit the geometrical properties of the axisymmetric components. The objective
of this paper is to fill this existing gap, and propose a computationally efficient method
for solving problems on a class of partially axisymmetric domains [FUR99].

We illustrate our method for a submarine problem. Indeed, a submarine can be
represented as the assembly of a major cylindrical component, and a few minor “fea-
tures” that are however essential for the application itself. Our approach is presented
here in the context of the finite element solution of the three-dimensional exterior
Helmholtz problem in the high frequency regime. This problem is challenging be-
cause it leads to large-scale computations. For example, at a wave length equal to
the length of a submarine divided by 360, the finite element discretization of such a
problem requires hundreds of millions of grid points.

The proposed methodology is based on a fictitious domain approach (for example,
see [DGH+92]) where the original exterior Helmholtz problem is extended into an
axisymmetric exterior problem, and where parts of the genuine boundary conditions
are enforced through the utilization of Lagrange multipliers. The axisymmetry of the
enlarged domain is then exploited by expanding the solution into a Fourier series.
The Fourier modes of the solution are computed by solving a series of bidimensional
problems coupled altogether by the Lagrange multipliers. The associated constrained
problem is treated by extension of the FETI-H method [FML00], and a special coarse
problem is constructed for accelerating the convergence of the corresponding interface
problem. The resulting fictitious domain decomposition method is a fast solver because
it transforms a 3D problem into a series of 2D ones.

For simplicity but without any loss of generality, we consider in this paper the
case of a scatterer with a single component and one arbitrarily shaped feature. The
generalization to an arbitrary number of axisymmetric components and features is
straightforward.

1University of Colorado at Boulder, hetmaniu@hawkeye.colorado.edu
2University of Colorado at Boulder, charbel@boulder.colorado.edu
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Mathematical formulation

Extension of the solution to a fictitious domain

We consider an impenetrable obstacle Ω composed of two substructures

Ω̄ = C̄ ∪ W̄

where C and W are two disjoint open sets and C is axisymmetric, as illustrated on
Fig. 1.

= +

Figure 1: Physical decomposition of the scatterer

BR is the ball of radius R centered at the center of geometry of Ω, n is the outward
normal to ∂BR and ∂

∂n is the normal derivative operator. We define the following
exterior domains and their intersection with BR.{

Ωe = R3\Ω̄
Ωe,R = Ωe ∩BR

{
Ce = R3\C̄
Ce,R = Ce ∩BR

The surface Γ is defined as the intersection of ∂W with Ce,R.
The focus model problem is given by

Find u ∈ H1(Ωe,R) such that


∆u+ k2u = f in Ωe,R

u = 0 on ∂Ω
∂u
∂n = iku on ∂BR

(1)

where u is the acoustic scattered field and f belongs to L2(Ωe,R).
In this paper we consider only a spherical artificial boundary with a first-order

approximation of the Sommerfeld condition. But any other axisymmetric boundary
or absorbing condition could be used to ensure that the waves are outgoing.

In order to obtain an axisymmetric computational domain, we embed the original
domain Ωe,R into Ce,R which satisfies

C̄e,R = Ω̄e,R ∪ W̄

We extend u from Ωe,R to the enlarged domain Ce,R to a function (still denoted
by u for simplicity) with H1(Ce,R) regularity. This regularity requirement implies the
continuity of the trace of u across the surface Γ.

Solving problem (1) is equivalent to solving the following problem

Find u ∈ V = {v ∈ H1(Ce,R) | v = 0 on Γ} such that
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 ∆u+ k2u = f̃ in Ce,R
u = 0 on ∂C
∂u
∂n = iku on ∂BR

(2)

in the sense that the solution of problem (2) restricted to Ωe,R satisfies the boundary
value problem (1), and f̃ is an L2-extension of f , for example, by 0.

We include the boundary condition on ∂C into the definition of the functional
space

Y = {v ∈ H1(Ce,R) | v = 0 on ∂C}

We can rewrite problem (2) into the following saddle-point problem :

Find (u, µ) ∈ Y ×H−1/2(Γ) such that


∫
Ce,r

∇u.∇v − k2uvdx+
∫
∂BR

ikuvdσ =
∫
Ce,R

fvdx+
∫
Γ
µvdσ, ∀v ∈ W∫

Γ
ζ.udσ = 0, ∀ζ ∈ H−1/2(Γ)

(3)

Domain decomposition

For high-frequency acoustic scattering problems, numerical discretization leads to
large-scale systems of equations. Thus a domain decomposition technique is useful
for solving these systems. For the sake of clarity, but without any loss of generality,
we present our domain decomposition method for the case of two subdomains.

We describe the axisymmetric domain Ce,R in cylindrical coordinates (r, θ, z). Ce,R
is generated by rotation around the z-axis of a meridian plane ce,R. We partition ce,R
into two non-overlapping subdomains c1 and c2. The decomposition of ce,R induces a
partition of Ce,R

C̄e,R = C̄1
e,R ∪ C̄2

e,R

where C1
e,R (resp. C2

e,R) is generated by the rotation of c1 (resp. c2) around the z-axis.
Let us denote the restriction to Cse,R of the solution of problem (2), for s = 1, 2.

The interface between C1
e,R and C2

e,R is denoted ΣI , which is axisymmetric. Now, we
are looking for the functions us in the following functional spaces

Vs = {v ∈ H1(Cse,R) | v = 0 on Γ ∩Cse,R}

for s = 1, 2.
For solving problem (2) on a partitioned domain, we adopt the FETI-H method

[FML00] which introduces the two following problems

Find (u1, u2) ∈ V1 × V2 such that
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∆u1 + k2u1 = f̃|C1

e,R
in C1

e,R

u1 = 0 on ∂C ∩ ∂C1
e,R

∂u1

∂n = iku1 on ∂BR ∩ ∂C1
e,R

∂u1

∂ν1 + iku1 = λ on ΣI
∆u2 + k2u2 = f̃|C2

e,R
in C2

e,R

u2 = 0 on ∂C ∩ ∂C2
e,R

∂u2

∂n = iku2 on ∂BR ∩ ∂C2
e,R

−∂u2

∂ν2 + iku2 = λ on ΣI

(4)

with the constraint

u1 − u2 = 0 on ΣI (5)

Here, νs denotes here the unit outward normal on the interface boundary between
C1
e,R and C2

e,R, and λ is a Lagrange multiplier field for enforcing the continuity at the
interface of the solution.

Similarly to the previous section, we can introduce a saddle-point problem with the
boundary condition on ∂C inside a functional space and two Lagrange multipliers: λ
for the continuity at the interface of the solution, µ for enforcing the genuine boundary
condition on Γ.

A Fourier based finite element discretization

Each function us is 2π-periodical with respect to the cylindrical coordinate θ. Hence,
it can be expanded in a Fourier series with respect to θ as follows

us(r, θ, z) =
∞∑

n=−∞
usn(r, z)e

inθ (6)

The Fourier coefficients of us are now functions of (r, z) defined on cs.
Discretizing the two-dimensional subdomains cs by finite elements and truncating

the Fourier expansions leads to the following discrete expression of u1 and u2
u1(r, θ, z) =

nθ∑
n=−nθ

n1
cyl∑
j=1

u1n,jX
1
j (r, z)e

inθ

u2(r, θ, z) =
nθ∑

n=−nθ

n2
cyl∑
j=1

u2n,jX
2
j (r, z)e

inθ

(7)

where nθ denotes the selected number of Fourier modes, Xs
j (r, z) denote the shape

functions associated with the chosen two-dimensional finite element discretization in
cs and usn,j denote the corresponding nodal values.

We enforce all the constraints pointwise with discrete Lagrange multipliers, assum-
ing the subdomains have matching discrete interfaces.
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This discretization leads to the following algebraic system
(K1

nθ
− k2M1

nθ
− ikM1

S,nθ
+ ikB1T

nθ
MbbB

1
nθ

)u1
nθ

+ B1T

nθ
λ + C1T

nθ
µ = F 1

nθ

(K2
nθ

− k2M2
nθ

− ikM2
S,nθ

− ikB2T

nθ
MbbB

2
nθ

)u2
nθ

+ B2T

nθ
λ + C2T

nθ
µ = F 2

nθ

B1
nθ

u1
nθ

+ B2
nθ

u2
nθ

= 0
C1

nθ
u1

nθ
+ C2

nθ
u2

nθ
= 0

(8)

Ks
nθ

, Ms
nθ

are the so-called stiffness and mass matrices for the substructure Cse,R.
Matrix Ms

S,nθ
is induced by the Sommerfeld radiation condition and is non-zero only

at the degrees of freedom lying on the outer boundary of the domain. Matrix Mbb

is an interface mass matrix introduced in the FETI-H method for local damping, in
order to avoid local resonance. The vectors us

nθ
and F s

nθ
are respectively the vectors

of Fourier coefficients of the solution and the load on substructure Cse,R, and λ is
the vector of Lagrange multipliers for enforcing the continuity at the interface of the
Fourier coefficients. The matrices Bs

nθ
depend on the shape functions Xs

j (r, z) and
on the discretization of the Lagrange multiplier field λ. With our assumptions, each
Bs

nθ
becomes a Boolean substructure connectivity matrix. µ is the vector of Lagrange

multipliers for enforcing pointwise the constraints on Γ. The matrices Cs
nθ

depend on
the discretization of us and of the Lagrange multiplier field µ. For each node k lying
on Γ ∩ cs and for which the second cylindrical coordinate in Cse,R is denoted by θk, a
constraint equation can be written as follows

n=nθ∑
n=−nθ

usn,ke
inθk = 0 (9)

The system of equations (8) has the pattern of the FETI-H equations with a
set of multipoint constraints (MPCs). Therefore, it is most efficiently solved by the
numerically scalable FETI-H solver [FML00] coupled with an appropriate treatment
of the MPCs [FLR98].

By gathering the Lagrange multipliers λ, µ together and also the matrices Bs
nθ

,
Cs

nθ
together, we can define an extended dual interface problem. We solve this dual

problem with the FETI-H solver, where at each iteration the MPCs are exactly satis-
fied and where the Krylov space for the search directions is enriched by the range of
a coarse matrix Q [FML00] based now on the Fourier coefficients of planar waves.

The generalization to an arbitrary number of subdomains is straightforward. One
needs only to follow the methodology defined in [FML00] for signing efficiently all the
interfaces of the subdomains.

Numerical experiments

We illustrate our embedding method with the resolution of the Helmholtz equation on
the exterior domain of an obstacle. The structure is composed of a large cylindrical
component and a conical tower of 45 degrees.
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The problem is formulated as follows


∆u+ k2u = 0 in Ωe,R

u = 1 on ∂Ω

∂u
∂n = 0 on SR



Diameter of the cylinder : a = 1
Length of the cylinder : L = 10
Wavenumber : kL = 10
Wavelength : λ = 2π
Mesh size : h = λ/25
Distance SR - obstacle : 0.5λ

(10)

For this computation, SR has a cylindrical shape.
We discretize the domain Ωe,R by 343,680 8-noded brick elements. We compute

a reference solution by performing a global finite element analysis with Q1 functions,
using the classical FETI-H method.

We compute a solution obtained by our methodology with 40 Fourier modes and
172 Lagrange multipliers for enforcing part of the boundary condition. The two-
dimensional mesh for computing the Fourier coefficients is made of 1,072 Q1 elements.

As shown on Fig. 2 and Fig. 3, the results obtained by the fictitious method are
in excellent agreement with those obtained by a global analysis method.

Figure 2: Isovalues of the reference solution

Figure 3: Isovalues of the solution with 40 modes
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In all the cases, we use the following convergence criterion

‖ K̃u − f ‖≤ 10−6 ‖ f ‖
where K̃ denotes the generalized stiffness matrix of the system to be solved, u denotes
either the nodal values of the 3D solution or the nodal values of the Fourier coefficients
of the solution and f the corresponding right-hand side.

The performance results of the FETI-H method applied to the solution of the
3D computation are reported on the table 1. These results are achieved for 200
subdomains on a single processor Origin 2000 computer. The size of the coarse grid
problem, on which the GCR solver iterates, is 1,577.

Number of Total CPU Total memory
iterations time cost

130 2,548 s 2,172 Mb

Table 1: Performance results for the 3D computation on a single processor Origin
2000

The performance results of the method with fictitious domain are reported on the
table 2, using 1, 3 and 5 subdomains for the axisymmetric component on a single
processor. Note that for the case of one subdomain, the constrained problem is solved
by a direct method.

Nb. of Size of Number of Total CPU Total memory
subd. pb. coarse iterations time cost
1 172 DIRECT 145 s 449 Mb
3 216 10 232 s 402 Mb
5 260 12 253 s 426 Mb

Table 2: Performance results for the fictitious methodology

As expected, the fictitious domain method is an order magnitude faster and less
memory intensive than the 3D domain decomposition based FETI-H method, because
this fictitious domain transforms a 3D problem into a series of 2D ones. We also note
that for the considered wavenumber k, the size of the 2D mesh is such that solving
the 2D Fourier problems by a direct method is faster than solving them by a domain
decomposition one. However, one can expect this trend to reverse for larger values of
ka.

Conclusion

In this paper, we have presented a fictitious domain decomposition method that allows
exploiting a potential partial axisymmetry of a given computational domain. This in
turn results in a dramatic reduction of the size of the system of equations to be
solved, without a loss of accuracy. Therefore, this fictitious domain decomposition
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method enables the solution of high frequency 3D acoustic scattering problems on
contemporary computational platforms.
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39. Numerical computation for some
competition-diffusion systems on a parallel
computer

R. Ikota1, M. Mimura2, T. Nakaki3

Introduction

In theoretical biology, spatial segregation of biological species has been investigated by
many scientists (see [DHMP99], [IMY98] and the references therein). Among several
models explaining such a phenomenon, we deal with the systems of competition-
diffusion type.

We consider n kinds of species Ui (1 ≤ i ≤ n). Let ui(x, t) be the population
density of the species Ui (1 ≤ i ≤ n) at time t > 0 and the position x ∈ Ω, where Ω is
a bounded domain in RN . Then our model can be described by

∂ui
∂t

= di∆ui + (ri −
n∑
j=1

aijuj)ui (i = 1, 2, . . . , n), x ∈ Ω, t > 0, (1)

where di is the diffusion rate, ri the intrinsic growth rate, aii the intraspecific compe-
tition rate, and aij (i �= j) the interspecific competition rate between Ui and Uj . We
assume that all these parameters are nonnegative and impose initial and Neumann
boundary conditions on (1):

ui(x, 0) = ui0(x) (i = 1, 2, . . . , n), x ∈ Ω, (2)
∂ui
∂ν

= 0 (i = 1, 2, . . . , n), x ∈ ∂Ω, t > 0, (3)

where ν is the unit outer normal to ∂Ω, and ui0 is a nonnegative function.
Specifically we are interested in the case where the competition is extremely strict.

In order to treat such situations we rewrite the equations (1) and obtain the following:

∂ui
∂t

= di∆ui + (ri − aiiui)ui − k

n∑
j = 1
j �= i

bijuiuj (i = 1, 2, . . . , n) x ∈ Ω, t > 0.

(4)

The parameter k represents the magnitude of interspecific competition. We study (4)
when k is very large. As k → ∞, we can observe in our numerical computations that
the region Ω is divided into each region Ωi which only a single species Ui occupies.
One of our interests is to analyze the behavior of interfaces between {Ωi}. If we use
typical numerical methods, we have some difficulties to track the interfaces. That is

1University of Tokyo, ikota@ms.u-tokyo.ac.jp
2Hiroshima University, mimura@math.sci.hiroshima-u.ac.jp
3Kyushu University, nakaki@math.kyushu-u.ac.jp
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because they appear in the limit case where k → ∞. In fact, for a fixed large value of
k, we can easily perform numerical computations to (4), however, we have no criterion
to determine the numerical interfaces by using numerical solutions to ui.

In this paper we propose a method to analyze (4) when k → ∞, by which we can
track the interfaces. Our method is described as follows:

A-Method

Step 1: For ui(·, t), solve the following PDE:

∂ūi
∂τ

= di∆ūi + (ri − aiiūi)ūi in Ω, 0 < τ < ∆t,

∂ūi
∂ν

= 0 on ∂Ω, 0 < τ < ∆t,

ūi(x, 0) = ui(x, t) in Ω,

where ∆t > 0 is a given constant (1 ≤ i ≤ n).

Step 2: Solve the following ODE until τ = ∞, that is, compute the equilibrium
points for 1 ≤ i ≤ n:

dǔi(x, τ)
dτ

= −
n∑

j = 1
j �= i

bijǔiǔj in Ω, 0 < τ < ∞,

ǔi(x, 0) = ūi(x,∆t) in Ω.

Step 3: Put ui(x, t+∆t) = ǔi(x,∞) (1 ≤ i ≤ n).

This method has the advantage that we can determine the interfaces naturally as
shown in Fig. 5 without complicated procedure even in the multi-component (n ≥ 2)
and multi-dimensional (N ≥ 2) cases.

The aim of this paper is as follows: We show the mathematical justification of
A-Method when n = 2 and d1 = d2 in the second section. The condition d1 = d2
is imposed by the mathematical reason. We also propose a parallel algorithm to
A-Method in the third section. We describe the algorithm and perform numerical
simulations for the typical case n = 3. When n �= 3, we can similarly treat the
problem.

Mathematical justification for the two-component case

Known Results

We consider the following two-component (that is, n = 2) system:

ut = d1∆u+ f(u)u− kuv in Q = Ω×R+, (5)
vt = d2∆v + g(v)v − αkuv in Q = Ω×R+, (6)

∂u

∂ν
= 0,

∂v

∂ν
= 0 on S = ∂Ω×R+, (7)

u(x, 0) = uk0(x), v(x, 0) = vk0 (x) for x ∈ Ω, (8)
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where f(u) = r1 − a11u and g(v) = r2 − a22v.
Let (u(k), v(k)) be a solution to (5)–(8) and put w(k) = u(k) − v(k)/α. If u(k)0 and

v
(k)
0 converge to u0 and v0 respectively, then by Proposition 2.1 in [DHMP99], w(k)

converges to a weak solution w of the following problem as k → ∞:

wt = ∇(d(w)∇w) + h(w) in Q, (9)
∂w

∂ν
= 0 on S, (10)

w(x, 0) = w0(x) ≡ u0(x)−
v0(x)
α

for x ∈ Ω, (11)

where

d(s) =
{

d1 if s > 0,
d2 if s < 0,

h(s) =
{

f(s)s if s > 0,
g(−αs)s if s < 0.

