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31. A Defect Correction Method for the Retrieval of
Acoustics Waves

G.S. Djambazov1, C.-H. Lai2, K.A. Pericleous3

Introduction

For a given mathematical problem and a given approximate solution, the residue or
defect may be defined as a quantity to measure how well the problem has been solved.
Such information may then be used in a simplified version of the original mathematical
problem to provide an appropriate correction quantity. The correction can then be
applied to correct the approximate solution in order to obtain a better approximate
solution to the original mathematical problem. Such idea has been around for a long
time and in fact has been used in a number of different ways.

A famous example of defect correction is the computation of a solution to the
nonlinear equation f(x) = 0. Suppose x̄ is an approximate solution, then −f (x̄) is the
defect. One possible version of the original problem is to define f̄(x) ≡ f ′(x̄)(x− x̄)+
f(x̄) = 0. In fact, if one replaces x−x̄ as v, then v is the correction which is obtained by
solving f ′(x̄)v = −f (x̄) and an updated approximation can be obtained by evaluating
x := x̄+v. Most defect correction are used in conjunction with discretisation methods
and two-level multigrid methods [BS84]. This paper is not intended to give an overview
of defect correction methods but to use the basic concept of a defect correction in
conjunction with fluctuations in flow field variables for sound and noise retrieval.

Recall that sound waves - manifested as pressure fluctuations - are typically sev-
eral orders of magnitude smaller than the pressure variations in the flow field that
account for flow acceleration. Furthermore, they propagate at the speed of sound in
the medium, not as a transported fluid quantity. A decomposition of variables was
first introduced in [DLP97] and has been further examined in [Dja98] to include three
types of components. These components include (1) the mean flow, (2) flow pertur-
bations or aerodynamic sources of sound, and (3) the acoustic perturbation. We have
demonstrated the accurate computation of (1) and (2) in [DLP98]. Mathematically,
the flow variable U may be written as ū + u where ū denotes the mean flow and part
of aerodynamic sources of sound and u denotes the remaining part of the aerodynamic
sources of sound and the acoustic perturbation.

While flow perturbation or aerodynamic sources of sound may be easier to recover,
it is not true for the acoustic perturbation because of its comparatively small magni-
tude. In fact, the solutions of the Reynolds averaged Navier-Stokes equations reveal
only a truncated part of the full physical quantities. This paper follows the basic
principle of the defect correction as discussed above and applies the concept to the
recovery of the propagating acoustic perturbation. The method relies on the use of
a lower order partial differential equation defined on the same computational domain
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where a residue exists such that the acoustic perturbation may be retrieved through
a properly defined coarse mesh.

This paper is organised as follows. First, derivation of a lower order partial differ-
ential equation resulting from the Navier-Stokes equations is given. Second, accurate
representation of residue on a coarse mesh is discussed. The coarse mesh is designed
in such a way as to allow various frequencies of noise to be studied. Suitable interpola-
tion operators are studied for the two different meshes. Third, 1-D and 2-D examples
are used to illustrate the concept. Finally, future work is discussed.

The Defect Correction Method

The aim here is to solve the non-linear equation

LU := L(ū + u) = 0 (1)

where L is a non-linear operator depending on U := ū + u. Using the concept of
decomposition of variable, U is now written as ū + u, where ū is the mean flow and u
is the acoustic perturbation. Note that u � ū. In the case of sound generated by the
motion of fluid, it is natural to imagine L as the Navier-Stokes operator. For a 2-D
problem,

ū =


 ρ̄

v̄1

v̄2


 u =


 ρ

v1

v2




where ρ is the density of fluid and v1 and v2 are the velocity components along the
two spatial axes. Using the summation notation of subscripts, the 2-D Navier-Stokes
problem Lu = 0 is written as

∂ρ

∂t
+

∂ρvj

∂xj
= 0

and
∂vi

∂t
+ vj

∂vi

∂xj
+

1
ρ

∂P

∂xi
− fi

ρ
= 0

where P is the pressure and fi is the external force along i-th axis.
Suppose (1) may be split and re-written as

L(ū + u) ≡ Lū + E{ū}u + K[ū, u] (2)

where E{ū} is an operator depending on the knowledge of ū and K[ū, u] is a func-
tional depending on the knowledge of both ū and u. Following the concept of defect
correction, ū may be considered as an approximate solution to (1). Hence one can
evaluate the residue of (1) as

R ≡ L(ū + u)− Lū = −Lū

which may then be substituted into (2) to give

E{ū}u + K[ū, u] = R (3)
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In many cases, K[ū, u] is small and can then be neglected. In those cases, the problem
in (3) is a linear problem and may be solved more easily to obtain the acoustics
fluctuation u. A non-linear iterative solver is required in order to obtain u for cases
when K[ū, u] is not negligible. Finally, to obtain the approximate solution ū, one only
needs to solve Lū = 0.

