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11. Domain Decomposition and Splitting Methods
for Mortar Mixed Approximations to Parabolic
Problems

I. Faille1, S. Gaiffe1, R. Glowinski2, P. Lemonnier1, R. Masson1

Introduction

Mixed Finite Element (MFE) methods have become popular for the numerical sim-
ulation of single phase flow in porous media due to their good approximation of the
flux variable and their local and global mass conservation properties. In many situ-
ations such as flow around wells or through conductive faults, the complexity of the
geometry, the heterogeneities of the media, or the singularities of the data may require
the use of flexible meshes including hybrid meshes or local refinements to capture the
spatial behavior of the solution. In that case, non-overlapping domain decomposition
techniques with Mortar elements at the interfaces of the decomposition have proven
to be efficient since they enable to define the grids independently in the subdomains
regions (see [GW88], [Yot96]), [ACWY96]).

On the other hand, the transient behavior of the solution may also warrant the
use of different time steps in the different subdomains.

The idea of the domain decomposition method introduced in this paper is to com-
bine Mortar Mixed Finite Element methods for the space discretization with operator
splitting techniques for the time discretization in order to obtain (1) a fully parallel
algorithm and (2) the possibility to use flexible meshes and local time steppings in the
subdomains.

We consider a domain Ω ⊂ R
d of boundary Γ and the parabolic equation{

∂tp + ∇ · u = f, u = −K∇p in Ω,
p = g on Γ, p|t=0 = p0,

(1)

where K is a symmetric matrix, positive definite uniformly in Ω.
Most domain decomposition algorithms for such parabolic problems involve, at

each time step, the solution of an elliptic problem, using classical domain decompo-
sition iterative algorithms for elliptic equations. The present domain decomposition
approach takes advantage of the parabolic structure of the problem to obtain, through
operator splitting, a non-iterative method in the sense that the subdomains problems
are solved only once at each time step. Other related non-iterative domain decompo-
sition and splitting methods for parabolic problems can be found in [MPW98], [CL96],
and [Dry91], and the references therein. The main originality of our method is to allow
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by construction non-matching grids at the interfaces of the domain decomposition.

Notation: for two positive functions A(v) and B(v), the notation A <∼ B means that
there exists a constant C, independent of the various parameters, such that for all v
one has A(v) ≤ CB(v).

Mixed Finite Element Domain Decomposition Method

Let us consider a domain decomposition of Ω into N non-overlapping subdomains
Ωi, i = 1, . . . , N such that Ωi ∩ Ωj = ∅ for all i 
= j, and Ω =

⋃N
i=1 Ωi. We set

Γi := ∂Ωi/Γ. For i, j ∈ I := {i, j s.t. i 
= j and mesd−1∂Ωi ∩ ∂Ωj 
= 0}, we denote by
Γi,j := ∂Ωi ∩ ∂Ωj the interface between two subdomains, and by γ :=

⋃
i,j∈I Γi,j , the

skeleton of the domain decomposition.

On each subdomain Ωi, we introduce the function spaces Mi := L2(Ωi) and Vi =
H(Ωi; div) := {v ∈ L2(Ωi)d s.t. ∇· v ∈ Mi}, endowed with their usual norms denoted

by ‖qi‖0,i and ‖vi‖Vi :=
(
‖vi‖2

0,i + ‖∇ · vi‖2
0,i

)1/2

. On the domain Ω, we define the

product spaces M :=
⊕N

i=1 Mi and V :=
⊕N

i=1 Vi endowed with their Hilbertian
product norms ‖q‖0 and ‖v‖V .

In the non-overlapping domain decomposition framework, the smoothness assump-
tions on the solution will be as usual measured in the broken norms ‖ · ‖Hr(Ω) related
to the product spaces Hr(Ω) :=

⊕N
i=1 H

r(Ωi), r ≥ 0. On the skeleton γ, we define the

norm ‖µ‖ 1
2 ,γ := supv∈V

PN
i=1

R
Γi

(v·ni)µdγ

‖v‖V
, and we shall denote by H

1
2 (γ), the subspace

of L2(γ) of functions µ such that ‖µ‖ 1
2 ,γ < ∞.