Under certain conditions, by putting u = [w]+ and v = α[w]−, we observe that the
above problem (9)–(11) is equivalent to the following problem (see [DHMP99]):

ut = d1∆u+ f(u)u in Qint, (12)
vt = d2∆v + g(v)v in Qext, (13)

u = 0 and v = 0 on Γ, (14)

d1
∂u

∂n
= −d2

α

∂v

∂n
on Γ, (15)

∂v

∂n
= 0 on ∂Ω× (0, T ], (16)

u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω, (17)

where

Qint = {(x, t) ∈ R× (0, T ]; u(x, t) > 0 and v(x, t) = 0} ,

Qext = {(x, t) ∈ R× (0, T ]; u(x, t) = 0 and v(x, t) > 0} .

Definition of the Approximation and Results

In this subsection, we show a mathematical justification that A-Method gives an
approximation to our problem. In Step 1 of A-Method we solve the following systems:

(Pu)


ut = d1∆u+ f(u)u in Q,
∂u
∂ν = 0 on S,
u(x, 0) = u0(x) ∈ C(Ω̄) for x ∈ Ω,
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(Pv)


vt = d2∆v + g(v)v in Q,
∂v
∂ν = 0 on S,
v(x, 0) = v0(x) ∈ C(Ω̄) for x ∈ Ω.

We denote the solutions to (Pu) and (Pv) by Hu(t)u0 and Hv(t)v0, respectively.
In Step 2, we solve the following ordinary differential equations:

du

dt
= −uv,

dv

dt
= −αuv,

u(0) = u0, v(0) = v0.

Recalling

d

dt
(u− v

α
) = 0,

then we obtain

lim
t→∞

(u(t), v(t)) = ([u0 −
v0
α
]+, α[u0 −

v0
α
]−). (18)

Let us define an operator K(t) parameterized with non-negative number t by

K(t)z0 ≡ Hu(t)[z0]+ − 1
α
Hv(t)(α[z0]−). (19)

Then we can describe the approximated solution constructed by A-Method as

K(T/n)nw0. (20)

If d1 = d2, under certain conditions imposed on w0 we have proven

‖K(T/n)nw0 − w(T )‖L2(Ω) ≤ C1(T/n)1/2,
‖K(T/n)nw0 − w(T )‖L1(Ω) ≤ C2(T/n).

These inequalities implies that the numerical solutions of A-Method converges as ∆t →
0. Unfortunately at present we can not prove the convergence when d1 �= d2. However
our numerical computations suggest that the solution also converges.

Parallel computations for the three-component case

Algorithm

Our algorithm here is shown when n = 3. For n �= 3, it is quite easy to extend
our algorithm. We describe our algorithm for a computer with three CPUs which
are called CPU1, CPU2 and CPU3. To CPUi we assign three arrays, say Arrayi-u,
Arrayi-v and Arrayi-w (i = 1, 2, 3).

The first step (Fig. 1): First of all, we put the data u, v and w into Array1-u,
Array2-v and Array3-w, respectively
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The second step (Fig. 1): Then we solve

ut = d1∆u+ (r1 − a11u)u on Array1-u using CPU1,
vt = d2∆v + (r2 − a22v)v on Array2-v using CPU2,
wt = d3∆w + (r3 − a33w)w on Array3-w using CPU3.

The third step (Fig. 2): We copy Array1-u into Array2-u and Array3-u, Array2-v
into Array1-v and Array3-v, Array3-w into Array1-w and Array2-w.

The fourth step (Fig. 3): We compute the ODE system. We separate the region
into three parts. We assign each part to CPUi (i = 1, 2, 3) respectively.

The fifth step (Fig. 4): Gather data u into Array1-u, v into Array2-v and w into
Array2-w.

We note that the second and fourth steps stated above correspond to Steps 1 and 2
of A-Method, respectively.

Numerical experiments

Let us demonstrate our numerical simulations when the region Ω is the two dimen-
sional interval (0, 1)2. We use the workstation Sun Enterprise 450 (4 CPUs, Total
memory 2GB). The programs are written in Sun Fortran 77 (Option: -fast -O5) and
MPI [GLS94].

Numerical parameters we use are 256×256 space mesh and ∆t = 0.001. Compu-
tations are halted if one of three species u, v or w becomes extinct.

We obtain the following table which shows the CPU times of the single and parallel
computations. We have used 3 CPUs and obtained about 2.3 times speed-up. In our
experience, the parallel performance goes up when the nodal points near the interfaces
are assigned equally to each CPU.

CPU times

case Single Parallel ratio
a 769sec. 328sec. 2.34
b 2544sec. 1104sec. 2.30
c 2562sec. 1112sec. 2.30
d 2951sec. 1242sec. 2.38
e 3967sec. 1742sec. 2.28

On this table, we remark the following:

• Single in the table means the computation using a usual code without MPI.

• Parallel means that the computation by our algorithm with 3 CPUs.

• We vary the initial function and parameters {ri} and {aij} in cases (a)–(e).
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Array1-u

Array1-v

Array1-w

CPU1

Array2-u

Array2-v

Array2-w

CPU2

Array3-u

Array3-v

Array3-w

CPU3

Figure 1: The first and second steps. The data u, v and w are stored in Array1-u,
Array2-v and Array3-w, respectively. Then solve the PDE on each CPUs.
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Array1-w

CPU1
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Array2-w

CPU2
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Array3-v

Array3-w
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Figure 2: The third step. Message passing between CPUs.
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Array1-w

CPU1

Array2-u

Array2-v

Array2-w

CPU2

Array3-u

Array3-v

Array3-w

CPU3

Figure 3: The fourth step. Solve the ODE on each CPUs.
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Array1-w

CPU1

Array2-u
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Array2-w

CPU2

Array3-u

Array3-v

Array3-w

CPU3

Figure 4: The fifth step. Gather the data.
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Figure 5: Numerical solutions by the present method for the three-component case in
two dimensional space (0, 1)2. The solutions are drawn at t = 0 (left), t = 0.5 (center)
and t = 1 (right). We can clearly observe the interfaces between regions {Ωi}.

Concluding remarks

A problem in mathematical biology is considered. The method, which we propose
in this paper, has the advantages that we can determine the interfaces naturally and
clearly as shown in Fig. 5 and that an implementation to the parallel computer can
be easily done. We obtained 2.3 times speed-up by using 3 CPUs.

For the two-component case, we justified the method rigorously when d1 = d2. We
can expect that the condition d1 = d2 is not essential.
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Introduction

The main purpose of this paper is to investigate some typical problems of wave motion
in unbounded region which are related to radiation or scattering phenomena. The
Helmholtz equation is one of the most important mathematical models which is used
to describe the time harmonic behavior of various vibration and wave propagation
phenomena.

The motivation of research is to understand main characteristics of wave propa-
gation phenomena in obstacle scattering and/or wave radiation process through its
numerical computation based on its mathematical analysis.

The importance of the wave propagation resides in the fact that it transmits infor-
mation and transports energy. Some examples of research fields related to the wave
propagation include acoustics, elasticity, electromagnetism with various applications
such as sound emission from a speaker, human speech production, sound production
of musical instruments, noise reduction, diagnostics or detection by ultrasonic wave,
propagation of waves in optical fiber scope, heating by wave for various kinds of ma-
terials and others. Some of the characteristic quantities to be calculated in these
problems include scattering amplitudes, transmission and reflection coefficients and
resonance frequencies.

To investigate numerically the wave propagation phenomena in unbounded region
using computers, we have to approximate the original problem which is formulated
in some infinite dimensional function space by the one in an appropriate finite di-
mensional linear space. For this purpose, we first use the knowledge of the analytical
properties of the solution to the original problem such as the radiation condition at
infinity and/or the expression of the solution by a series of special functions or by
an integral involving Green’s function. We then reduce the problem into the bound-
ary value problem in a bounded region with some truncation error for its solution
and apply a finite element discretization method to get the linear equation in a finite
dimensional approximation space.

Especially, we will show the effectiveness of the radiation condition at infinity
which describes the asymptotic behavior of the solution and singles out the physical
solution. We then use the domain decomposition method which divides the original
problem in an unbounded region into the problem in a bounded region and the one in
an outer region with simple shape.

1Department of Computer Science, The University of Electro-Communications, Chofu, Tokyo
182-8585, JAPAN. email: kako@im.uec.ac.jp
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More specifically, we treat the following three types of problems in different shapes
of spatial regions.

The first one is a two-dimensional obstacle scattering problem, where we introduce
a (higher order) radiation condition and the corresponding artificial boundary condi-
tion on the circular boundary of a truncated bounded disk region. The outer region
is then the complement of the disk.

The second one is a two-dimensional half space problem where we consider a two
component elastic wave propagation. There is a difficulty in this problem that the
analytical asymptotic behavior at infinity is much more complicated than that in the
scalar case due to the existence of the Rayleigh wave which propagates along the
surface on the half space.

The third one is a two-dimensional wave-guide problem where we use the exact
boundary condition given by the Diriclet to Neumann map on the boundary between
a bounded region and an outer unbounded region which is cylindrical with a bounded
cross section. We also consider a one-dimensional problem related to this original
two-dimensional problem.

We will show some numerical examples in each case. In particular, in the second
case, we discuss the relationship between 2D and 1D cases and show some numerical
examples which indicate the efficiency of the 1D model as the good approximation of
the 2D problem in the sense that it gives similar frequency response curves.

Mathematical Formulation

The main mathematical framework of the study consists of the scattering theory based
on the perturbation theory for linear operators and the finite element method for
partial differential equations.

The first difficulty in studying the radiation or scattering problem comes from
the unboundedness of the region where we consider the partial differential equation
and we have to choose an appropriate function space. The second problem we have
to treat appropriately is the indefiniteness of the bilinear form which appears in the
weak formulation used for the finite element method in the artificial bounded region
and we have to consider the problem with non-real variables as well.

In this paper, we restrict our study to the two-dimensional case although the
real physical phenomena occur in three-dimensional space. However, at least the
theoretical part of our study can be extended to the three-dimensional case without
any essential difficulty. The main problem we may have to solve is the practical
computational complexity due to the large number of unknowns in 3D case and the
shortage of memory and speed of the present computers together with the human
resources in programming.
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Two-dimensional wave propagation problem

The wave propagation phenomena in two-dimensional space R2 can be described by
the following mathematical model of the wave equation in Ω ⊂ R2:

(
∂2

∂t2
−∆)u(t, x, y) = f(t, x, y) in (−∞,∞)× Ω, ∆ =

∂2

∂x2
+

∂2

∂y2
, (1)

(α
∂

∂n
+ β)u(t, x, y) = g(t, x, y) on (−∞,∞)× ∂Ω, (2)

where ∂
∂n denotes the outward normal derivative on the boundary ∂Ω of Ω.

In the following, we consider a stationary time harmonic solution of the problem:
u(t, x, y) = eiωtu(x, y) for inhomogeneous data: f(t, x, y) = eiωtf(x, y) and g(t, x, y) =
eiωtg(x, y) from which we can calculate almost every important quantity. Then u
satisfies the Helmholtz equation:

(−∆− ω2)u(x, y) = f(x, y) in Ω, (3)

(α
∂

∂n
+ β)u(x, y) = g(x, y) on ∂Ω (4)

with some radiation condition at infinity ( r = (x2+y2)1/2 → +∞). For the existence
and uniqueness of this problem, see [Wil75] or [ST70].

We assume that the boundary ∂Ω consists of two mutually distinct parts: ∂Ω =
ΓH ∪ ΓS where g = gS on the source boundary ΓS and g = 0 on the homogeneous
boundary ΓH . The existence and uniqueness of the solution to this radiation or
scattering problem can be proved by the limiting absorption principle which claims
that the physical solution is the limit of the solution for the problem with positive
absorption when the absorption tends to zero. In case that we know Green’s function
of the corresponding free space problem which satisfies the radiation condition at
infinity, we can construct the solution solving the integral equation on the boundary.

Reduction to a problem in a bounded region

We introduce an artificial boundary in Ω which includes the source boundary ΓS and
we assume that the shape of the outside the boundary is simple. For example, it is
the outside of a disk or a cylindrical region. The, using the knowledge of the solution
outside the boundary we impose the boundary condition on the artificial boundary
which may the Diriclet to Neumann (DtN in short) map or its approximation. We
sometimes call it a radiation boundary condition (or artificial boundary condition).

The artificial boundary condition on the artificial boundary was introduced by B.
Engquist - A. Majda [EM77], C. Goldstein [Gol81], T.Kako [Kak81], G.A. Kriegsman
- C.S. Morawetz [KM80] and others. M. Masmoudi [Mas87] used the DtN map and
there are several researches to this direction ( see a book by D. Givoli [Giv92].

In the followings, we show more concretely three cases where we introduce different
artificial boundary conditions for respective problems.

Radiation boundary conditions in obstacle scattering

In this section, using the analytic expression of solutions, we introduce a higher order
radiation condition. We assume that Ωc has a non-empty interior and includes the
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origin: 0 ∈ Ωc. Choosing a number R0 with the property: Ωc⊂BR0≡{x
∣∣ |x|≤R0} and

a smooth function χR0(x) such that

χR0(x) =
{

1 (|x|≤R0)
0 (|x|≥R0 + 1), (5)

we define a function f ≡ (−∆−k2)(1−χR0(x))u(x). The zeroth order Hankel function
of the first kind, i4H

(1)
0 (k|x − x′|) is Green’s function of (Ht). Hence the solution of

(Ht) has the expression:

v(x) =
∫
BR0+1\BR0

i

4
H

(1)
0 (k|x− x′|)f(x′)dx′. (6)

Using the asymptotic expansion formula for the Hankel function, putting B(0) ≡ 1
and defining the operators L(p) and B(p), p = 1, 2, ..., as L(p) ≡ 1

2ikp{Λθ+p(p−1)+ 1
4}

and B(p) ≡ L(p)L(p−1)...L(1), we have the following expression of the solution u(r, θ)
an asymptotic expansion as r tends to infinity:

u(r, θ) =
1√
r
eikr(

N∑
p=0

B(p)
rp

)a0(θ) +O(r−N−1−1/2), (7)

and we also have the asymptotic expansion:

∂u

∂r
= iku− 1

2r
u+

1√
r
eikr(

N∑
p=1

−p

rp+1
B(p))a0(θ) +O(r−N−2−1/2). (8)

In particular, we have, for N = 1,

u(r, θ) =
1√
r
eikr(1 +

1
r
B(1))a0(θ) +O(r−2−1/2) (9)

and

∂u

∂r
− iku+

1
2r

u+
1√
r
eikr

1
r2

B(1)a0(θ) = O(r−3−1/2). (10)

We define an operator Tr ≡ 1
rB(1)(1 + 1

rB(1))−1. Since B(1) is skew-selfadjoint, the
operator Tr is bounded in L2(S1) with norm ||Tr||L2(S1) ≤ 1. Using this operator and
eliminating a0(θ) from the equations (9) and (10), we have the following theorem:

Theorem 2.1( [LK98a]) There exists one and only one solution of the Helmholtz
equation (1) and (2) which satisfies the followings:

−∆u(x)− k2u(x) = 0 in Ωc,
u(x) = −ϕ0 on ∂Ω,

||∂u∂r − iku+ 1
2ru+ 1

rTru||L2(S1) = O(r−7/2), r → ∞.
(11)

The equation (1) is considered in an unbounded region, which causes some difficulty
to find approximate numerical solutions. To resolve this problem, we introduce a
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sequence of problems in bounded region. Put R E 1, and let uR be the solution of
the boundary value problem:

−∆uR − k2uR = 0 in ΩcR ≡ Ωc ∩BR,
uR = −ϕ0 on ∂Ω,

∂uR
∂r − ikuR + 1

2RuR + 1
RTRuR = 0 on SR = ∂BR.

(12)

If we introduce the operators HR and QR as HRu = −∆u with D(HR) ≡ {u| u ∈
H2(ΩcR), u|∂Ω = 0 and ∂u

∂r |SR = 0 on SR} and QRu = ( 2RTR+ 1
r−2ik)∂u∂r −{( 1RTR)2+

1
4r2 − 2ik 1

RTR}u − u with D(QR) = D(HR), the equation (1) becomes an operator
equation:

(HR + 1)wR +QRwR = fR. (13)

We have the following theoretical result for the unique existence of the solution:

Theorem 2.2( [LK98a]) The equation (13) has a unique solution in L2(ΩcR) which
is given as

wR = (HR + 1)−1(1 +QR(HR + 1)−1)−1fR. (14)

The proof of this theorem is given by using Rellich’s compactness theorem and the
Fredholm alternative theorem. We can estimate the difference eR ≡ u−uR as follows:

Theorem 2.3( [LK98a]) When R E 1, for a fixed R0, the following estimates hold
with some constant C which is independent of R:∫

SR

|eR|2dSR ≤ CR−6 and sup
x∈BR0

|eR(x)| ≤ CR−3. (15)

Radiation boundary condition for seismic wave

In the case of the elastic wave in half space which describes the seismic wave, we have to
treat correctly the Rayleigh wave which propagate along the boundary surface. As far
as we know, the asymptotic behavior of wave motion at infinity is not well investigated.
This makes it difficult to introduce the reasonable artificial boundary and the boundary
condition on it. In [YT97] , T. Yamashita and the present author proposed the artificial
boundary condition on the half circle and the radiation boundary condition which is
the linear combination of those for bulk P and S waves and that for the Rayleigh
wave.

The basic time harmonic governing equation is written as

ρω2u = (λ+ 2µ) grad div u− µ rot rot u in Ω\S, (16)
u = f(x) in S, (17)

σ(u) = 0 on ΓF , (18)



386 KAKO, KANO, LIU, YAMASHITA

where ΓF is a boundary surface and we imposed the free traction condition with
surface traction force σ(u).