Expanding L(ū + u) = 0 for L being the Navier-Stokes operator and re-arranging
we obtain
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It can be seen that (4) may be written in the form of (3) where

E{ū}u =

[
∂ρ
∂t + v̄j

∂ρ
∂xj

+ ρ̄
∂vj

∂xj
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(5)

K[ū, u] =

[
vj

∂(ρ̄+ρ)
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+ ρ
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ρ
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]
≡ −Lū (7)

From the knowledge of physics of fluids, the acoustic perturbations ρ and vj are of
very small magnitude (this is not true for their derivatives), therefore, K may be con-
sidered negligible due to the reason that any feedback from the propagating waves to
the flow can be completely ignored, except in some cases of acoustic resonance, which
is impossible to occur in the examples of this paper. Hence the equation E{ū}u = R,
with E given by (5), which is known as the linearised Euler equation, can be solved in
an easier way. The remaining question is to obtain the approximate solution ū to the
original problem (2). It is well known that CFD analysis packages provide excellent
methods for the solution of Lū = 0. Therefore one requires to use a Reynolds aver-
aged Navier-Stokes package supplemented with turbulence models such as [CPC95]
to provide a solution of ū. Physically, one requires ū to be as accurate as possible to
capture all the physics such as turbulence and vortices.

A Two-Level Numerical Scheme

In order to simulate accurately the approximate solution, ū, to the original problem,
LU = 0, the QUICK differencing scheme [Leo79] is used which produces sufficiently
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accurate results of ū for the purpose of evaluating the residue as defined in (7). A
sufficiently fine mesh has to be used in order to preserve vorticity motion. How-
ever, situations are different for the numerical solutions of linearised Euler equations
[DLP97][Dja98], where the mesh has to be much coarser in order to obey Courant
limit and to account for the fact that the acoustic wavelength is larger than the vortex
diameter. An account on various high order finite difference schemes and its mesh
requirements for the numerical solution of linearised Euler equations can be found in
[Dja98]. After evaluating the residue on the fine mesh, it is then required to transfer
these residuals onto the coarser mesh. Physically, the residue is in fact the sound
source that will disappear without the proper retrieval technique as discussed in this
paper.

Let h denote the mesh to be used in the Reynolds averaged Navier-Stokes solver.
Instead of evaluating ū, one would solve the discretised approximation Lhūh = 0
to obtain ūh. The residue on the fine mesh h can be computed as Luh by means
of a higher order approximation [Dja98]. Let H denote the mesh for the linearised
Euler equations solver. Again instead of evaluating u, one would solve the discretised
approximation EH{ūH}uH = RH to obtain uH . Here RH is the projection of R onto
the mesh H . Let I{h,H} be a projection operator to project the residue computed on
the fine mesh h to the coarser mesh H . The projected residue can then be used in
the numerical solutions of linearised Euler equations. Let I{H,h} be an interpolation
operator to interpolate the acoustic signals from the coarser mesh back to the finer
mesh. Therefore the two-level numerical scheme is

For non-resonance problems:
Solve Lhūh = 0
RH := −I{h,H}Lūh

ūH := I{h,H}ūh

Solve EH{ūH}uH = RH

uh := I{H,h}uH

ū := ūh + uh

Note that RH cannot be computed as LI{h,H}ūh because L is a non-linear operator.
In the actual implementation, a pressure-density relation which also defines the

speed of sound c in air is used:

∂P

∂ρ
= c2 ≈ 1.4

P̄

ρ̄
(8)

and the first component of the linearised Euler equations in (5) becomes

∂P

∂t
+ v̄j

∂P

∂xj
+ ρ̄c2 ∂vj

∂xj
= −c2[

∂ρ̄

∂t
+ v̄j

∂ρ̄

∂xj
+ ρ̄

∂v̄j

∂xj
] (9)

The purpose of this substitution is to make sure that the new fluctuations P and vi do
not contain a hydrodynamic component, and hence it allows them to be resolved on
regular Cartesian meshes [Dja98] which is essential for the accurate representation of
the acoustic waves or the fluctuation quantity u. On the other hand, an unstructured
mesh is usually used to obtain ūh. The two different meshes overlapped one another on
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the computational domain. The computational domain for the linearised Euler equa-
tions is not necessarily exactly the same as the one for the CFD solutions. However,
the computational domain for the linearised Euler equations must be large enough to
contain the longest wavelength of a particular problem under consideration. The nu-
merical examples as shown in next section do not involve any solid objects, therefore
I{h,H} and I{H,h} are simply arithmetic averaging processes.