We consider, on the domain decomposition (Ωi)i=1,...,N , a Mortar Mixed Finite
Element (MMFE) discretization of (1), introduced in [GW88] for matching grids, and
extended in [Yot96], [ACWY96] to the case of non-matching grids at the interfaces
between the subdomains Ωi. In that case, a so called Mortar space Λh ⊂ L2(γ) is
introduced on the skeleton γ. Then, equation (1) is discretized on each subdomain by
a Mixed Finite Element Method, and the matching at the interfaces is written in the
weak sense through the continuity of the orthogonal projection on Λh of the normal
fluxes defined on each sides of Γi,j .

Let Ti,h be a quasi-uniform mesh of Ωi. We consider, on these grids, MFE approx-
imation spaces Vi,h ⊂ Vi, Mi,h ⊂ Mi of order k + 1, that can be either the RTk or
BDFk or BDFMk MFE discretizations (see [RT91] or [BF91]). In addition we shall

assume in the sequel that ∇ · Vi,h = Mi,h.
On the domain Ω, we define the product spaces Mh :=

⊕N
i=1 Mi,h ⊂ M and

Vh :=
⊕N

i=1 Vi,h ⊂ V . The dual space of Vh (resp. Mh) is denoted by V ′
h (resp. M ′

h)
endowed with the dual norm ‖·‖V ′

h
(resp. ‖·‖M ′

h
). We shall denote by 〈·, ·〉 the duality

pairing.

We reproduce the choice of the Mortar space Λh as described in [Yot96]. Let Ti,j,h,
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i, j ∈ I be a quasi-uniform mesh of Γi,j and Λi,j.h a finite element space on Ti,j,h, either
continuous or discontinuous, and of order k + 2. The Mortar space on the skeleton γ
is the product space Λh :=

⊕
i,j∈I Λi,j,h ⊂ L2(γ).

In order to write the MMFE variational formulation of (1), we define the operators
Sh, Ah : Vh → V ′

h, Bt
h : Λambdah → V ′

h, divh : Vh → M ′
h, T t

h : H1/2(Γ) → V ′
h such

that for all vh = (vi,h)i=1,...,N , wh = (wi,h)i=1,...,N ∈ Vh, qh = (qi,h)i=1,...,N ∈ Mh,
µh ∈ Λambdah, ϕ ∈ H1/2(Γ):

〈Shvh, wh〉 :=
∑N

i=1

∫
Ωi

K−1vi,h · wi,hdx,

〈Ahvh, wh〉 :=
∑N

i=1

∫
Ωi

(∇ · vi,h)(∇ · wi,h)dx,
〈divhvh, qh〉 :=

∑N
i=1

∫
Ωi

(∇ · vi,h)qi,hdx,

〈Bt
hµh, vh〉 :=

∑N
i=1

∫
Γi
µh(vi,h · ni)dγ, 〈T t

hϕ, vh〉 :=
∫
Γ ϕ(vh · n)dσ.

(2)

Then, the MMFE spatial discretization of (1) looks for (ph, uh, pγ,h) ∈ Mh × Vh × Λh

such that 


∂tph + divhuh = itMh
f,

Shuh = divt
hph −Bt

hpγ,h − T t
hg,

Bhuh = 0,
ph|t=0 = p0,h.

(3)

The stationnary MMFE approximation (3) is analysed in [Yot96] and [ACWY96].
In order to obtain a well posed problem, one has to assume that the Mortar space Λh

verifies a compatibility condition with the normal traces on γ of Vh. In particular this
condition ensures that the operator Bt

h is into as well as the property

{qh, t. q. 〈divhvh, qh〉 = 0, for all vh ∈ Wh := KerBh} = {0},

which all together guarantees existence and uniqueness of the solution. We refer
to [Yot96] for the proof, under this assumption, of optimal error estimates for the
solutions uh, ph, pγ,h of the stationnary problem.

An equivalent flux formulation

As a preliminary step towards the time discretization by an operator splitting tech-
nique, it is useful to introduce an equivalent flux formulation of (3) obtained by elim-
ination of the discrete pressure unknown in (3). This formulation will also be crucial
to analyse the stability and the error estimates of our method.