We need, in this time independent case, some asymptotic condition at infinity.
Using this condition, we might get the artificial boundary condition on the artifi-
cial boundary which we take the half circle with radius R. The heuristic radiation
boundary condition which we impose on this half circle is given as

Du = 0 on ΓR, (19)

Du ≡ iρω

(
n1 n2
n2 −n1

)(
VRP (x) 0

0 VRS(x

)(
n1 n2
n2 −n1

)
u+ σ(u),

where

VRP (x) ≡ VP − (VP − VR) exp
(
−ωx2(1− V 2

R/V
2
P )

1/2/VR

)
,

VRS(x) ≡ VS − (VS − VR) exp
(
−ωx2(1− V 2

R/V
2
S )

1/2/VR

)
.

where VP , VS and VR are the wave speeds of the primary, the secondary and the
Rayleigh waves respectively. The main idea of this condition is to mix up the trans-
parent conditions for respective waves in case of a plain wave with the ratio of the
amplitude of the Rayleigh wave which decreases exponentially to the perpendicular
direction to the free surface. The theoretical as well as numerical analysis for this
approximation method is a future work.

Dirichlet to Neumann map in 2D wave-guide

In the case of 2D wave-guide problem with a cylindrical unbounded semi-infinite chan-
nel, the radiation condition in the cylindrical is written as:

∂p

∂n
(=

∂p

∂x
) = Λp onΓR, (20)

where ΓR is an artificial boundary which is a cross section of the cylindrical region
and Λ is the Dirichlet to Neumann map in the outer cylindrical region given as

Λp =
∞∑
n=0

γnCn(p) cos(
nπ

L
y) (21)

with

Cn(p) =


1
L

∫ L

0

p(x, y)dy (n = 0)

2
L

∫ L

0

p(x, y) cos(
nπ

L
y)dy (n ≥ 1),

(22)

γn

{
iζn, ζn = {ω2 − (nπL )2}1/2, 0 < nπ

L < ω

−ηn, ηn = {(nπL )2 − ω2}1/2, ω ≤ nπ
L .

(23)
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Then the Helmholtz equation in the inner domain Ωi is given as:

(−ω2 −∆)p = 0 in Ωi, (24)
∂p

∂n
= 0 on ΓH ,

∂p

∂n
= gS on ΓS ,

∂p

∂n
= Λp on ΓR.

Related to this 2D wave-guide problem, we can consider the corresponding 1D Web-
ster’s horn equation given as:

−∂v

∂t

A(x)
ρ

∂p

∂x
, −∂p

∂t

ρc2

A(x)
∂v

∂x
, (25)

where p is the pressure and v is the velocity, and A(x) denotes the area of the cross
section. Eliminating v, we have the 1D approximation model called Webster’s horn
equation:

∂2p

∂t2
− 1

A(x)
c2

∂

∂x
(A(x)

∂p

∂x
) = 0. (26)

Week Formulation and Discretization

In this paper, we use the finite element method to dicretize the problem in the arti-
ficially truncated region with an artificial boundary condition. We start with a weak
formulation of the problem in an appropriate closed subspace V of the Sobolev space
H1(Ωi) defined through the boundary condition and then restrict the problem into
a finite dimensional subspace of V which is a set of all piece-wise linear continuous
functions in V with respect to a regular triangulation of Ωi. We note that we have to
introduce an appropriate approximation of the boundary integral which corresponds
to the non-local boundary condition such as the higher order radiation boundary con-
dition or the Dirichlet to Neumann map. In the following, we show the case of the 2D
wave-guide problem in some detail.

Application to 2D wave-guide problem

The weak formulation for the Helmholtz problem (3) and (4) with the artificial bound-
ary condition is given as:

Find p ∈ V ⊂ H1(Ω) :

a(p, q) = (f, q)(= a0(g, q)) ∀q ∈ V

where, together with its approximation aN (·, ·),

a(p, q) = a0(p, q) + b1(p, q) + b2(p, q),
aN(p, q) = a0(p, q) + b1(p, q) + bN2 (p, q)
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with

a0(p, q) =
∫
Ω

∇p · ∇q + pqdxdy,

b1(p, q) = −(ω2 + 1)
∫
Ω

pqdxdy,

b2(p, q) = −(Λp(xR, ·), q(xR, ·)) = b2,i(p, q) + b∞2,r(p, q),

b2,i(p, q) = −iωLC0(p)C0(q)− i
∑

0<nπ
L <ω

ζn(
L

2
)Cn(p)Cn(q),

b∞2,r(p, q) =
∑
ω≤nπ

L

ηn(
L

2
)Cn(p)Cn(q),

where ζn and ηn are all nonnegative constants in (23), and

bN2 (p, q) = −(ΛNp(xR, ·), q(xR, ·)) = b2,i(p, q) + bN2,r(p, q),

bN2,r(p, q) =
∑

L
πω≤n≤N

ηn(
L

2
)Cn(p)Cn(q).

Now the finite element method is formulated as:

Find ph ∈ Vh ⊂ H1(Ω) :

a(ph, qh) = (f, qh)(= a0(g, qh)) ∀qh ∈ Vh.

Error Analysis

We develop the error analysis for the finite element discretization for the Helmholtz
equation with the DtN boundary condition. We give rather abstract results which
is essentially known but in an operator theoretical formulation. In application to 2D
wave-guide problem, we use the result of Mikhlin (see [Mik64] ) and the results of
compact perturbation theory as well as the uniqueness of the analytic solution.

Abstract results for error analysis of finite element method

We consider the following four problems:

1: (E)w: Find u ∈ V such that

a(u, v) = (f, v) for all v ∈ V .

2: (Eh)w: Find uh ∈ Vh such that

a(uh, vh) = (f, vh) for all vh ∈ Vh.

3: (EN)w: Find uN ∈ V such that

aN (uN , v) = (f, v) for all v ∈ V .
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4: (EN
h )w: Find uNh ∈ Vh such that

aN (uNh , vh) = (f, vh) for all vh ∈ Vh.

Then, we have the above four equations are equivalent to the following operator equa-
tions respectively:

1. (E)op : Au = f.

2. (Eh)op : Ahuh = fh with Ah = PhA, fh = Phf.

3. (EN)op : ANuN = f.

4. (EN
h )op : ANh uNh = fh with ANh = PhA

N , fh = Phf.

By Riesz’s representation theorem, two operators A and AN are defined as:

a(u, v) = (Au, v) and aN (u, v) = (ANu, v) for all v ∈ V .

Using the relations Au = ANuN = f and

PhAuh = Ahuh = fh = ANh uNh = Phf = PhAu = PhA
NuN ,

we can transform the expression of the error u− uNh as follows:

u− uNh = u− vh + vh − uNh

= u− vh + (ANh )
−1ANh vh − uNh

= u− vh + (ANh )
−1ANh vh − (ANh )

−1fh

= u− vh + (ANh )
−1ANh vh − (ANh )

−1Phf

= u− vh + (ANh )
−1ANh vh − (ANh )

−1PhAu

= u− vh + (ANh )
−1{ANh vh − PhAu}

= u− vh + (ANh )
−1{PhANvh − PhAu}

= u− vh + (ANh )
−1{PhAN (vh − u) + PhA

Nu− PhAu}
= {I − (ANh )

−1PhA
N )}(u− vh) + (ANh )

−1Ph(AN −A)u.

Hence we can estimate the above difference as:

‖u− uNh ‖ ≤ (I + ‖(ANh )−1‖‖AN‖) inf
vh∈Vh

‖u− vh‖+ ‖(ANh )−1‖‖(AN −A)u‖.

Therefore, our next task is to prove the followings:

1. The uniform boundedness of ‖(ANh )−1‖: ‖(ANh )−1‖ ≤ M < +∞ with respect to
h and N .

2. The truncation error estimate: ‖(AN − A)u‖ ≤ C
Nα ‖u‖W under the regularity

condition for u: u ∈ W ⊂ V .

Actually, we have proved these conditions for the obstacle scattering case in [LK98a].
In the next section, we treat the case of wave-guide.
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Application to the wave-guide problem

We can apply the abstract error estimation based on the following observations:

1. The sesquilinear form b∞2,r(p, q) is bounded and nonnegative in V . Hence a0,DN (p, q) ≡
a0(p, q) + b∞2,r(p, q) is an inner product in V

2. The form b1(p, q) + b2,i(p, q) is compact with respect to a0,DN(p, q) in V .

3. We can then apply the results by Mikhlin [Mik64] (see also Kako [Kak81]) and
we can prove the convergence of the finite element method under some additional
condition on the non-existence of a positive eigenvalue.

4. The difference between a(p, q) and aN(p, q) is written as:

a(p, q)− aN (p, q) =
∑
N<n

ηn(
L

2
)Cn(p)Cn(q) = ({Λ− ΛN}p, q).

and ‖{Λ − ΛN}p‖L2(0,L) tends to zero exponentially with respect to N or es-
timated from above by C

Nα ‖u‖W with any α and a corresponding higher order
Sobolev space W .

Some Numerical Examples

In this section, we show some numerical examples calculated by using the methods
introduced in the previous sections.

Obstacle scattering (by X.-J. Liu)

Fig.1 shows a typical wave profile computed by the method introduced in [XJK96],
[LK98a] and [LK98b].

Figure 1: Wave profile of 2D obstacle scattering
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Seismic wave in 2D foundation (by T. Yamashita)

We show two numerical results in Fig.2 where a single source
is placed inside the foundation [YT97]). The left figure is the case of the artificial

boundary with radius R = 1 and the right one is the case with R = 1, 25. There is a
good coincidence between these two results and the Rayleigh wave is well captured.
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Figure 2: Stationary 2D elastic wave propagation

Voice generation problem (by T. Kano)

Lastly, we show an numerical example of 2D wave propagation in the vocal
tract open to an infinite cylinder. The Fig.3 shows a wave profile with a time

frequency 7.5 kHz. The source is placed on the left edge and the right side is a radiation
boundary. The figure on the right shows a frequency response curve measured at the
mid point on the radiation boundary. We can see that, as the shape of the vocal tract
becomes flatter, the response curve approaches nearer to the one of 1D model.
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Figure 3: Comparison between 1D and 2D frequency response curves

Concluding Remarks

We have developed a methodology to calculate problems in several unbounded re-
gions by use of the DtN mapping or its approximations. Error analysis is given as an
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extension of the standard method. Application to problems having resonance phenom-
ena is presented and some typical phenomena have been captured in these numerical
experiments. Applications to more realistic industrial problems are future subject.
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41. Application of the Domain Decomposition
Method to the Flow around the Savonius Rotor

Testuya Kawamura1, Tsutomu Hayashi2, Kazuko Miyashita3

Introduction

In this study, we focus on the Savonius Rotor and try to compute the flow field under
its operation and make clear the running performance by means of the numerical
simulation. Our final objective is to simulate the flow field around the whole rotor
and estimate the effect of the sidewall or the other rotor. Incompressible Navier-Stokes
equations are solved in a few regions separately where the fixed coordinate and the
rotating coordinate are used respectively. We employ domain decomposition method
in order to connect these regions with adequate accuracy. The basic equations in each
region are solved by using standard MACmethod[HW65]. The physical quantities such
as the velocity and the pressure in each region are transferred through the overlapping
region, which is common in each domain. Reasonable results are obtained in the
present calculations.

Recently, the wind force is widely recognized as the environmentally friendly energy
and attracts public attention. The wind power plant using windmills is the typical
example. In order to make an effective windmill, it is very important to analyze the
flow field around a windmill. In this case, numerical simulation becomes a promising
method. The most important part of the investigation is to analyze the flow field
near the rotating rotor of the windmill. On the other hand, it is also very important
to investigate the interaction among the windmills if they are placed without long
distance.

For the numerical simulation of rotating body, it is convenient to use the rotating
coordinate system, which rotates with the same speed. However, if there is another
body which is not rotating or if there are many rotors which rotate at different position
and with different speed, it is very difficult to choose one special rotating coordinate
system. In these situations, it is natural to use many coordinate systems separately,
which are suitable for the flow simulation around each rotor and connect these co-
ordinates adequately. We focus on these points and simulate the flow fields around
a windmill by using domain decomposition method in which the whole computation
region is divided into several domains and they are connected adequately.

The Savonius rotor[Sav31] is chosen for the simulation since in this case the ro-
tating bluff body generates the complex flow field with large separation and it is very
interesting to investigate such flow from the fluid dynamical point of view. Figure 1
is the schematic figure of the Savonius rotor. The features of this windmill are easy
to make, independent of the direction of the wind, low speed and high torque. The
Savonius rotor is usually used as the pump.

1Ochanomizu University, kawamura@ns.is.ocha.ac.jp
2Tottori University, hayashi@damp.tottori-u.ac.jp
3Ochanomizu University, miya@ns.is.ocha.ac.jp
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Figure 1: Savonius rotor

There are several experimental and numerical works concerning with Savonius rotor
[RESF78] [Oga83] [IST94]. Among them, Ishimatsu et al.[IST94] calculated the flow
around a Savonius rotor. Their objective is to compute running performance of one
windmill. Therefore, they ignore the effect of the sidewall, ground and other windmills.
Their numerical method is based on the finite volume method with unstructured
grids. As is discussed above, one of the important objectives of the present study is to
investigate the effect of the obstacles. Therefore, we employ the domain decomposition
method in this study.

Numerical Method

Since the rotational frequency is low enough, the flow around the Savonius rotor is
assumed as incompressible. The basic equations are

∇v = 0

∂v
∂t

+ (v · ∇v) = −∇p+
1
Re

∇2v

where Re is the Reynolds number. We use both Cartesian coordinate system (x,y) and

R: radius of rotation
D: bucket diameter
ω: angular velocity
θ: attack angle

Figure 2: Savonius Rotors without walls & obstacle

the rotating coordinate system (X,Y) which rotates around vertical axis with constant
angular velocity ω. If we use the symbols indicated in Figure 2, the relation between
two coordinate systems is

X = x cos θ − y sin θ,
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Y = x sin θ + y cos θ,

where θ is the angle between two coordinate systems. The basic equations are ex-
pressed in the rotating coordinate system as

∂U

∂X
+

∂V

∂Y
= 0

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
− ω2X + 2ωV = − ∂P

∂X
+

1
Re

(
∂2U

∂X2
+

∂2U

∂Y 2

)
∂V

∂t
+ U

∂V

∂X
+ V

∂V

∂Y
− ω2Y − 2ωU = −∂P

∂Y
+

1
Re

(
∂2V

∂X2
+

∂2V

∂Y 2

)
where (U,V) are the velocity components in (X,Y) direction while (u,v) are those in
the fixed Cartesian coordinate system. These velocity components are connected to
each other through the following relations:

U = u cos θ − v sin θ − ωY,

V = u sin θ + v cos θ + ωX.

We use two computational domains. One domain(region1) includes the rotating rotor
and another(region2) includes the fixed walls. Since the shape of the Savonius rotor is
semicircular, it is convenient to use a semicircular region. The region including rotors
consists of two semicircular regions whose centers are located at different positions.
These two regions are connected by one line which passes two centers as is shown in
Figure 3. Clearly, it is convenient to use the grid system based on the cylindrical co-
ordinate. Another domain(region2) is rectangular and includes the fixed walls(Figure
4). The Cartesian coordinate system is used and the non-uniform rectangular grid is

Figure 3: Inner region(region1).
The bold lines indicate two blades

Figure 4: Outer region(region2).
The bold lines indicate the sidewalls

employed in this region. The grid points do not coincide with each other in both x(X)
and y(Y) direction. The computations in the two domains, which have the overlapping
region are performed alternatively at every time step. Figure 5 indicates the whole
computational region. The physical quantities (velocity and pressure) are exchanged
through the common overlapping region as is shown in Figure 6. When we compute
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Figure 5: Whole computational region

Figure 6: Domain decomposition by the overlapping region

the flow field of region1, the boundary conditions are required on each boundary. If
the boundary locates outside of the region, the boundary conditions are determined
by the usual way, i.e. free stream condition or something like this. If the boundary
locates inside of the region2, the boundary values can be obtained from the computa-
tional results of the region2. In this case, some interpolations are required since the
grid systems in both regions are different. In this study, the interpolation shown in
Figure 7 is used. Since this formula requires only the distance from the four corners

fP =
1
R

(
1
rQ

fQ +
1
rR

fR +
1
rS

fS +
1
rT

fT

)

where R =
1
rQ

+
1
rR

+
1
rS

+
1
rT

Figure 7: Interpolation in the overlapping region

in one grid cell, it can be used even if the grid cell is highly deformed.
Similar technique is used for determining the boundary conditions of region2 from

the computational results of region1. In region1, two regions of semicircular shape are
connected through one line without overlapping region. The boundary conditions on
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this line are given by the average value of the nearest grid points in each region(Figure
8) as follows: The numerical method to solve incompressible Navier-Stokes equation

fP = (fQ + (1− r)fR + rfS)/2.

Figure 8: Interpolation along the line

is the standard MAC method. All the spatial derivatives except the nonlinear term
of the Navier-Stokes equation is approximated by the second order central difference.
Nonlinear terms are approximated by the third order upwind scheme[KK84] due to
the numerical stability. Euler explicit scheme is employed for the time integration.

Result

Typical results obtained by the present study are shown here. The dimensionless
gap width(=S/D, see Figure 2) is chosen to 0.15 and tip speed ratio λ(= Rω/u∞) is
changed from 0.25 to 1.25. Figure 9 indicates the initial position of the rotor. In this

Figure 9: Initial position of the rotor

case, the rotational angle θ is defined as zero and the rotor begins to rotate clockwise
from this position. Figure 10 is an example of the instantaneous velocity vectors.
Both the vectors in the inner region and the outer region are plotted in the same
figure. The vectors vary continuously from the inner region to the outer region, which
indicates the interpolation works well in this calculation. Figure 11 is time history of
the torque coefficient. The torque coefficient Cr(= T/qRA where T is the torque, q
is the dynamic pressure, R is the radius of the rotor, and A is the projection area).
The tip speed ratio is 0.25 and no walls exist. Clearly, it has a period of 180 degree.
The torque becomes maximum and minimum around 30 and 150 degree respectively
and becomes zero around 120 and 180 degree. Figure 12 is also time history of the
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Figure 10: An example of the instantaneous velocity fields in the whole region

torque coefficient but the tip speed ratio is 0.5 and 0.75. As tip speed ratio becomes
large, the negative part of the curve becomes large indicating the total torque becomes
small. Figure 13 is the result of the calculation with walls. It corresponds to Figure
11 and Figure 12. Although the shape of each curve is similar, the absolute value
becomes large for the latter case. Figure 14 is the time-averaged torque coefficient

Figure 11: Time history of the torque coefficient without walls(Tip speed ratio is 0.25)

for various tip speed ratio λ. Both the results of the calculations with and without
walls are indicated in the same figure. Torque coefficients decrease nearly linear as the
tip speed ratio increases and become negative around 0.8. They become almost twice
when the walls exist. Figure 15 is the time-averaged power coefficients Cp(= λCr)
for various tip speed ratio. Both the results with and without walls are shown. The
power coefficient has its maximum value around λ = 0.5 and λ = 0.4 for the case with
and without walls respectively. The maximum value is almost twice for the case with
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Figure 12: Time history of the torque coefficient without walls(Tip speed ratio is 0.5
and 0.75)

Figure 13: Time history of the torque coefficient with walls(Tip speed ratio is 0.25,
0.5 and 0.75)

Figure 14: Time-averaged torque coeffi-
cient for various tip speed ratios for the
cases with and without walls

Figure 15: Time-averaged power coeffi-
cient for various tip speed ratios for the
cases with and without walls
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walls.