Numerical Examples

To test the feasibility of this approach the simple 1-D example is considered of an
initial-value wave propagation problem with exact solution

P = f(x− ct) + f(x + ct)
ρ̄cv1 = f(x− ct) − f(x + ct)

f(x) =
{

A
2 (1 + cos 2π x

λ ), |x| < λ
2

0, |x| ≥ λ
2

(10)

where A is the amplitude and λ is the wavelength of the pressure pulses that start
from the origin (x = 0) at t = 0.
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Figure 1: Analytic and preliminary CFD solutions of test problem

For the fine grid problem, Lhūh = 0, the initial conditions P = 2f (x) and v̄1 = 0
were prescribed for the CFD solution which uses a structured finite volume code
[CHA95] with QUICK differencing scheme for the momentum equations. The time
dependent result pictured in Figure 1 agrees with the analytic solution only in phase,
but not in amplitude. Refining of the mesh does not improve the result at all. Since
the problem is symmetrical with respect to the origin, only the right part (x > 0) is
shown (and solved for). Uniform mesh was used to avoid averaging of the residual
sources with this test. The time step of the CFD simulation can be several times
larger than the time step of the explicit Euler solver (which has to obey the Courant
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limit). In this example the CFD makes 12.5 time steps per cycle with 20 points per
wavelength. In fact, time steps smaller than this produce greater numerical errors
over the same propagation distance. This is most probably due to the false diffusion
of the CFD schemes which accumulates with every time step.
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Figure 2: Defect corrected solution of test problem

The coarse grid solver, EH{ūH}uH = RH , or the acoustic module starts with zero
initial conditions, and gradually accumulates the differences between the real pressure
and velocity fields and their CFD representations. This process is driven by the source
terms of (4) which are discretised in a time-accurate way. The solution in Figure 2 is
obtained with second order approximation of the CFD quantities along the temporal
axis, and its maximum error is about 2%. If linear approximations are used (which
require only two stored CFD steps) the overall error becomes a little higher than 6%.

There are no external sources of mass and no external forces are acting on the fluid
in this example. Also, the viscous stresses can be completely ignored with these 1-D
sound waves: fi = 0 (see equation 4).

In Figure 2 the defect corrected solution (which is the sum of the CFD solution
and the linearised Euler solution) is shown at regular intervals in order to trace the
wave propagating from left to right. The time step with the acoustic module is 4 times
smaller than the CFD step, and this is equivalent to 50 time steps per cycle. Since the
acoustic procedure is fully explicit, these correction steps are computationally very
inexpensive (the acoustic module needs less than 10 s to compute the correction of
this example including the input and output of disk files). It can be seen that the
result of this one-dimensional test is very encouraging.

As a more realistic example, a 2-D production of sound waves due to the generation
of a vortex series within a flow medium as depicted in Figure 3 is examined. There
are no solid bodies in the flow domain, and no acoustic source cells have been pre-
defined. The vortices are initiated by the time-dependent source patch in the middle
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of the left boundary of the CFD domain. There is a background flow at a rate of
160 m/s from left to right which is not shown in Figure 3. An additional source of
mass is associated with the sinusoidal in time (with an amplitude of 12 m/s) source
of momentum in the vertical direction, active during time steps 1–30. Both of these
cooperate in the production of acoustic waves which originate at the source patch.
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Figure 3: Vortex generation and acoustic correction pressure contours (positive - solid
lines, negative - dashed lines, spacing: 20 Pa). Velocity vector scale: 3 m/s to 0.2 m.
Vertical dashed line marks vortex generation source patch.

The same fully-implicit in time CFD code [CHA95] with QUICK differencing
scheme for the momentum equations was used to simulate the generation and the
convection of vortices. The mesh density is indicated in Figure 3 by the density of the
arrows representing velocity vectors. As expected, no acoustic waves can be identified
in the resulting CFD pressure field. After the correction steps (re-discretisation, map-
ping of residuals, and linearised Euler solution), the missing part of the pressure field
is obtained, and it is shown in Figure 3 by contours. In this case of regular meshes
with no solid objects, the mapping procedure is simple: two CFD cells in the vertical
direction constitute one acoustic cell, and simple arithmetic averaging is used for the
mapping.

Figure 3 shows clearly the acoustic waves that have been produced at the vortex
generation patch propagating upwards, downwards, and out of the domain. There
is no analytical validation for this example, but the results obtained are physically
correct.

Conclusions

A framework of defect correction has been established for computational aeroacoustics.
Based on this defect correction framework, it is possible to study aerodynamic sound
generation in a systematic way. A 1-D example with validation and a 2-D example
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with physically correct results are shown. The authors are currently investigating a
2-D example with proper validation and are extending the concept to 3-D problems.
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