Proposition 1 Let us define λh := ∂tpγ,h and g0 := g|t=0. Then problem (3) is
equivalent to the following flux formulation:


Sh∂tuh + Ahuh + Bt

hλh + T t
h∂tg = divt

hf,
Bhuh = 0,
uh|t=0 = u0

h,
(4)

given the initialization{
Shu

0
h = divt

hp0,h −Bt
hp

0
γ,h − T t

hg0,

Bhu
0
h = 0,

(5)
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and the pressure equation


∂tph + divhuh = itMh
f,

∂tpγ,h = λh,
ph|t=0 = p0,h, pγ,h|t=0 = p0

γ,h.
(6)

proof: the proof relies on elementary algebra using the assumption on the MFE spaces
that ∇ · Vh = Mh, and assuming enough regularity on the trace g.

Time discretization by operator splitting

The flux formulation (4) is a mixed problem formally equivalent to the Stokes equation.
The idea of the time discretization by operator splitting is then to apply to the flux
formulation (4) a projection scheme introduced by Chorin [Cho68] and analysed in
[Ran92] in the framework of the Navier-Stokes equations.

In the framework of the MMFE method, the projection scheme splits the system
(4) into two successive steps: (i) advance in time with a fixed λh given by the previous
time step, (ii) orthogonal projection (with respect to the scalar product 〈Sh·, ·〉) of
the flux onto Wh, and updating of λh. The initialization of the flux is still given by
equation (5). This scheme requires to be given an approximation λ0

h ∈ Λh of λ|t=0. At
first order accuracy in time, we shall see that it is sufficient to set λ0

h = 0. However,
in order to expect second order accuracy, a first order accurate approximation of λ0

h

has to be obtained by one time step calculation of the fully coupled system.

(i) Sh
ũn+1

h −un
h

∆t + Ahũ
n+1
h + Bt

hλ
n
h + T t

h
gn+1−gn

∆t = divt
hf

n+1,

(ii)

{
Sh

un+1
h

−ũn+1
h

∆t + Bt
h(λn+1

h − λn
h) = 0,

Bhu
n+1
h = 0,

(7)

The pressures pn
h and pn

γ,h are obtained by discrete integration in time.
{

pn+1
h −pn

h

∆t + divhũ
n+1
h = itMh

fn+1, p0
h = p0,h,

pn+1
γ,h −pn

γ,h

∆t = λn+1
h , p0

γ,h given by (5).
(8)

As for the semi-discrete formulation, the space-time discretization (7)-(8) admits an
equivalent mixed pressure-flux formulation which, from elementary algebra, writes:

(i)

{
pn+1

h −pn
h

∆t + divhũ
n+1
h = itMh

fn+1,

Shũ
n+1
h = divt

hp
n+1
h −Bt

h(2pn
γ,h − pn−1

γ,h ) − T t
hg

n+1,

(ii)
{

Shu
n+1
h = divt

hp
n+1
h −Bt

hp
n+1
γ,h − T t

hg
n+1,

Bhu
n+1
h = 0,

(9)

with p0
h := p0,h and p−1

γ,h := p0
γ,h−∆tλ0

h. We note that (9) corresponds, at step (i), to a
second order linear extrapolation in time of the interface pressure pn+1

γ,h � 2pn
γ,h−pn−1

γ,h .
The main advantage of the projection scheme is that the prediction step (i) can be

solved in a fully parallel way on each subdomain independently, while the projection
step (ii) reduces to inverse the interface problem related to the operator BhS

−1
h Bt

h.
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Let us restrict ourselves to the assumption that only RT0 mixed finite elements are
used in the neighborhood of the skeleton γ. Then, a mass condensation of the matrix
representing the operator Sh in the nodal basis can be locally performed, preserving
the order of approximation of the discretization. It results that the interface operator
matrix in the nodal basis of Λh is diagonal and can be readily inverted in O(NΛh

)
operations where NΛh

is the dimension of Λh.
More generally, the interface problem can be efficiently solved by a conjugate gra-

dient iterative algorithm preconditioned by the approximate interface matrix obtained
by mass condensation of Sh in the neighborhood of γ.