Summary

In this study, the flow field around the windmill is computed by using domain decom-
position method. Although the Savonius rotor is chosen for the present computation,
this method can be applied for the computations of other windmills. Two compu-
tational domains are used and connected to each other. One domain contains the
rotating rotor and rotational coordinate system is employed. Another contains the
fixed walls and the Cartesian coordinate system is used. Both regions have common
overlapping region. The physical quantities on the boundary of one domain in the over-
lapping region are calculated by interpolating the physical values at the grid points
in another region which are located inside of the region. The running performance of
the Savonius rotor such as the torque coefficient and the power coefficient is obtained
for various tip speed ratios. The effect of the walls on the running performance is
also investigated. It is found that torque coefficient and the power coefficient become
almost twice when the walls are placed adequately.
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42. An Artificial Boundary Condition for the
Numerical Computation of Scattering Waves

D. Koyama1

Introduction

We consider the controllability method, which is proposed by Bristeau-Glowinski-
Périaux [BGP98], for computing numerical solutions of the exterior problem for the
Helmholtz equation. In the controllability method, we need to introduce an artificial
boundary in order to reduce the computational domain to a bounded domain, and
need to solve, in the bounded computational domain, the wave equation and an ellip-
tic problem iteratively. We first introduce a new artificial boundary condition (ABC)
for the wave equation, which is suitable for the controllability method. Our ABC is
constructed by using the Dirichlet-to-Neumann (DtN) operator associated with the
Helmholtz equation. We next discuss uniqueness for semi-discrete solution of the con-
trollability method in the case when the artificial boundary is a circle. Then we need
spectral properties of the DtN operator, which are deduced from some properties of
the Hankel functions. We finally present numerical examples, which show that nu-
merical solutions obtained by using our ABC are more accurate than those obtained
by using another well-known ABC, and that by using our ABC, accurate numerical
solutions are obtained whether the artificial boundary is large or small. These numer-
ical results suggest that by using our ABC and by taking a small artificial boundary,
we can reduce the computational costs.

We consider the exterior problem for the Helmholtz equation:
−∆U − k2U = 0 in Ω,

U = G on γ,

lim
r−→+∞

r
1
2

(
∂U

∂r
− ikU

)
= 0 (outgoing radiation condition).

(1)

Here k is a positive constant and Ω is an unbounded domain of R2 with boundary
γ. We assume that O = R2 \ Ω is a bounded open set. Further G is a function
on γ and r = |x| for x ∈ R2. When computing numerical solutions of (1) by using
the controllability method, we choose the artificial boundary as follows: Γa = {x ∈
R2 | |x| = a}, where a is a positive number such that O ⊂ {x ∈ R2 | |x| < a}. Then
the bounded computational domain becomes as follows: Ωa = {x ∈ Ω | |x| < a}. In
the controllability method, we solve, in the bounded domain Ωa, the wave equation
with an ABC. We propose a new ABC for the wave equation as follows:

∂u

∂n
+

∂u

∂t
= −Su− iku on Γa, (2)

where n is the unit normal vector on Γa being toward infinity and S is the Dirichlet-
to-Neumann (DtN) operator for the Helmholtz equation with the outgoing radiation

1The University of Electro-Communications, koyama@im.uec.ac.jp
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condition. Bristeau et al. use the following ABC mainly:

∂u

∂n
+

∂u

∂t
= 0 on Γa, (3)

and do not mention our ABC (2).
Further we discuss the uniqueness for the solution of the semi-discrete problem of

the following problem: find u = {u0, u1} ∈ Eg such that

utt −∆u = 0 in Ωa × (0, T ),
u = g on γ × (0, T ),

∂u

∂n
+

∂u

∂t
= −Su− iku on Γa × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ωa,
u(x, T ) = u0(x), ut(x, T ) = u1(x) in Ωa,

(4)

where T = 2π/k, g(x, t) = G(x)e−ikt, Eg = Vg × L2(Ωa), and

Vg =
{
v ∈ H1(Ωa) | v = g(0) on γ

}
.

Bardos-Rauch [BR94] discuss uniqueness for the solution of the problem (4) in
the case when the ABC is replaced by the ABC (3). However, their analysis is not
sufficient to prove the uniqueness for the solution of (4), which is yet to be proved.

The DtN operator for the Helmholtz equation

The DtN operator S can be analytically represented as follows (see Grote-Keller
[GK95]):

SU(a, θ) =
∞∑

n=−∞
−k

H
(1)′
n (ka)

H
(1)
n (ka)

Un(a)Yn(θ), (5)

where r, θ are the polar coordinates, H(1)
n are the cylindrical Hankel functions of the

first kind of order n, Yn are the spherical harmonics defined by Yn(θ) = einθ/
√
2π,

and Un(a) =
∫ 2π

0 U(a, θ)Yn(θ) dθ.

Uniqueness for the semi-discrete solution

We discretize the problem (4) by finite element method, and show that the ob-
tained semi-discrete problem has a unique solution under hypotheses described be-
low. For this purpose, we choose a finite dimensional subspace Wh of H1(Ωa),
and define Vh = {vh ∈ Wh | vh = 0 on γ}. Let φ1, φ2, . . . , φN be a base of
Vh, and φ1, φ2, . . . , φN , φN+1, . . . , φN ′ a base of Wh. Then we may assume that
φ1, φ2, . . . , φN ′ are real-valued functions. The semi-discrete problem of the problem
(4) can be written as follows: find {ξ0, η0} ∈ CN × CN such that

B
d2ξ

dt2
(t) + C

dξ

dt
(t) + (A+ S + ikC) ξ(t) = e−iktf in (0, T ),

ξ(0) = ξ0, ξt(0) = η0,
ξ(T ) = ξ0, ξt(T ) = η0,

(6)
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where B, C, A, and S are matrices defined as follows:

B = ((φl, φj))1≤j, l≤N , (u, v) =
∫
Ωa

uv dx,

C = (〈φl, φj〉)1≤j, l≤N , 〈u, v〉 =
∫
Γa

uv dγ,

A = (a(φl, φj))1≤j, l≤N , a(u, v) =
∫
Ωa

∇u · ∇v dx,

S = (s(φl, φj))1≤j, l≤N , s(u, v) =
∫
Γa

Suv dγ,

and f is a vector defined as follows:

f = (fj)1≤j≤N ,

fj =
N ′∑

l=N+1

[
k2(φl, φj)− a(φl, φj)− s(φl, φj)

]
Gl.

Here the non-homogeneous Dirichlet data G is approximated by the following function:
Gh =

∑N ′

j=N+1 Gjφj |γ , where Gj ∈ C (j = N + 1, . . . , N ′).
Now we define a square matrix A of order 2N as follows:

A =
[

O I
−B−1(A+ S + ikC) −B−1C

]
,

where I is the unit matrix of order N . To show that the problem (6) has a unique
solution, we use the following proposition:

Proposition 1 The problem (6) has a unique solution if and only if

ikl /∈ σ(A) for all l ∈ Z, (7)

where σ(A) is the set of all eigenvalues of the matrix A.

We show that the problem (6) has a unique solution under two hypotheses de-
scribed below.

Hypothesis 1 For a positive λ and uh ∈ Vh, if we have

a(uh, vh) = λ(uh, vh) for all vh ∈ Vh,

and if we have uh = 0 on Γa, then we have uh = 0 in Ωa.
Hypothesis 1 can be interpreted as follows. The discrete problems of the two eigenvalue
problems: 

−∆u = λu in Ωa,
u = 0 on γ,

∂u

∂n
= 0 on Γa
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and  −∆u = λu in Ωa,
u = 0 on γ,
u = 0 on Γa

have no same eigenpair.
Hypothesis 2 For the wave number k, we take the radius a of the artificial bound-

ary such that

Im

{
H

(1)′

0 (ka)

H
(1)
0 (ka)

}
< 2.

To explain Hypothesis 2, we here state the following lemma:

Lemma 1 Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
is a decreasing function on (0, ∞), and further

Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
−→ 1 (x −→ +∞),

Im

{
H

(1)′

0 (x)

H
(1)
0 (x)

}
−→ +∞ (x −→ +0).

By Lemma 1, there exists only one α > 0 such that

Im

{
H

(1)′
0 (α)

H
(1)
0 (α)

}
= 2.

If the radius a of the artificial boundary is taken to satisfy a > α/k, then Hypothesis
2 is satisfied. Here we note that α ≈ 0.088426.

Theorem 1 The problem (6) has a unique solution under Hypotheses 1 and 2.

To prove Theorem 1, we use the following two lemmas:

Lemma 2 For all x > 0 and for all ν ∈ R, we have

Re

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
< 0.

Lemma 3 For all x > 0 and for all ν, ν′ ∈ R satisfying |ν| > |ν′|, we have

0 < Im

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
< Im

{
H

(1)′

ν′ (x)

H
(1)
ν′ (x)

}
.
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Proof of Theorem 1: Because of Proposition 1, our task is now to show that (7)
holds. The proof is by contradiction. Assume that ikl ∈ σ(A) (l ∈ Z). Then there is
ξ (�= o) ∈ CN such that

A
[

ξ
η

]
= ikl

[
ξ
η

]
.

Then we have

−(kl)2Bξ + iklCξ + (A+ S + ikC)ξ = o. (8)

Now we write ξ = [ξ1, ξ2, . . . , ξN ]T and set uh =
∑N
j=1 ξjφj . Then (8) is written as

follows: for all vh ∈ Vh,

−(kl)2(uh, vh) + ikl〈uh, vh〉+ a(uh, vh) + s(uh, vh) + ik〈uh, vh〉 = 0. (9)

Here if we take vh = uh in (9), then we obtain

−(kl)2(uh, uh) + ikl〈uh, uh〉+ a(uh, uh) + s(uh, uh) + ik〈uh, uh〉 = 0.

The real part of this identity is:

a(uh, uh)− (kl)2(uh, uh)−
k

a

∞∑
n=−∞

Re

{
H

(1)′
n (ka)

H
(1)
n (ka)

}∣∣∣∣〈uh,
einθ√
2π

〉∣∣∣∣2 = 0, (10)

and the imaginary part is:

k

a

∞∑
n=−∞

[
l + 1− Im

{
H

(1)′
n (ka)

H
(1)
n (ka)

}] ∣∣∣∣〈uh,
einθ√
2π

〉∣∣∣∣2 = 0. (11)

We here consider three different cases.
Case 1: When l ≤ −1. By Lemma 3,

l + 1− Im

{
H

(1)′
n (ka)

H
(1)
n (ka)

}
< 0 for all n ∈ Z,

and hence, by (11), 〈
uh,

einθ√
2π

〉
= 0 for all n ∈ Z.

This implies

uh = 0 on Γa. (12)

From this identity and (9), we get

a(uh, vh) = (kl)2(uh, vh) for all vh ∈ Vh. (13)
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From (12), (13), and Hypothesis 1, we have uh = 0 on Ωa, i.e., ξ = o. This contradicts
the assumption that ξ �= o. Therefore we can see ikl /∈ σ(A).

Case 2: When l = 0. By (10), we obtain

a(uh, uh)−
k

a

∞∑
n=−∞

Re

{
H

(1)′
n (ka)

H
(1)
n (ka)

}∣∣∣∣〈uh,
einθ√
2π

〉∣∣∣∣2 = 0.

From this identity and Lemma 2, it follows that uh = 0 in Ωa. Therefore 0 /∈ σ(A).
Case 3: When l ≥ 1. By Lemma 3 and Hypothesis 2, we have

l + 1− Im

{
H

(1)′
n (ka)

H
(1)
n (ka)

}
> 2− Im

{
H

(1)′
0 (ka)

H
(1)
0 (ka)

}
> 0 for all n ∈ Z.

By the same argument as Case 1, we can conclude that ikl /∈ σ(A).

Numerical examples

Scattering by a disk

We compare the accuracy of numerical solutions obtained by using our ABC (2) and
the ABC (3) via numerical experiments. We consider a test problem, where the
obstacle O = {x ∈ R2 | |x| < 1}, the wave number k = 1, and the Dirichlet data
G is chosen as the exact solution U becomes as follows: U(r, θ) = H

(1)
1 (r) cos θ. We

locate the artificial boundary Γa at r = 2. We use the conforming finite element
method using piecewise linear elements. The triangulation has 2176 vertices and 4096
triangles. The length h of each side of every triangle satisfies λ/129 < h < λ/54, where
λ is the wave length, i.e., λ = 2π/k. To solve the wave equation numerically, we use
explicit second order finite difference centered scheme with the step size ∆t = T/200,
where T = 2π/k. When we use our ABC, we have to truncate the infinite series of
(5) at a finite value N . We denote the truncated DtN operator by SN . In this test
problem, we choose N = 1, and then we note that u = U(r, θ)e−ikt satisfies

∂u

∂n
+

∂u

∂t
= −S1u− iku on Γa.

We show contour lines of the real part of the exact solution and the numerical solution
obtained by the ABC (3) in Figure 1, where solid lines display the numerical solution,
and dotted lines the exact solution. We can see that the numerical solution is very
different from the exact solution. We show the exact solution and the numerical
solution obtained by our ABC in Figure 2, where the numerical solution is exactly
coincident with the exact solution. From these figures we can see that numerical
solutions obtained by our ABC are more accurate than those obtained by the ABC
(3).

Scattering by a Π-shaped open resonator

We compute scattering of an incident plane wave exp[ik(x1 cosα + x2 sinα)] by an
obstacle, where α is an incident angle. The wave number k = 8π and then the wave
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Figure 1: Contour lines of the real part of the exact solution and of the real part of
the numerical solution obtained by using the ABC (3).

Figure 2: Contour lines of the real part of the exact solution and of the real part of
the numerical solution obtained by using our ABC (2).
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length λ = 0.25. The obstacle is a Π-shaped open resonator. The size of its interior
rectangle is 4λ× λ, and the thickness of the wall is λ/5. The incident angle α = 30◦.
First we choose the radius of the artificial boundary a = 3λ. Then the DtN operator
is truncated at N = 135, and the triangulation has 42648 vertices and 83808 triangles.
The length h of each side of every triangle satisfies λ/51 < h < λ/20. We numerically
solve the wave equation by the explicit second order finite difference centered scheme
with the step size ∆t = T/100. Next we choose the radius of the artificial boundary
a = 4λ. Then the DtN operator is truncated at N = 150, and the triangulation has
77808 vertices and 153888 triangles. The conditions of the mesh size h and the time
step size ∆t are the same as above. In Figure 3, we display the contour lines of the
real part of the numerical solutions in the cases when a = 3λ and when a = 4λ.
Figure 3 shows good coincidence of those numerical solutions, and suggests that if we
use our ABC, we can get accurate numerical solutions without enlarging radius of the
artificial boundary.

Figure 3: Contour lines of the real part of the numerical solutions in the cases when
a = 3λ and when a = 4λ.
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43. Domain decomposition methods for welding
problems

C.-H. Lai1, C.S. Ierotheou2, C.J. Palansuriya3, and K.A. Pericleous4

Introduction

The welding of metals and alloys is a widely used industrial process. Many types of
analysis have been carried out on such problems [MUB67]. The numerical thermal
analysis of welding is required to take into account such features as temperature de-
pendent material properties, phase change, non-uniform distribution of energy from
heat source etc. In this paper, a 2-D non-linear electric arc-welding problem is con-
sidered. It is assumed that the moving arc generates an unknown quantity of energy
which makes the problem an inverse problem with an unknown source. Robust algo-
rithms to solve such problems efficiently, and in certain circumstances in real-time,
are of great technological and industrial interest.

There are other types of inverse problems which involve inverse determination of
heat conductivity or material properties [CDJ63][TE98], inverse problems in material
cutting [ILPP98], and retrieval of parameters containing discontinuities [IK90]. As in
the metal cutting problem, the temperature of a very hot surface is required and it
relies on the use of thermocouples. Here, the solution scheme requires temperature
measurements lied in the neighbourhood of the weld line in order to retrieve the
unknown heat source. The size of this neighbourhood is not considered in this paper,
but rather a domain decomposition concept is presented and an examination of the
accuracy of the retrieved source are presented.

This paper is organised as follows. The inverse problem is formulated and a method
for the source retrieval is presented in the second section. The source retrieval method
is based on an extension of the 1-D source retrieval method as proposed in [ILP+99]
for metal cutting problems. A parallel algorithm based on the concept of coupling
heterogeneous numerical models in different subdomains is given in the third section.
Accuracy of the numerical simulation is compared with results that are generated by
a known heat source [ASW85][DM93] and with temperature measurements that are
obtained by using experimental thermocouples as shown in [ASW85].

The inverse welding problem

Three assumptions are needed in this problem. These assumptions are (1) the ma-
terial properties are homogeneous across the domain of interest, (2) application of a
welding tool along a weld path is equivalent to the application of a heat source along

1University of Greenwich, C.H.Lai@gre.ac.uk
2University of Greenwich, C.Ierotheou@gre.ac.uk
3University of Greenwich, C.J.Palansuriya@gre.ac.uk
4University of Greenwich, K.A.Pericleous@gre.ac.uk
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the path and (3) the rate of change of temperature on either side of the weld is di-
rectly proportional to the strength of the heat source [ILP+99]. The welding problem
considered in this paper is the welding of two thin metal plates using the technology
of arc-welding. For simplicity, the electric arc is moving along the weld path, y = yw
with a speed of Uw. A straight weld line is depicted in 1 as a dotted line. Without
loss of generality, the welding line can be a straight line or a general path. If the
welding path was a straight line and that the welding tool travelled along y = yw = 0,
then due to the symmetry of the problem only the upper half of the domain needs to
be considered. This simplifies the model description and programming effort. Since
the thickness of the plate, d, is small compared to the other dimensions, only 2-D
heat conduction needs to be considered. Hence, using the first two assumptions, the
mathematical model which governs the heat conduction of the plate can be written as
the following 2-D nonlinear, unsteady, parabolic, heat conduction equation,

ce
∂T

∂t
=

∂

∂x
(k(T )

∂T

∂x
) +

∂

∂y
(k(T )

∂T

∂y
) − 2heffA(T − Ta) + δ(y − yw)Qw (1)

subject to the initial condition T (x, y, 0) = Ti(x, y) and boundary conditions defined
by the functionals B0[T (0, y, t), 0, y, t] = 0, B1[T (l, y, t), l, y, t] = 0,
C0[T (x,−h, t), x,−h, t] = 0 and C1[T (x, h, t), x, h, t] = 0. Here T (x, y, t) is the tem-
perature distribution, k(T ) is the conductivity of the metal plates, t is the time, heff
is the effective heat transfer, A is the surface area, Ta is the ambient temperature,
ce = ρc − L∂fl∂T is the effective specific heat, ρ is the density, c is the specific heat
capacity, L is the latent heat, ∂fl∂T is the variation of liquid fraction, δ(y − yw) is the
Dirac Delta function, Qw = Qw(x, t) is the heat transfer rate generated from the mov-
ing arc. Ti, B0, B1, C0 and C1 are known functions. The source term, Qw, in (1) is

l

y

x

Qw

d

2h

Uw

Figure 1: A simple welded work-piece.

an unknown, and the inverse problem here is to retrieve this unknown heat source.
In order to deal with this additional unknown, temperature measurements near

the weld line is required (see Figure 2). Thermocouples are attached at y = ys, such
that yw < ys < h. Let the temperature measured by means of the thermocouples
be T (x, ys, t) = T ∗(x, t). The measured temperatures are used as interior boundary
conditions, as described in next Section, along subdomain interfaces and to retrieve
the temperature distribution at the welding points. The heat source retrieval is based
on the third assumption, i.e. in the neighbourhood of the weld,

∂T

∂t
= α(x, t)δ(y − yw)Qw(x, t) (2)
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x

y

h

ys

yw

Weld line

sensors

Figure 2: Thermocouples are located near the weld line.

where α > 1 is a time dependent function that also depends on x. The condition
α > 1 is to ensure an increase in temperature at the weld due to an increase in Qw.
Integrating (2) across the weld at a given value of x gives∫ y+w

y−w

∂T

∂t
dy = α(x, t)Qw(x, t) (3)

where y+w to y−w is the width of the weld along y-axis at a given instance of time under
immediate influence of the electric arc. Integrating (1) across the weld and equating
the result to (3) lead to

1
ce
{k(T )∂T

∂y
|y+w − k(T )

∂T

∂y
|y−w +

∂

∂x
(k(T )

∂T

∂x
)(y+w−y−w ) − 2heffA(T−Ta)(y+w−y−w )}

= (α(x, t) − 1
ce
)Qw(x, t) (4)

Let β(x, t) = ceα(x, t)−1 and define the predicted heat source as Qp = β(x, t)Qw(x, t)
which may be computed as

Qp(x, t) = k(T )
∂T

∂y
|y+w − k(T )

∂T

∂y
|y−w +

∂

∂x
(k(T )

∂T

∂x
)(y+w − y−w )

− 2heffA(T − Ta)(y+w − y−w ) (5)

Then Qp can be substituted into (1) to replace Qw and the non-linear heat conduction
problem may then be solved as a direct problem with Tp(x, t) being the corresponding
temperature distribution. Hence it is possible to evaluate β(x, t) from the knowledge
of Tp(x, t) and T (x, yw, t) as

β(x, t) =
Tp(x, t)

T (x, yw, t)
=

Qp(x, t)
Qw(x, t)

(6)

where T (x, yw, t) is the temperature at the weld line corresponds to Qw(x, t). Hence
Qw(x, t) may then be determined once β(x, t) is known. Note that it is not necessary
to compute ceα(x, t) − 1.
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The domain decomposition method

Since the only unkown involved in the p.d.e. is the heat source, it makes sense to
eliminate the unknown source term of the p.d.e. [ILPP98] for the governing equations
on both sides of the welding path. The monitored thermocouple data provides an
ideal interior partitioning. For the present study, yw is chosen as zero. Hence the
problem become symmetric and only half of the entire problem needs to be considered.
The original domain is partitioned to two well defined, homogeneous, continuous and
properly connected subdomains denoted by D1 = {(x, y) : 0 < x < l and 0 < y < ys}
and D2 = {(x, y) : 0 < x < l and ys < y < h} and they are depicted as in Figure 3.
The two subproblems can be written as follows:

y=h

ys

ys

yw

D1

D2

x=l0

Figure 3: Visualization of subdomains.

SP1: ce
∂T1
∂t = ∂

∂x (k(T1)
∂T1
∂x ) + ∂

∂y (k(T1)
∂T1
∂y )− 2heffA(T1 − Ta) inD1

subject to T1(x, y, 0) = Ti(x, y),
B0[T1(0, y, t)0, y, t] = 0, B1[T1(l, y, t), l, y, t] = 0,
T1(x, ys, t) = T ∗(x, t), C1[T1(x, h, t), x, h, t] = 0.

SP2: ce ∂T2
∂t = ∂

∂x (k(T2)
∂T2
∂x ) + ∂

∂y (k(T2)
∂T2
∂y )− 2heffA(T2 − Ta) inD2

subject to T2(x, y, 0) = Ti(x, y),
B0[T2(0, y, t), 0, y, t] = 0, B1[T1(l, y, t), l, y, t] = 0,

T2(x, ys, t) = T ∗(x, t), ∂T2(x,0,t)
∂y = 0.

and are defined on two different subdomains of different sizes which are subjected
to different set of boundary conditions. They are non-linear in nature and are com-
pletely decoupled from each other. Therefore they may be solved simultaneously or
concurrently by using the Newton’s method. Let F (T ) be defined as

F (T ) = ce
∂T

∂t
− ∂

∂x
(k(T )

∂T

∂x
)− ∂

∂y
(k(T )

∂T

∂y
) + 2heffA(T − Ta) ≡ 0 (7)

which leads to the corresponding Jacobian J(T ) as follows,

J(T ) = ce
∂

∂t
− k′

∂2T

∂x2
− k

∂2

∂x2
− k′′(

∂T

∂x
)2 − 2k′

∂T

∂x

∂

∂x
− k′

∂2T

∂y2
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−k
∂2

∂y2
− k′′(

∂T

∂y
)2 − 2k′

∂T

∂y

∂

∂y
+ 2heffA (8)

The linearisation leads to an iterative scheme, to be performed in each of the subdo-
main, T new = T old − J−1(T old)F (T old) where superscript new denotes new iterates
and old denotes old iterates. F (T ) and J(T ) are obtained by a second order fi-
nite volume method which leads to a set of large sparse linear system and it can be
solved by means of a standard domain decomposition software package such as PETSc
[BGMS97]. More processors may be used to achieve a secondary level of parallelism
for the Newton’s iterative scheme, which are separately controlled by different hosts
assigned to each of the subproblems. Therefore the inverse welding problem has two
levels of parallelism. One level being the differential equation level and the other being
the discretised level [ILPP98]. The solution of SP2 retrieves the temperature at the
weld line. The temperature at and around the weld line is, in turn, used to retrieve
the unknown source term as described above.

Numerical examples

In this Section, a validation problem for comparison purposes is defined. The true
source as given in [ASW85, DM93] is depicted in Figure 9 and the physical data for
(1), as given below, are used to derive validation data for comparison. Geometry of
the two plates is chosen as l = 0.5m, 2h = 0.33m, d = 0.008m, Uw = 0.00333m/s.
The model problem gives the temperature field of the steel plate. The physical data
used in the numerical example are Qw = 1350 W , Ta = 293 K, heff = 60 W/m2K,
ρ = 7850 kg/m3, c = 607 J/kgK , L = 272 kJ/kg, Ts = 1843 K and Tl = 1863 K.
Here Ts is the solidus temperature and Tl is the liquidus temperature. For the present
purpose, the liquid fraction fl is evaluated as,

fl =


0 if T < Ts

(T−Ts)
(Tl−Ts) if Ts ≤ T ≤ Tl

1 if T > Tl

The nonlinear conductivity of steel is given by,

k(T ) =

{ −27.2
762 T + 64.9448 if T ≤ 1035K
8
881T + 18.6016 if T > 1035K

The initial condition is Ti(x, y) = Ta and the boundary conditions are B0 = B1 =
k ∂T∂x + heff (T − Ta) = 0 and C1 = k ∂T∂y + heff (T − Ta) = 0. The source is
applied only at cells which are at a given instant of time under immediate influence
of the electric arc. A mesh size of 50 × 50 is used to obtain the following numerical
results. Figure 4 shows the 2-D temperature distribution at t = 75s. At this time
the arc passes the midsection of the plate (x = 0.25m,y = yw = 0m). Therefore,
the temperature is at its highest value at this section. Thermocouple temperature
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measurements are available for comparison from MPA, Stuttgart [ASW85]. Figures 5
to 7 show the comparison of numerical results with the thermocouple measurements.
Figure 5 compares the numerical results with measured results when the arc passes
the midsection of the plate. Figure 6 shows the comparison at a further 7.5s later,
as expected cooling has begun (since the arc has moved away from the midsection).
Figure 7 shows the temperature history at the midsection, it illustrates the rapid
heating to the melting point when the arc approaches the midsection and the gradual
cooling thereafter when the arc has passed the section. These results show that the
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Figure 4: Temperature distribution at t = 75s.
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Figure 5: Temperature distribution at x=0.25m and t = 75s (Vertical axis - T in Kelvin and
horizontal axis - y coordinates).

derived data matches with the experimental data. Thermocouples are now placed at
ys = 0.0033m as suggested in[ASW85]. The inverse problem given by (1) is solved
by using the mesh configuration of 200 × 200. Figure 8 shows the accuracy of the
retrieved temperature field at x = 0.25m and t = 75s. At this time step, the electric
arc passes over the point x = 0.25m and y = yw = 0m (midsection), and as expected it
generates high temperature values (and gradients) around this point. Figure 9 shows
the accuracy of the retrieved source term at x = 0.25m and y = yw = 0m using the
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Figure 6: Temperature distribution at x=0.25m and t = 82.5s (Vertical axis - T in Kelvin
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Figure 7: Temperature history at x=0.25m and y=0m (Vertical axis - T in Kelvin and
horizontal axis - time in seconds).

proposed method as shown above. The source retrieval is only activated when the
electric arc actually passes over this point.

Conclusion

A domain decomposition method is proposed for an inverse problem in arc-welding.
The method is based on the partitioning of problems at the continuous problem level
where the unknown heat source can be eliminated from the mathematical model and
where the subproblems may be completely decoupled. The retrieved heat source
compares well with the results generated by using a known heat source of a typical
arc-welding and by using experiments.
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44. FETI-DP: An Efficient, Scalable and Unified
Dual-Primal FETI Method

M. Lesoinne1, K. Pierson2

Introduction

The FETI algorithms are numerically scalable iterative domain decomposition meth-
ods. These methods are well documented for solving equations arising from the Finite
Element discretization of second or fourth order elasticity problems. The one level
FETI method equipped with the Dirichlet preconditioner was shown to be numeri-
cally scalable for second order elasticity problems while the two level FETI method
was designed to be numerically scalable for fourth order elasticity problems (see
[FR94, Far91b, Far91a, FR91, FR92, FM98, Rou95]).

The second level coarse grid is an enriched version of the original one level FETI
method with coarse grid. The coarse problem is enriched by enforcing transverse
displacements to be continuous at the corner points. This coarse problem grows lin-
early with the number of subdomains. Current implementations use a direct solution
method to solve this coarse problem. However, the current implementation gives rise
to a full matrix system. This full matrix can lead to increased storage requirements
especially if working within a distributed memory environment. Also, the factorization
and subsequent forward/backward substitutions of the second level coarse problem be-
comes the dominant factor in solving the global problem as the number of subdomains
becomes large (Ns > 1000).

We introduce an alternative formulation of the two level coarse problem that leads
to a sparse system better suited for a direct method. Then we show extensions to
the alternate formulation that allow optional admissible constraints to be added to
improve convergence. Lastly, we report on the numerical performance, parallel effi-
ciency, memory requirements, and overall CPU time as compared to the classical two
level FETI on some large scale fourth order elasticity problems.

The Dual-Primal FETI Method

Let Ω be partitioned into a set of Ns, non-overlapping subdomains (or substructures)
Ωs. Points where 3 or more subdomains intersect, are labeled as corner points which
will remain primal variables. The mechanical interpretation of this particular method
of mesh splitting can be viewed as making incisions into the mesh but leaving the
corner points attached. This is analogous to the ”tearing” stage of FETI. The ”in-
terconnecting” stage occurs only on the subdomain interfaces which now excludes the
corner points. Typically, in fourth order elasticity problems, the corner points have
6 degrees of freedom (3 translations and 3 rotations). This method of mesh splitting

1Professor, Department of Aerospace Engineering and Sciences and Center for Aerospace Struc-
tures University of Colorado at Boulder Boulder, CO 80309-0429, U.S.A.

2Senior Member Technical Staff, Sandia National Labs, Albuquerque, NM 87111, U.S.A.
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Figure 1: Dual-Primal Mesh Partitions

and corner point identification is illustrated in Figure 1: By splitting, us into two
sub-vectors such that:

u =
[

ur
uc

]
=


u1r
...

uNsr
uc

 (1)

where usr is the remaining subdomain solution vector and uc is a global/primal solution
vector over all defined corner degrees of freedom. The solution at the corner points
is continuous by definition when the solution vector is constructed in this manner.
Using this notation, we can split the subdomain stiffness matrix into:

Ks =
[

Ks
rr Ks

rc

KsT

rc Ks
cc

]
(2)

Then the original FETI equilibrium equations can be modified using the following
matrix partitioning where the subscripts c and r denote the corner and the remainder
degrees of freedom.

K1
rr . . . 0 K1

rcB
1
c

...
. . .

...
...

0 . . . KNs
rr KNs

rc BNsc

B1T

c K1T

rc . . . BNs
T

c KNs
T

rc

Ns∑
s=1

Bs
T

c Ks
ccB

s
c




u1r
...

uNsr
uc

 =



f1r −B1T

r λ
...

fNsr −BNs
T

r λ
Ns∑
s=1

Bs
T

c fsc


(3)

Ns∑
s=1

Bsru
s
r = 0 (4)



A DUAL-PRIMAL FETI METHOD 423

Where the corner stiffness matrix, Kcc =
Ns∑
s=1

Bs
T

c Ks
ccB

s
c is a global stiffness quantity,

Bsc maps the local corner equation numbering to global corner equation numbering,
fsr is the external force applied on the r degrees of freedom, Bs

T

r is a boolean matrix
that extracts the interface of a subdomain, and λ are the Lagrange multipliers. Let
Krr denote the block diagonal subdomain stiffness matrix restricted to the remaining,
r, points, Krc the block column vector of subdomain coupling stiffness matrices, fr
the block column vector of subdomain force vectors, Kcc the global corner stiffness
matrix and using the ”rc” notation, we can rewrite the equilibrium equations in the
more compact form: [

Krr Krc
KT
rc Kcc

] [
ur
uc

]
=
[

fr −BTr λ
fc

]
(5)

Now we can invert the first equation for ur noting that Krr is a symmetric positive
definite matrix due to the guarantee of enough corner points that remove all sin-
gularities. This is in contrast to all the previous FETI methods where the correct
computation of the the null spaces was required to be accurately computed, leading
to a natural coarse problem. This null space computation was seen as a liability when
working with nonlinear structures where the size of the null space would vary from
one tangent stiffness matrix to the next ([FPL00]). Then substitute the result into
the compatibility equation (Eq. 4). With some algebraic manipulation we can derive
the Dual-Primal FETI interface problem where the unknowns are λ, the Lagrange
multipliers and uc, the global corner degrees of freedom.[

Frr Frc
FTrc −K∗

cc

] [
λ
uc

]
=
[

dr
−f∗c

]
(6)

where Frr =
Ns∑
s=1

BsrK
s−1

rr Bs
T

r , Frc =
Ns∑
s=1

BsrK
s−1

rr Ks
rcB

s
c , dr =

Ns∑
s=1

BsrK
s−1

rr fsr , and

f∗c =
Ns∑
s=1

(Bs
T

c fsc −Bs
T

c KsT

rc K
s−1

rr fsr ). The corner degrees of freedom, uc, are condensed

out to form the following symmetric positive definite Dual-Primal FETI interface
problem which we solve using a preconditioned conjugate gradient method. For a
detailed derivation of this equation, please see [CFR00].[

Frr + FrcK
∗−1

cc FTrc

]
λ = dr − FrcK

∗−1

cc f∗c (7)

It can be seen that the new FETI operator has a coarse grid problem for which the
stiffness matrix can be written as follows

K∗
cc =

Ns∑
s=1

[
Bs

T

c Ks
ccB

s
c − (Ks

rcB
s
c )
TKs−1

rr (Ks
rcB

s
c)
]

(8)

This new coarse problem has some highly beneficial properties over the existing two-
level FETI coarse problem (see [FM98]). First, this new coarse problem is sparse
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Figure 2: Model problem for numerical scalability studies

symmetric positive definite. Secondly, only one forward/backward substitution has to
be performed per FETI iteration in comparison with two per iteration of the original
FETI algorithms. We also note that the coarse problem is easily formed in parallel
with subdomain operations. As with the original FETI coarse problem, it couples all
of the subdomains and propagates the error at each FETI iteration.

Numerical Scalability

Now we would like to test the numerical scalability of the Dual-Primal FETI method
for fourth order elasticity problems. The chosen tests show the numerical scalability
with respect to the number of subdomains, size of the subdomains, and the size of the
elements. The model problem for these tests is a 1× 1 square mesh discretized into 3
node shell elements. Let h denote the size of an individual element and H denote the
size of one subdomain. The first numerical test keeps the number of subdomains at
64, while varying the size of h and the effect on the number of iterations to converge
to 1.0E − 6 is observed.

H h Ndof FETI-2 FETI-DP
1/8 1/40 5,166 23 itr. 17 itr.
1/8 1/80 19,926 30 itr. 22 itr.
1/8 1/160 78,246 36 itr. 28 itr.
1/8 1/320 310,086 44 itr. 34 itr.
1/8 1/640 1,234,566 51 itr. 41 itr.

One can see that the number of iterations remains roughly constant for both the two
level FETI method and for the Dual-Primal method as the size of the problem is
increased from 5, 166 dof to over 1 million dof.

The second numerical test fixes the size of the problem and varies the number
of subdomains used to solve the problem. Again the number of iterations remains
approximately constant over a large range of Ns for both the two level FETI method
and the Dual-Primal FETI method..



A DUAL-PRIMAL FETI METHOD 425

            

Figure 3: Finite element model of a diffraction grating

H h Ns FETI-2 FETI-DP
1/8 1/640 64 51 itr. 17 itr.
1/10 1/640 100 47 itr. 22 itr.
1/16 1/640 256 47 itr. 28 itr.
1/20 1/640 400 47 itr. 34 itr.
1/40 1/640 1,600 40 itr. 41 itr.
1/64 1/640 4,096 36 itr. 28 itr.

The last numerical test holds the size of the subdomains constant while increasing the
size of the overall problem. In this test, the condition number of the two level FETI
method should remain roughly the same (see [FM98]). We see that both methods
exhibit this trend for a large range of Ns.

H h Ns FETI-2 FETI-DP
1/2 1/20 4 12 itr. 12 itr.
1/4 1/40 16 24 itr. 19 itr.
1/8 1/80 64 30 itr. 22 itr.
1/16 1/160 256 32 itr. 24 itr.
1/32 1/320 1,024 34 itr. 25 itr.
1/64 1/640 4,096 36 itr. 28 itr.

The Augmented Dual-Primal FETI Method

After testing FETI-DP on a range of fourth order problems, we decided to test a
second order elasticity problem. The motivation was to see if we could improve the
existing one level FETI technology. As the reader can see, the following results were
not encouraging for this diffraction grating problem with 120,987 degrees of freedom.

Ns FETI-1 FETI-DP Augmented FETI-DP
56 81 itr. (281 sec.) 190 itr. (534 sec.) 63 itr. (284 sec.)
128 51 itr. (115 sec.) 115 itr. (273 sec.) 38 itr. (129 sec.)

The initial thought was to investigate how the new Dual-Primal coarse problem could
be extended to improve convergence. This can be accomplished by forcing the residual
to be orthogonal to a chosen set of vectors at each iteration of the FETI algorithm.
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Let Q be a matrix of arbitrarily chosen vectors, r the residual, then we can enforce
the following equation to enhance convergence:

QT r = QT
Ns∑
s=1

Bsru
s
r = QTr ur = 0 (9)

We insert these equations within the formulation by introducing new Lagrange mul-
tipliers, µ, to enforce the constraints associated with Eq. 9. Krr Krc Qr

KT
rc Kcc 0

QTr 0 0

 ur
uc
µ

 =

 fr −BTr λ
fc
0

 (10)

The resulting FETI operator has the same form as given in 7. Following the same
procedure used to derive Eq. 6, we arrive at the following expression for the augmented
Dual-Primal FETI coarse grid which is non-singular for a well-posed non-floating
structure but because of the µ Lagrange multiplier, we have negative eigen values.

K̃∗
cc =

Ns∑
s=1

[
Bs

T

c Ks
ccB

s
c −Bs

T

c KsT

rc K
s−1

rr Ks
rcB

s
c −Bs

T

c KsT

rc K
s−1

rr Qsr
−Qs

T

r Ks−1

rr Ks
rcB

s
c −Qs

T

r Ks−1

rr Qsr

]
(11)

These Q matrices can be chosen to be the average x,y, or z jump along a subdomain
edge resulting in an edge by edge sparsity pattern for the augmented set of equations..
There has been a clear advantage to writing the equations on a per edge basis as it
has improved convergence dramatically, improved CPU times, and restored numerical
scalability with respect to second order elasticity problems.

For higher order elements, such as 10 node tetrahedron, FETI-DP has shown
to be much more efficient than the one level FETI method. The following results
were obtained from a large-scale structural solid model discretized using 10 node
tetrahedrons of a BMW engine. The entire engine model has over 1 million degrees
of freedom which was decomposed into 823 subdomains and computed on an Origin
2000 machine. It took the one level FETI method 243 iterations to converge while it
took 90 iterations for FETI-DP.

Np FETI-1 Augmented FETI-DP
3 1,476 sec. 604 sec.
6 773 sec. 334 sec.
12 461 sec. 247 sec.
24 207 sec. 140 sec.

Parallel Scalability

We conclude this paper with a large-scale example problem that highlights the advan-
tages of FETI-DP. The following problem is a shell model of a wheel rim composed
of over 313856 elements, 156017 nodes, and containing 936, 102 degrees of freedom.
Three points were fixed along the inner rim, effectively constraining the model. Then
a gravity load was applied to the model which was decomposed into 500 subdomains.
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Figure 4: Finite element model of wheel rim

As one can see, the reduction in CPU time is dramatic for the FETI-DP method. The
PSLDLT parallel sparse solver shows a large improvement over the two level FETI
method for low numbers of processors while the FETI-DP method is faster for Np = 1
all the way to Np = 24. The speed-up numbers for the two level FETI method and
the FETI-DP method are nearly identical for these runs on an Origin 2000.

Np FETI-2 PSLDLT FETI-DP
1 2,995 s (1.0) 1,631 s (1.0) 1,594 s (1.0)
4 789 s (3.8) 502 s (3.2) 370 s (4.3)
8 371 s (8.1) 301 s (5.4) 196 s (8.1)
16 214 s (13.9) 218 s (7.5) 116 s (13.7)
20 179 s (16.7) 200 s (8.2) 99 s (16.1)
24 157 s (19.0) 200 s (8.2) 86 s (18.5)

Conclusion

We have shown a modification to the classical FETI method where the local opera-
tors are symmetric positive definite. This eliminates the necessity for computing the
local null spaces. which also removes the original FETI coarse problem. The new
Dual-Primal FETI method has a global coarse problem associated with the global
corner displacements. This coarse grid was shown to have as good as or better than
convergence for fourth order plates and shells problems with respect to the two level
FETI method. For second order problems, the new Dual-Primal FETI coarse grid
has to be augmented with optional constraints to remain numerically scalable. The
Dual-Primal FETI method is more robust, more efficient and typically faster than the
classical FETI methods for large numbers of subdomains.
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45. A blackbox reduced-basis output bound method
for shape optimization

L. Machiels1, Y. Maday2, A. T. Patera3, D. V. Rovas4

Introduction

We present a two-stage off-line/on-line blackbox reduced-basis output bound method
for the prediction of outputs of coercive partial differential equations with affine param-
eter dependence. The computational complexity of the on-line stage of the procedure
scales only with the dimension of the reduced-basis space and the parametric com-
plexity of the partial differential operator. The method is both efficient and certain:
thanks to rigorous a posteriori error bounds, we may retain only the minimal number
of modes necessary to achieve the prescribed accuracy in the output of interest. The
technique is particularly appropriate for applications such as design and optimization,
in which repeated and rapid evaluation of the output is required.

Reduced-basis methods [ASB78, Nag79, NP80] — projection onto low-order ap-
proximation spaces comprising solutions of the problem of interest at selected points
in the parameter/design space — are efficient techniques for the prediction of lin-
ear functional outputs. These methods enjoy an optimality property which ensures
rapid convergence even in high-dimensional parameter spaces; good accuracy is ob-
tained even for very few modes (basis functions), and thus the computational cost is
typically very small.

It is often the case that the parameter enters affinely in the differential operator.
This allows us to separate the computational steps into two stages: (i) the off-line
stage, in which the reduced-basis space is constructed; and (ii) the on-line/real time
stage, in which for each new parameter value the reduced-basis approximation for
the output of interest is calculated. The on-line stage is “blackbox” in the sense that
there is no longer any reference to the original problem formulation: the computational
complexity of this stage scales only with the dimension of the reduced-basis space and
the parametric complexity of the partial differential operator.

Although a priori theory [FR83, Por85] suggests the optimality of the reduced-
basis space approximation, for a particular choice of the reduced-basis space the error
in the output of interest is typically not known, and hence the minimal number of
basis functions required to satisfy the desired error tolerance can not be ascertained.
As a result, either too many or too few basis functions are retained; the former results
in computational inefficiency, the latter in uncertainty and unacceptably inaccurate
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predictions. In this paper we develop blackbox a posteriori methods that address these
shortcomings. We consider here equilibrium solutions of coercive problems within
the context of shape optimization; see also [MPR00] for treatment of noncoercive
equilibrium problems and [MMO+00] for symmetric eigenvalue problems.

Numerical Method

Preliminaries

Let Y be a Hilbert space with an associated inner product (·, ·)Y and an induced norm
‖ · ‖Y . We define our parameter space to be D ⊂ R; a point in that space is denoted
µ. Our problem is then to find u ∈ Y such that

a(u, v;µ) = O(v), ∀v ∈ Y, (1)

and subsequently the output of interest s(u) = O0(u); O(·) and O0(·) are both in Y ′,
the dual space of Y. The bilinear form a is assumed to be continuous; symmetric,
a(w, v;µ) = a(v,w;µ), ∀w, v ∈ Y ; and coercive, a(v, v;µ) ≥ c‖v‖2Y > 0, ∀v ∈ Y, ∀µ ∈
D, where c is a strictly positive real constant. Associated with the above primal
problem we define the dual problem for ψ ∈ Y : a(v, ψ;µ) = −O0(v), ∀v ∈ Y . The
need for this problem will become clear in the error estimation discussion.

We next introduce a symmetric positive-definite form â(w, v), and define λ1â(µ) to
be the minimum eigenvalue of a(ϕ, v;µ) = λ(µ)â(ϕ, v), ∀v ∈ Y . A lower bound for
this eigenvalue is required by the output bound procedure: we assume that a g(µ) is
known such that

a(v, v;µ) ≥ g(µ)â(v, v) > 0, ∀v ∈ Y and ∀µ ∈ D. (2)

It is also possible to include approximation of λ1â(µ) as part of the reduced basis
approximation [MPR00].

Finally, for the blackbox method, we shall assume that, for some finite integer Q,
there exists a decomposition of a(w, v;µ) of the form

a(w, v;µ) =
Q∑
q=1

σq(µ)aq(w, v),∀w, v ∈ Y and ∀µ ∈ D, (3)

where we make no assumptions on the aq other than continuity and bilinearity.

Reduced-Basis Approximation

We choose N/2 points in our parameter space D, and form the sample set
SN = {µ1, . . . , µN/2}. The reduced-basis spaces associated with the primal and
dual problems are then given by W pr

N = span{u(µ1), . . . , u(µN/2)} and W du
N =

span{ψ(µ1), . . . , ψ(µN/2)} respectively; we can now form

WN = span{u(µ1), ψ(µ1), . . . , u(µN/2), ψ(µN/2)} ≡ span{ζ1, . . . , ζN}. (4)

The space WN defined this way has good approximation properties both for the primal
and the dual problems.
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For each new desired µ ∈ D, we now apply a standard Galerkin procedure over
WN to obtain uN (µ) and ψN (µ) according to a(uN(µ), v;µ) = O(v), ∀v ∈ WN , and
a(v, ψN (µ);µ) = −O0(v), ∀v ∈ WN . The output can then be calculated as sN (µ) =
O0(uN (µ)).

Bounds Evaluation

We start by defining the residuals associated with the primal and dual reduced-basis
approximations, Rpr(v;µ) = O(v)− a(uN (µ), v;µ), ∀v ∈ Y , and Rdu(v;µ) = −O0(v)−
a(v, ψN (µ);µ), ∀v ∈ Y , respectively. The Riesz representations êpr(µ) and êdu(µ) of
the primal and dual residuals can then be defined as â(êpr(µ), v) = Rpr(v;µ), ∀v ∈
Y, â(êdu(µ), v) = Rdu(v;µ),∀v ∈ Y .

We then define, as in [MMO+00, MPR00],

s̄N (µ) = sN (µ)−
1

2g(µ)
â(êpr(µ), êdu(µ)),

∆N (µ) =
1

2g(µ)
â1/2(êpr(µ), êpr(µ)) â1/2(êdu(µ), êdu(µ)),

(5)

and compute lower and upper estimators s±N = s̄N ±∆N .
It can be shown [MMO+00, MPR00] that s+N (respectively s−N ) will be an upper

(respectively lower) bound for s provided that g(µ) is a lower bound for the eigenvalue
λ1â(µ) (or equivalently satisfies (2)). Note that in the general case, where an â and
g(µ) which satisfy (2) may not be readily available, the reduced-basis space must be
augmented with eigenmodes corresponding to the minimum eigenvalue of the problem
a(ϕ, v;µ) = λ(µ)â(ϕ, v), ∀v ∈ Y [MPR00].

Also of interest is the quality of the bounds — how well they approximate the
actual error. We measure the quality of the bounds by the effectivity ηN (µ), defined
as the ratio of the bound gap ∆N to |s − sN |. From the bound result we know that
ηN (µ) ≥ 1. We can further prove [MPR00] that ηN (µ) is bounded independent of N ;
in practice, ηN (µ) is typically O(1), as desired.

Blackbox Method

The parametric dependence assumed in (3) permits us to decouple the computation
into two stages: the off-line stage, in which (i) the reduced basis is constructed and,
(ii) the necessary error-estimation preprocessing is performed; and the on-line stage,
in which for each new desired value of µ, µd, we compute sN (µd) and the associated
bounds. The essential “enabler” is the absence of µ dependence in â, which allows us
to precompute (and later assemble) all the “pieces” of êpr(µd), and êdu(µd) by linear
superposition. The details of the blackbox technique follow. For convenience we define
N as the set {1, . . . , N}, and Q as the set {1, . . . , Q}.
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Off-line Stage

1. Calculate u(µi) and ψ(µi), i = 1, . . . , N/2, to form WN as in (4).
2. Compute Aq ∈ RN×N as Aqi,j = aq(ζi, ζj),∀i, j ∈ N 2 and ∀q ∈ Q.

3. Solve for ẑ0,pr ∈ Y and ẑ0,du ∈ Y from â(ẑ0,pr, v) = O(v), ∀v ∈ Y , and â(ẑ0,du, v) =
−O0(v), ∀v ∈ Y , respectively. Also, compute ẑqj ∈ Y from â(ẑqj , v) = −aq(ζj , v), ∀v ∈
Y , ∀j ∈ N and ∀q ∈ Q.
4. Calculate and store cpr0 = â(ẑ0,pr, ẑ0,pr); cdu0 = â(ẑ0,du, ẑ0,du); cpr,du0 =
â(ẑ0,pr, ẑ0,du); F prN,j = O(ζj) and F duN,j = O0(ζj), ∀j ∈ N ; Λq,prj = â(ẑ0,pr, ẑqj ) and
Λq,duj = â(ẑ0,du, ẑqj ), ∀j ∈ N and ∀q ∈ Q; Γpqij = â(ẑpi , ẑ

q
j ), ∀i, j ∈ N 2 and ∀p, q ∈ Q2.

This stage requires (NQ+N +2) Y -linear system solves; (N2Q2 +2NQ+3) â-inner
products; and 2N evaluations of linear functionals.

On-line Stage

For each new desired design point µd we then compute the reduced-basis prediction
and error bound based on the quantities computed in the off-line stage.
1. Form AN =

∑Q
q=1 σ

q(µd)Aq and solve for uN ≡ uN (µd) ∈ RN and ψ
N
≡ ψ

N
(µd) ∈

RN from AN uN = F prN and AN ψ
N

= −F duN , respectively.
2. Evaluate the bound average and bound gap as

s̄N = (F duN )TuN−
1

2g(µd)
(
N∑
i=1

N∑
j=1

Q∑
p=1

Q∑
q=1

uN,iψN,jσ
p(µd)σq(µd)Γ

pq
ij +

N∑
j=1

Q∑
q=1

ψN,jσ
q(µd)Λ

q,pr
j +

N∑
j=1

Q∑
q=1

uN,jσ
q(µd)Λ

q,du
j + cpr,du0 ),

and

∆N (µd) =
1

2 g(µd)
×

(
N∑
i=1

N∑
j=1

Q∑
p=1

Q∑
q=1

uN,iuN,jσ
p(µd)σq(µd)Γ

pq
ij + 2

N∑
j=1

Q∑
q=1

uN,jσ
q(µd)Λ

q,pr
j + cpr0 )

1
2×

(
N∑
i=1

N∑
j=1

Q∑
p=1

Q∑
q=1

ψN,iψN,jσ
p(µd)σq(µd)Γ

pq
ij + 2

N∑
j=1

Q∑
q=1

ψN,jσ
q(µd)Λ

q,du
j + cdu0 )

1
2 .

respectively.
For each µd, O(N2Q2 +N3) operations are required to obtain the reduced-basis solu-
tion and the bounds. Since dim(WN ) A dim(Y ), the cost to compute sN (µd), sN (µd),
and ∆N (µd) in the on-line stage will typically be much less than the cost to directly
evaluate u(µd) and s(µd) = O0(u(µd)) from (1).
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Results

Instantiation: Fin Problem

To illustrate our method we consider
the problem of designing the thermal
fin of Figure 1 to cool (say) an elec-
tronic component at the fin base, Γ1.
The ith “radiator” of the fin has ther-
mal conductivity ki (normalized rela-
tive to the conductivity of the central
post); and the fluid surrounding the fin
is characterized by a heat convection
coefficient expressed in nondimensional

k1

k2

k3

k4

k0 = 1

α

β

Bi

Γ1

Figure 1
form by a Biot number, Bi. The fin geometry is described by the radiator length β and
thickness α, both nondimensionalized with respect to the width of the fin base. We
thus obtain P = 7, with a typical point in D ∈ R7 given by µ = {k1, k2, k3, k4,Bi, α, β}.
For the output of interest we choose the mean temperature of the base, s(u) = O0(u) =∫
Γ1

u, which is directly related to the cooling efficiency of the fin.

On the original domain the bilinear and linear forms are given by
∫
Ω0

∇u · ∇v +∑4
i=1 ki

∫
Ωi

∇u · ∇v + Bi
∫
∂Ω\Γ1

uv, and O(v) =
∫
Γ1

v; here Ω0 is the fin central post
domain, and Ωi is the ith radiator domain. (Note O(v) = O0(v), and thus the primal
and dual problems coincide; this particular case is denoted compliance, and leads to
considerable simplification of the numerical procedure.) We then map the domain Ω
to a reference fin geometry Ω̂, shown by solid lines in Figure 1. The problem now takes
the desired form (1) with Y = H1(Ω̂) — more exactly, Y is a very fine (and hence
very high-dimensional) finite element approximation of H1(Ω̂) defined over a suitable
triangulation of Ω̂. We can readily verify that the resulting form a is symmetric and
positive-definite.

Taking advantage of the natural domain decomposition afforded by our mapping,
it is then not difficult to cast the problem such that (3) is satisfied with Q = 16; the σq

induced by the variable geometry appear as domain-dependent effective orthotropic
conductivities and Bi numbers. Choosing â(u, v) =

∑Q
q=1 a

q(u, v) =
∫
Ω̂
∇u · ∇v +∫

∂Ω̂\Γ1
uv, g(µ) = minq∈{1,... ,Q} σq(µ) (the σq are all bounded from below by a positive

constant), we are able to verify (2). Thus all our requirements are honored, and the
bound method can be applied.

Accuracy and Effectivity

We first investigate how the dimension of the reduced-basis space affects the accuracy
of the bounds. We choose for the design space D = [0.1, 10]4 × [0.01, 1.]× [0.1, 0.5]×
[2.0, 3.0], and for µd the value {0.4, 0.6, 0.8, 1.2, 0.1, 0.3, 2.8}. To form the reduced
space we choose randomly N/2 points in D. We plot in Table 1 the bound gap and
effectivity as a function of N .
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N ∆N ηN
10 1.5987× 10−1 2.9947
20 1.5691× 10−2 2.8607
30 2.4267× 10−3 2.7557
40 7.2616× 10−4 2.6250
50 3.0620× 10−4 2.6085

Table 1

As we can see from Table 1, even for small N , the accuracy is very good; further-
more, convergence with N is quite rapid. This is particularly noteworthy given the
high-dimensional parameter space; even with N = 50 points we have less than two
points (effectively) in each parameter coordinate. We also note that the effectivity
remains roughly constant with increasing N : the estimators are not only bounds, but
relatively sharp bounds — good predictors for when N is “large enough.” The be-
havior we observe at this particular value of µd is representative of most points in (a
random sample over) D, however there can certainly be points where the effectivity is
larger: more systematic study is required.

Shape Optimization

Target Temperature

We suppose we wish to find the configuration which yields a base (e.g., chip) temper-
ature of s∗ (say 1.8) to within ε = .01 by varying only the height (α) of the radiators.
To start, we choose a relatively large number of basis functions in the design space D
defined above, and perform the off-line stage of the blackbox method. For efficiency
in the on-line stage, we then enlist only a subset of these basis functions [Kae00] —
those which are closer in the design space to the desired evaluation point — and refine
when higher accuracy is required. A binary chop algorithm, summarized below, is im-
plemented to effect the coupled approximation–optimization; we assume monotonicity
for simplicity of exposition.

for i = 1:maxiter
Choose α := (αl + αr)/2
blackbox for α ⇒ s+N , s−N
d1 := max (|s∗ − s+N |, |s∗ − s−N |)
d2 := min (|s∗ − s+N |, |s∗ − s−N |)
if(d2 > ε)
if(s+N > s∗ and s−N > s∗) αl := α
if(s+N < s∗ and s−N < s∗) αr := α
else N := N +N+

if(d1 < ε) stop
else
N := N +N+

next
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In the particular test case shown in Table 2, we begin with N = 10 points and
set N+ = 10 as well; we initialize αl = 0.1 and αr = 0.5. During the optimization
process, refinement is effected twice, such that a total of N = 30 basis functions are
invoked (considerably less than the 50 available). The savings are significant, yet we
are still ensured, thanks to the bounds, that our design requirement is met to the
desired tolerance of ε = .01. One can also apply a dynamic adaptation strategy in
which only a minimal number of basis functions are generated (initially) in the off-line
stage: if these prove inadequate, we return to the off-line stage for additional basis
functions and also revision of the necessary matrices and inner products.

i ᾱ s+N s−N αl αr
1 0.3 1.683 1.753 0.1 0.5
2 0.2 1.716 2.056 0.1 0.3
3 0.2 1.766 1.807 0.1 0.3
4 0.2 1.771 1.778 0.1 0.3
5 0.15 1.817 1.840 0.1 0.2
6 0.175 1.792 1.806 .15 0.2

Table 2
If we choose a tighter tolerance ε, or if we wish to investigate many different set

points s∗, or if we perform the optimization permitting all 7 design parameters to
vary, we would of course greatly increase the number of output predictions required
— and hence greatly increase the efficiency of the reduced-basis blackbox technique
relative to conventional approaches.

Achievable Set

In multicriterion optimization we consider various (competing) outputs of interest,
say volume, V , and root temperature, s. Changing the dimensions of the fin by
selecting different α and β will (say) decrease the volume of the fin, and hence material
requirements - but also (typically) increase the fin base temperature. It is thus of
interest to determine all possible operating points, that is, to generate the map of the
“achievable set.” In general this will be prohibitively expensive unless one has recourse
to a very low-dimensional representation such as the reduced-basis approximation.

We consider this problem for constant conductivities ki = 1., i = 0, . . . , 4, and
Biot number Bi= 0.001. We then select 100,000 points in the two dimensional design
space [α, β] = [0.1, 0.5]×[2.0, 3.0] and evaluate our bounds for s with an error tolerance
of 0.1%. Since in this design we wish to be sure that the actual temperature will be
less than our prediction, we choose to construct our map based on s+N . We are thus
insured that at each design point the actual temperature will be lower than that on
our curve.

Each evaluation produces a point on the s–V plane, thus generating the achiev-
able set. Obvious optimality conditions require that we remain on the left or lower
boundaries of the achievable set, known as the efficient frontier or trade-off curve in
Pareto analysis. As we can see from Figure 2, we can decrease the volume with no
real increase in temperature up to the point were the left and lower boundaries cross;
after that, the small further possible volume reduction results in a steep rise in base
temperature.
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46. Best N-term capacitance approximation on
sparse grids

P. Oswald1

Introduction

In [GOS99], adaptive sparse grid spaces spanned by a finite number of tensor-product
L2-orthogonal Haar functions have been applied to capacitance calculations on a unit
screen. In this note, we state asymptotically optimal approximation rates for this
problem when choosing the best possible adaptive sparse grid space of a given di-
mension N . We also compare the results with other recent approaches to efficiently
solve this problem and comment on some numerical tests. Details of the proofs and a
discussion of the approximation-theoretical aspects have appeared in [Osw99].

For a flat square screen I2 ≡ [0, 1]2, we consider the single layer potential equation

1
4π

∫
I2

f(y)
|x− y|2

dy = g(x) , x ∈ I2 . (1)

As this problem can be cast in variational form and leads to a symmetricH−1/2-elliptic
problem, Galerkin methods can be set up and allow for a straightforward analysis.
E.g., convergence and error estimates in Sobolev norms (most naturally in the H−1/2-
related energy norm) can be obtained for many natural discretization spaces. There
are two obstacles that trigger further investigations. First, one is interested in as small
as possible computational subspaces since the discretization leads to dense matrices
which is in contrast to the situation in finite element or finite difference methods for
partial differential equations. Several approaches are under investigation (see [GOS99]
for a brief discussion) to overcome this problem. We only mention adaptive wavelet
compression schemes [Dah97, vPS97] and the hp-version of the boundary element
method [Ste96] which will be used for comparison below. These methods also deal
with the second obstacle: solutions of problems such as (1) exhibit very low global
Sobolev smoothness due to dominant corner and edge singularities. For the important
special case g(x) ≡ 1, the so-called capacitance problem

1
4π

∫
I2

f(y)
|x− y|2

dy = 1 , x ∈ I2 , (2)

the variational solution f ∈ H−1/2(I2) does not even belong to L2(I2). This leads
to very slow convergence rates of any standard Galerkin method, both theoretically
and practically. However, in analogy to elliptic problems in polyhedral domains, the
‘bad’ behavior of a solution f of (1) for smooth data g can be separated into a few
singularity components associated with the edges and corners of I2, i.e., one can write

f = fsing + f reg , (3)

1Bell Laboratories, poswald@research.bell-labs.com
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where the singular part fsing is a finite linear combination of specific, prescribed singu-
larity functions (usually composed of terms of the form dist(x,F )α and log(dist(x, F )),
where F is an edge or an vertex of I2) while the regular part can be as smooth as
wanted (limits are set by the smoothness class of g). See [vP89, vPa90] for details
on the singularity decomposition (3) for (1) and similar screen problems. Thus, to
obtain improved rates of convergence it would be enough to adapt the computational
subspace such that it approximates the singularity functions in fsing as well as the
smooth part f reg. In practical algorithms, this basic idea is implemented a priori (e.g.,
by using graded meshes in h- and hp-version boundary element methods [HMS97]) or
by using feedback adaptivity schemes, e.g., based on a posteriori error estimators, as
suggested by different authors [HMS97, Dah97].

Without becoming too detailed, let us mention some theoretical approximation
results for the h- and hp-version of the boundary element method, on the one hand,
and the wavelet schemes, on the other. Throughout the paper, wavelets are semi-
orthogonal spline wavelets of low order m, even though results for this class of ansatz
spaces are valid under much more general assumptions [Dah97]. The boundary element
spaces for the h-version are piecewise polynomials or splines of order m on certain
sequences of partitions of I2 (both quasi-uniform and adaptively refined ones) while
in an hp-method, in addition, the polynomial degree may vary in each element of the
underlying partition. Subsequently, we will specialize to the simplest case m = 1 of
piecewise constant approximation. Our model problem will be (2). From [vPa90] it
follows that the singular part fsing of the solution f of (2) is representable as a sum of
singularity functions, with the leading singularities of the form ∼ dist(x, e)−1/2 near
the interior part of any edge e of I2, and ∼ dist(x,P )γ−1, γ ≈ 0.2966..., if x approaches
a vertex P of I2. This leads to f ∈ H−ε(I2) for any ε > 0, a result which brakes down
(due to the edge singularity) for ε = 0. Throughout the paper, the notation ε stands
for an arbitrarily small positive parameter.

To make a fair comparison between different approximation methods, we will relate
error quantities to the dimension N = dim VN of the computational subspace VN
from which the Galerkin solution is determined, and not to a meshsize parameter of
the underlying partition or to the level number of a space in a wavelet multiresolution
analysis. We admit that this way of comparison is still disputable since computational
work and storage limitations may be quite different for subspaces with the same N .
All estimates are given for the best approximations in the H−1/2(I2) norm,

eN(f)−1/2 = inf
vN∈VN

‖f − vN‖H−1/2 ,

which is equivalent to estimating the error in energy norm between the Galerkin
solution fN ∈ VN and the solution f of (2). Moreover, capacitance errors δN ≡
|C − CN |, where

C =
1
4π

∫
I2

f(y) dy , CN =
1
4π

∫
I2

fN(y) dy , (4)

are covered, too, since

δN = C − CN G ‖f − fN‖2H−1/2 G eN (f)2−1/2 . (5)
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• h-version with quasi-uniform partitions and fixed polynomial degree resp. non-
adaptive wavelet spaces. Here, standard estimates

eN (u)−1/2 ≤ Ch
t+1/2
N ‖u‖Ht , u ∈ Ht(I2) , −1/2 < t ≤ m ,

hold with a mesh parameter hN ≈ N−1/2, and lead in conjunction with the
above regularity result for f to the estimate

eN(f)−1/2 = O(N−(1/4−ε)) , N → ∞ , (6)

The asymptotic behavior in (6) is independent of m, and much worse than the
saturation order O(N−(m/2+1/4)) valid for approximating smooth functions from
Hm(I2) with respect to the same spaces VN .

• h-version with graded meshes. The estimate (6) can be improved if graded
meshes are allowed for partitioning I2, see [vPa90]. For I2, these are based
on tensor-product partitions where the univariate partitions have n G

√
N grid

points ξi ∈ (0, 1) which behave like ∼ (i/n)β near the left endpoint (analogous
refinement is assumed at the right endpoint of [0, 1]). For appropriate β, the
above mentioned saturation order can be reached:

eN(f)−1/2 = O(N−(1/4+m/2)) , N → ∞ , (7)

for the associated spaces of piecewise polynomials or splines of order m on the
above partitions, see [vP89, vPa90]. This improvement is achieved by allowing
high aspect ratios of the rectangles (anisotropic refinement) near the edges.

• hp-version on geometric meshes. The best asymptotic estimates are known for
the hp-method and a geometric tensor-product mesh (now the univariate meshes
are given by ξi ∼ σn/2−i, σ < 1, near the left endpoint of [0, 1]). The result for
the particular case under consideration (see [HMS97, Ste96]) is

eN(f)−1/2 = O(e−cN
1/4

) , N → ∞ . (8)

• Adaptive wavelet approximation. The basic idea is to determine a wavelet space
VN as the linear span of N carefully selected wavelets ψλ from different levels
of the underlying multiresolution analysis. Theoretically, assuming that f =∑
λ cλψλ is decomposed into a wavelet series, and that Ψ = {ψλ} forms a Riesz

basis in H−1/2, the best one can do is to select the terms with the N largest
|cλ|. An algorithm which uses this basic idea has been described in [Dah97]. The
supporting approximation-theoretical result behind it has been known for some
years [DJP92, Osw90]. It is now referred to under the name nonlinear N -term
approximation and has found important applications to image compression and
adaptive algorithms, see [DeV98]. The bad news, however, is that for our f this
only leads to an estimate of

eN(f)−1/2 = O(N−(1/2−ε)) , N → ∞ , (9)

again independently of m. This is a slight improvement over (6) but even the h-
version on optimally chosen graded meshes with piecewise constants does asymp-
totically better than any adaptive wavelet space. The main reason is that for
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the wavelet bases considered in [Dah97, DeV98] (and in most of the literature on
solving boundary integral equations by wavelet methods), the nonlinear N -term
approximation models optimal isotropic local h-refinement. Thus, for resolving
the dominating edge singularities in the solution of (2), too many wavelet func-
tions are necessary to improve the resolution along edges. This effect does not
occur for point singularities and is practically invisible for edge singularities that
are weaker than those exhibited by the solutions of screen problems (compare
[DD97]).

Clearly, from the above one would prefer graded resp. geometric meshes (combined
with h- resp. hp-methods) over wavelet type methods for the application under con-
sideration. The exponential convergence of the hp-method is hard to beat in the
asymptotic range. However, since the implementation of an hp-method for integral
equations is by no means trivial, simpler and less optimal methods may still have a
chance. E.g., well-understood adaptivity and compression strategies, preconditioning,
and canonical data structures are some advantages of wavelet methods that one might
wish to explore.

Improving upon the relatively weak approximation potential for solutions of screen
problems while still working in a wavelet multiresolution analysis is suggested by the
results on adaptive sparse grid spaces in [GOS99]. In the present note we describe the
approximation rates obtainable from these spaces in more quantitative terms. Roughly
speaking, our general claim is that under the same assumptions on f , by changing from
the traditional, isotropic wavelet constructions on I2 to tensor-product, anisotropic
wavelet systems Ψ∗, the unsatisfactory rates of (9) can be replaced by

e∗N (f)−1/2 = O(N−(1/4+m)) , N → ∞ , (10)

where e∗N (f)−1/2 describes now the best N -term approximation with respect to the
new wavelet system Ψ∗. Our point is that, even without going to graded meshes, we
can expect good results if standard wavelet systems are replaced by tensor-product
wavelet systems. We give precise statements for the case m = 1 (piecewise constant
approximation) in the next section. Numerical experiments are presented in the last
part.

N-TERM APPROXIMATION BY HAAR FUNC-
TIONS

Let us give the definition of the Haar-wavelet systems (m = 1) under consideration.
The characteristic function of a set Ω will be denoted by χΩ. Let Dj be the system
of dyadic intervals ∆ of length |∆| = 2−j , j ≥ 0, of I ≡ [0, 1]. Any ∆ ∈ Dj uniquely
splits into left (∆+) and right (∆−) half-intervals from Dj+1. Set

φ∆ = |∆|−1/2χ∆ , ψ∆ = |∆|−1/2(χ∆+ − χ∆−) , ∆ ∈ D = ∪j≥0Dj ,

for the univariate scaled box functions and Haar functions, respectively. The standard
bivariate Haar system is given by

ΨH = ∪j≥0 Ψj ,
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where Ψ0 consists of the only function χI2 , and

Ψj = {ψ∆(x1)φ∆′(x2), φ∆(x1)ψ∆′(x2), ψ∆(x1)ψ∆′(x2), ∆,∆′ ∈ Dj−1}

for j ≥ 1.The supports of Haar functions from Ψj are dyadic squares of sidelength
2−j+1, j ≥ 1. In contrast, the Haar functions in the tensor-product bivariate Haar
system

Ψ∗H = ∪j1,j2≥0 Ψ∗j1,j2 ,

where

Ψ∗j1,j2 = {ψ∆(x1)ψ∆′(x2) , ∆ ∈ Dj1−1,∆′ ∈ Dj2−1} ,

possess rectangular support. For notational convenience, we defined D−1 = {[0, 2]}
and ψ[0,2] = φI . Obviously, both systems are complete orthonormal systems in L2(I2).

We are interested in the behavior of best N -term approximations with respect to
Ψ∗H

e∗N(f)s = inf
Ψ∗
N≡{ψ1,... ,ψN}⊂Ψ∗

H

inf
vN∈V ∗

N≡spanΨ∗
N

‖f − vN‖Hs , N ≥ 1 , (11)

in the Hs(I2)-norm. Due to the approximation and smoothness properties of piecewise
constant functions, only the range −1 < s < 1/2 is of interest. Two main theorems
are established (for a detailed exposition and proofs, we refer to [Osw99]). The first
theorem serves functions from spaces of functions with dominating mixed derivatives
which can be defined as tensor products of univariate Sobolev spaces:

Ht
mix(I

2) = Ht(I)⊗Ht(I) , −∞ < t < ∞ .

For t = 0, we have H0
mix(I

2) ∼= L2(I2) while f ∈ H1
mix(I

2) if f belongs to H1(I2) and
additionally possesses a weak mixed derivative ∂11f ∈ L2(I2).

Theorem 1 Let f ∈ Ht
mix(I

2) for some −1/2 < t ≤ 1. Then its best N -term approx-
imations with respect to Ψ∗H in Hs(I2), N ≥ 1, satisfy

e∗N (f)s ≤ C‖f‖Ht
mix


N−(t−s) , 0 < s < 1/2 , s < t ≤ 1 ,
N−t(1 + logN)t , s = 0 < t < 1 ,
N−1(1 + logN)3/2 , s = 0 , t = 1 ,

N−(t−s/2) , −1 < s < 0 , s/2 < t ≤ 1 .

In particular, if f ∈ H1
mix(I

2) then

e∗N (f)−1/2 ≤ CN−5/4‖f‖H1
mix

, N → ∞ . (12)

This estimate is applicable to the smooth part f reg of solutions to (1), to achieve
the O(N−5/4) error bound in practice, one can, e.g., take subspaces spanned by the
following subset of G 2J Haar functions:

Ψ∗H,J = ∪j1,j2≥0 : j1+j2+ 1
4 max(j1,j2)≤ 9

8J
Ψ∗j1,j2 . (13)
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Note that Ψ∗H,J spans a subspace of the standard sparse grid space of level J .
The second result covers certain types of singularity functions. We call f ∈ L1(I2)

an edge singularity function with exponent α ∈ [0, 1) if it has a continuous derivative
∂11f in the open square (0, 1)2 and satisfies

|∂klf(x1, x2)| ≤ C(min(x1, 1− x1))−α−k(min(x2, 1− x2))−α−l

for all (x1, x2) ∈ (0, 1)2 and 0 ≤ k, l ≤ 1. E.g., the singular part fsing in (3) of the
solution f of (2) possesses this property with α = 0.7034... (a more detailed analysis
shows that for the capacitance problem better representations of fsing can be found
which would lead to edge singularity functions with α = 1/2 as the appropriate value).

Theorem 2 Let −1 < s < 1/2, and f be an edge singularity function with exponent
α, where 0 ≤ α < min(1/2− s, 1/2− s/2). Then f ∈ Hs(I2) and

e∗N (f)s ≤ C


N−(1−s) , 0 < s < 1/2 ,

N−1(logN)3/2 , s = 0 ,
N−(1−s/2) , −1 < s < 0 ,

N → ∞ . (14)

Roughly speaking, by optimally choosing N Haar functions from Ψ∗H(I
2), an edge

singularity function with exponent α satisfying the above condition possesses the same
asymptotic N -term approximation rate as smooth functions from H1

mix(I
2). For the

case s = −1/2, we can have 0 ≤ α < 3/4 which leads according to our above remarks
to

e∗N(f
sing)−1/2 ≤ CN−5/4 , N → ∞ , (15)

for the singular part of the solution f of the capacitance problem (2). Since, at the
same time, we can assume that f reg ∈ H1

mix(I
2) in (3), the two estimates (12) and (15)

yield an analogous estimate for f itself. Finally, from (4) we see that the capacitance
C of the unit square screen can be approximated at a rate of O(N−5/2) if optimal
selections of N Haar functions from Ψ∗H(I

2) are used to build discretization spaces.

NUMERICAL TESTS

In Section 3.3-4 of [GOS99], capacitance approximations have been computed for full
grid (fg-), sparse grid (sg-) and adaptive sparse grid (asg-) spaces. To reach a relative
capacitance error δrelN of approximately 10−3, subspaces VN of dimension N = 65536,
N = 1280, and N = 68, respectively, were needed. The proofs of Theorem 1 and
2 suggest the use of new asg-spaces with slightly improved convergence properties
(see Table 1). In order to achieve the above-mentioned asymptotical error estimate
O(N−5/2), it should be sufficient to take the union of the set Ψ∗J0,H defined in (13)
which serves the regular part f reg, and a set Ψ∗N consisting of N G 2J0 functions from
Ψ∗H(I

2) producing the N largest contributions to the upper bound

‖f sing‖2H−1/2 ≤ C
∑
j1,j2

∑
ψ∈Ψ∗

j1,j2

2−max(j1,j2)|cψ(fsing)|2 (16)
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Table 1: Relative capacitance errors for various VN
fg-spaces sg-spaces asg-spaces [GOS99] new asg-spaces
N δrelN N δrelN N δrelN N δrelN
4 0.08302 3 0.08302 20 0.00921 9 0.02516
16 0.04584 8 0.04589 32 0.00495 17 0.00738
64 0.02490 20 0.02511 44 0.00268 25 0.00254

256 0.01310 48 0.01340 56 0.00150 33 0.00130
1024 0.00677 112 0.00708 68 0.00090 41 0.00098
4096 0.00346 256 0.00373 80 0.00060 61 0.00069

16384 0.00175 576 0.00197 92 0.00044 81 0.00051
65536 0.00089 1280 0.00105 104 0.00037 101 0.00036

for the singular part fsing from (3). The proof of Theorem 2 also shows that the
unknown Haar-Fourier coefficients cψ(fsing) can be replaced by computable upper
bounds. These, in turn, can be obtained from using appropriate majorants for fsing

(such as appearing in the definition of edge singularity functions with exponent α or
obtained directly from the available singularity decompositions, see [HMS97, GOS99]).
Tuning N , J0, and choosing different majorants may lead to further improvement.

In our experiments, the sets Ψ∗N have been obtained from thresholding the sequence
{2−max(j1,j2)|cψ(fα)|2} for the function fα(x1, x2) = x−α2 (which mimics a singularity
along the edge x2 = 0 of the unit square) and a straightforward symmetrization step
(note that for the solution of (2) satisfies f(x1, x2) = f(x1, 1 − x2) = f(1 − x1, x2)).
Using the values α = 1/2, J0 = 3, we found that the above-mentioned relative error
of 10−3 can be reached by using 41 ansatz functions (the constant function from Ψ∗0,0
and four functions with support along the edges from each of the sets Ψ∗0,j ∪ Ψ∗j,0,
j = 2, . . . , 11). This hints at the importance of dealing with the edge singularities
adequately, and in the first place.

We also performed some a posteriori analysis by first computing the numerical
solution on a sufficiently large adaptive sparse grid space (dimensions Nmax = 277 and
Nmax = 409 have been tried), and then applying the above thresholding procedure
to the obtained set of approximate Fourier coefficients. For small N << Nmax, this
procedure leads to essentially the same spaces as used to produce the results of the
last column of Table 1. Lack of space prevents us from giving more details (see the
extended version of this note at http://cm.bell-labs.com/who/poswald).

Conclusion

It is demonstrated that properly selected, small subsystems of the tensor-product
Haar system can be used as ansatz functions in a Galerkin scheme for the single
layer potential equation to obtain the capacitance of a square screen with a relative
accuracy of up to 10−4 in a highly efficient way. Theoretical support is given by
providing sharp asymptotic estimates for the best N -term approximation with regard
to this Haar system in Sobolev norms and various classes of functions (including those
typical for the solutions of the single layer potential equation), and comparing them
with analogous results for other popular approximation schemes for this problem.
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The results also highlight, under model assumptions, the importance of anisotropic
refinement along the edges of the screen and represent an interesting improvement
over the use of graded meshes. The advantage is that only mesh-structures based on
coordinate-wise dyadic refinement need to be implemented and that in an adaptive
scheme that selects the right subset of the Haar system on this mesh-structure, the
overall approximation rate measured in terms of dimensions of the resulting compu-
tational subspaces is even better.
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47. Shape Optimization for an Acoustic Problem

H. Suito 1, H. Kawarada 2

Introduction

In this paper, an optimal shape design for an interfacial boundary between different
media, through which sound propagates, is discussed. For example, designs for sound-
proof walls along high-speed train routes or highways, walls of concert halls, etc are
included in the same category.

For the above-mentioned problems, an algorithm to search for an optimal shape
was proposed and tested numerically in the three-dimensional problems in [KS99], in
which Fuzzy Optimization Method (FOM)[KS97] was used effectively.

Originally, FOM was invented as a local minimizer search algorithm. In order
to look for a global minimizer, Multi-start Fuzzy Optimization Method (MS-FOM),
which is a hybrid algorithm with FOM and Genetic Algorithms (GAs), has been
developed on the basis of FOM[KOPS98].

An application of MS-FOM to such optimization problems makes it possible not
only to look for a global minimizer but also to clarify the structure of the manifold
of the cost functional defined in the parameter space. This fact depends mainly upon
the functions of MS-FOM, one of which is counting-up of all local minimizers.

Here, the algorithm to search for an optimal shape by use of MSFOM is briefly
stated and numerical results using it are presented. An observation of such results
indicates the rather precise structure of the cost manifold, i.e., the distribution of local
maximizers and minimizers in the parameter space. Such observation may be impos-
sible by an application of other global minimizer searching algorithms, for example,
Genetic Algorithms.

Finally, physical meanings of a set of local maximizers will be discussed from the
view point of resonance phenomena corresponding to the variations of eigenfrequencies
of coupled media based on the shape change of the interfacial boundary. Through
the discussion mentioned above, shape optimization for an acoustic problem arouses
careful treatment to look for a global minimizer.

Shape optimization problem

Configuration

• Γtop and Γbottom are rigid boundaries, i.e., the density of these walls is infinity.
Hence, a sound wave is completely reflected at these boundaries.

• Γin is a vibrating plate which generates a sound wave.
1Department of Urban Environment Systems, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba,

263-8522, Japan. suito@tu.chiba-u.ac.jp
2Department of Urban Environment Systems, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba,

263-8522, Japan. kawarada@tu.chiba-u.ac.jp
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Figure 1: Geometry

• Ω1 is occupied by water.

• Ω2 is assumed to be made of pine timber, the role of which is to absorb the
sound wave coming through Ω1.

• Γ is the boundary between Ω1 and Ω2. We will try to optimize its shape to
transmit the sound wave into Ω2 as much as possible.

• Ω3 is a so-called Fictitious Domain, i.e., artificial domain to approximate the
boundary condition at infinity. In this domain, Helmholtz eq. with complex
wave number is assumed, which is derived from Navier-Stokes eq. including the
viscosity term. A sound wave transmitted from Ω2 is almost completely damped
in this domain and is not reflected into Ω2.

• Γabsorb, on which the amplitude of an absorbed sound wave in Ω2 is computed.

• Γout, on which no sound waves exist because of the damping effect in the domain
Ω3.

• Ω = Ω1 ∪ Γ ∪ Ω2 ∪ Ω3 = (0, lx)× (0, ly)

• u(i)(x, y) (i = 1, 2, 3) : Complex sound pressure.

• ki (i = 1, 2, 3) : Wave number.

• ω : Angular velocity of the incident wave.

• ρi (i = 1, 2, 3) : Density of medium.

• n : Outward normal vector on the boundaries.

• Γ : Interfacial boundary between Ω1 and Ω2.

• α : An incident angle of plane wave.

where i = 1 means water, i = 2 means pine and i = 3 means the fictitious domain.
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Parameterization of the interfacial boundary

In order to parameterize the shape of the interfacial boundary, a scaling function for
wavelet is introduced as follows;
Let

η0(x) =
{

1 x ∈ [0, 1],
0 else,

(1)

f0(x) = (−0.585x2 + 1.867x)η0(x), (2)
f1(x) = (1.170x2 − 2.734x+ 1.282)η0(x), (3)
f2(x) = (0.585x2 + 0.867x− 0.282)η0(x). (4)

and

φ(x) = f0(x) + f1(x− 1) + f2(x− 2). (5)

We define

φL,m(x) =
√

NL · φ(NLx−m) (m ∈ Z) (6)

where NL = 2L. Then {φL,m} constitutes an orthonormal set, i.e.,∫
R

φL,mφL,m′dx = δm,m′ . (7)

By using these scaling functions, we parameterize the interfacial boundary by means
of a superposition of φL,m(y), i.e.,

Γ(y) =
∑
m

γm · φL,m(y). (8)

Admissible set for the deformation of the interfacial boundary is defined by

A1 = {γm ∈ R| |γm| ≤ K (m = 1, 2, 3, · · · ,M1)} . (9)

Definition of optimization problem

Define the state equation;

(*+ k2i )u
(i)(Γ, a) = 0 in Ωi, (i = 1, 2, 3),

u(1)(Γ, a) = u(2)(Γ, a) = a on Γ,
∂u(i)(Γ, a)

∂n
= 0 on Γtop ∪ Γbottom (i = 1, 2, 3),

u(1)(Γ, a) = eik1cosαlxeik1sinαy on Γin,
u(2)(Γ, a) = 0 on Γout,

(10)
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and the cost function;

Jc(Γ, a) = −
∫

Γabsorb

∣∣∣u(2)(Γ, a)∣∣∣2 dΓ
+
1
ε

∫
Γ

∣∣∣∣ 1ρ1 ∂u(1)(Γ, a)
∂n

− 1
ρ2

∂u(2)(Γ, a)
∂n

∣∣∣∣2 dΓ. (11)

In the definition of the cost function, the constraint caused by the transmission con-
dition is included as a penalty term with a small positive parameter ε.

The Dirichlet datum a is defined on Γ by

a =
∑
m

am cos(
πm

ly
y). (12)

Admissible set for a is represented by

A2 = {amm′ ∈ C (m,m′ = 0, 1, 2, · · · ,M2)||amm′ | ≤ L} . (13)

Therefore, our minimization problem is;

[Pr]: Minimize Jc(Γ, a) for (Γ, a) ∈ A = A1 ×A2.

Numerical solution of Helmholtz equation

In order to compute the sound field in the domain bounded by a complicated interfacial
boundary, the coordinate transformation is used as follows;

1. Generate mesh system in the deformed domain, which is the transformation
from physical domain to computational one;

x = x(ξ, η), y = y(ξ, η). (14)

2. Transform differential operators by use of (14).

3. Transform Helmholtz eq. by use of (14).

Transformed Helmholtz equation is discretized by use of finite difference method.
Discretized Helmholtz eq. constitutes a large-scale system of equations. In order to
solve this system of equations, GPBi-CG method[Zha97] is adopted.

Hybridized algorithm by FOM and GAs

In this section, Multi-start Fuzzy Optimization Method, which is a hybridized algo-
rithm by Fuzzy Optimization Method (FOM) and Genetic Algorithms (GAs), is briefly
summarized. Let us define operators F , M and R as follows.

• F : Algorithm due to Fuzzy Optimization Method. This procedure is a down-hill
process on the cost manifold. (Refer to [KS97] for the detailed implementations.)
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• M : Mountain crossing algorithm. This procedure is a up-hill process on the
cost manifold. (Refer to [KOPS98] for the detailed implementations.)

• R : Rearrangement algorithm by GAs. In this procedure, starting points for the
next down-hill process are rearranged by use of GAs.

Solution algorithm of (Pr)

The algorithm of Multi-start FOM is stated in the following way;

Step 1 Give an initial population W 0 (the set of searchers).

Step 2 Compute Un := FWn (the set of local minimizers obtained).

Step 3 Compute V n := MUn (the set of quasi-local maximizers obtained).

Step 4 Compute Wn := RV n (the set of rearranged searchers).

Step 5 Increase generation number n := n+1 and repeat steps from 2 to 4 until the
generation number n is beyond the preset one.

It should be noted that the operation R is applied in order to obtain a good viewing
point, which is taken by the surviving searchers through the fitness selection rule. It is
observed through our numerical experiments that the viewpoints for restarting initial
points are rather effective.

Results and discussions

Local minima, local maxima and a global minimum

As mentioned in the previous section, MS-FOM makes it possible to discover a set of
local minimizers. In fact, MS-FOM found at least four local minimizers A, B, C and D.
However, MS-FOM does not guarantee non-existence of local minimizers apart from
them. The values of the cost function of these local minimizers are 0.01039, 0.02800,
0.01758 and 0.02042, respectively. The local minimum A is the smallest among them
and is concluded to be the global minimum. Figures from 2 to 5 show the sound fields
corresponding to these local minimizers, respectively. Obviously, they correspond to
the different shapes of the interfacial boundary.

Figure 2: Real part of sound pressure corresponding to local minimizer A
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Figure 3: Real part of sound pressure corresponding to local minimizer B

Figure 4: Real part of sound pressure corresponding to local minimizer C

Figure 5: Real part of sound pressure corresponding to local minimizer D
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Perspective of the cost manifold

In order to characterize the cost manifold, we draw some one-dimensional cross-
sections of the cost manifold. Each one-dimensional cross section is a straight line
in the 18-dimensional parameter space connecting two local minimizers. Concretely,
figure 6 shows the values of the cost function on a straight line connecting local min-
imizers A and B, where A is the global minimizer. In this figure, 0 and 1 on the
horizontal axis correspond to the local minimizers A and B, respectively. Figure 7
and 8 show the values of the cost function on straight lines connecting B and C, and
B and D, respectively. We can see from these figures that the cost manifold has a lot
of local minimizers and maximizers. Furthermore, we conjecture from these figures
that the cost manifold originally forms convex envelopes and expect that the global
minimizer concluded in our computations seems to be a reliable global minimizer.
Then, what physical meanings do local maximizers have?

10

100

1000

10000

100000

1e+06

1e+07

1e+08

-1 -0.5 0 0.5 1 1.5 2

J*
10

00

Position

Cost function
Local minimum A
Local minimum B

Figure 6: A cross section of the cost manifold connecting local minimizers A and B
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Figure 7: A cross section of the cost manifold connecting local minimizers B and C

A reason of the existence of several local maximizers shown in figures 6, 7 and 8
may be that each local maximizer corresponds to the resonance frequencies of sound
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Figure 8: A cross section of the cost manifold connecting local minimizers B and D

propagation in coupled media. The eigenfrequencies of coupled media are sensitive
to the interfacial boundary between them. We checked similar phenomena in such
a case with a simpler geometry through numerical experiments, in which numerical
eigenfrequencies coincided with theoretical ones. In order to provide evidence for
such a conjecture, computations of eigenfrequencies to the domain with the related
interfacial boundary remain.

Finally, it should be emphasized that MS-FOM has not found out all local minimiz-
ers but some of them, however, it counted up the local minimizers very efficiently and
it was able to find out the reliable global minimizer. This fact shows the usefulness of
our search strategy such as repeating up-down procedures and rearrangement of start-
ing points mentioned in the previous section, which makes it possible to investigate
the perspective of the cost manifold.

Conclusions

The shape design of the interfacial boundary in order to minimize the amplitude of
a reflected wave was discussed by use of an algorithm based on MS-FOM. Since the
optimization problem with respect to sound propagation includes resonance structure,
the cost manifold has very complicated shapes. The numerical results show that
the algorithm works well for such problems by avoiding the influence of resonance
phenomena.
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