Stability analysis

Let Zh := BhS
−1
h Bt

h denote the interface operator related to the projection step (ii).
For any µ ∈ L2(γ), we set ‖µ‖Zh

:= 〈Zhµ, µ〉
1
2 , which defines a semi-norm on L2(γ) and

a norm on Λh. On the other hand, we define ‖Bt
hµ‖V ′

h
:= supvh∈Vh

PN
i=1

R
Γi

(vh·ni)µdγ

‖vh‖V
,

semi-norm on L2(γ) (and norm on Λh).
The stability analysis of the incremental scheme is done in its equivalent flux for-

mulation (7)-(8) in order to avoid to deal with the three steps equations (9). It is then
formally similar to the analysis performed for Navier Stokes equations (see [She92],
[GQ98]) with necessary adaptations to the framework of domain decomposition and
MMFE.

Theorem 1 Let tn := n∆t, and assume ∂tg ∈ L2(0, tm;H
1
2 (Γ)),

∑m−1
n=0 ∆t‖fn+1‖2

0
<∼ 1, then the incremental projection scheme (7)-(8) or (9) is unconditionally stable

in the sense that for all ∆t


‖um
h ‖2

0 + ∆t2‖λm
h ‖2

Zh
+

∑m−1
n=0 ∆t‖∇ · ũn+1

h ‖2
0

<∼ ‖u0
h‖2

0 + ∆t2‖λ0
h‖2

Zh
+ ∆t

∑m−1
n=0 ‖fn+1‖2

0 +
∫ tm

0
‖∂tg(s)‖2

H
1
2 (Γ)

ds,

‖pm
h ‖2

0
<∼ ‖p0,h‖2

0 +
∑m−1

n=0 ∆t‖∇ · ũn+1
h ‖2

0 + ∆t
∑m−1

n=0 ‖fn+1‖2
0,

‖Bt
hp

m
γ,h‖V ′

h
<∼ ‖um

h ‖0 + ‖pm
h ‖0 + ‖gm‖

H
1
2 (Γ)

,

(10)

with constants independent of h, ∆t, N and depending only on tm and K.

Error estimates

We denote by (u, p) ∈ C0(0, tm;H(Ω; div)) × C0(0, tm;M) the weak solution of (1)
on the interval [0, tm]. We shall assume that the pressure p and its derivative ∂tp are
globally in H1(Ω) in order to define the interface pressure pγ := p|γ and its derivative
λ := ∂tp|γ = ∂tpγ in H1/2(γ). We set tn = n∆t and un := u(tn), pn := p(tn),
λn := λ(tn), pn

γ := pγ(tn).
The dependence of the semi-norm ‖·‖Zh

on the mesh size h, as given by the estimate
‖µ‖Zh

<∼ h− 1
2 ‖µ‖L2(γ) ∀µ ∈ L2(γ), deteriorates the convergence of the method. We

can prove the following theorem.

Theorem 2 Let (u, p) ∈ C0(0, tm;H(Ω; div)) ×C0(0, tm;M), be the weak solution of
(1) such that p ∈ C1(0, tm;H1(Ω)). Pour 1 ≤ r ≤ k + 1 et u ∈ H1(0, tm;Hr(Ω)d),
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Figure 1: Convergence history of the pressure error in l∞(L2(Ω)) norm: (A) first
order incremental and coupled schemes, (B) second order incremental and first order
coupled schemes.

∂t2u ∈ L2(0, tm;V ′), ∂tλ ∈ L2(0, tm;L2(γ)), ∂t2g ∈ L2(0, tm;H
1
2 (Γ)), ∂t2p ∈ L2(0, tm;

L2(Ω)), p ∈ W 1,∞(0, tm;Hr+1(Ω)),
∑m−1

n=0 ∆t‖∇ · un+1‖2
Hr(Ω)

<∼ 1, we have

‖um − um
h ‖0 + ‖pm − pm

h ‖0 + ‖Bt
h(pm

γ − pm
γ,h)‖V ′

h

+
(∑m−1

n=0 ∆t‖∇ · (un+1 − ũn+1
h )‖2

0

) 1
2

<∼ ∆t(1 + h− 1
2 ) + hr,

(11)

with a constant depending only on tm, K. To obtain these estimates, it suffices to
choose for p0,h the orthogonal projection of p0 onto Mh and λ0

h = 0.

Numerical example

Let us consider in dimension d = 1, the interval Ω =] − 1, 1[ splitted into two subdo-
mains Ω1 =] − 1, 0[ and Ω2 =]0, 1[, and equation (1) for g = 0 and K = 1 with exact
solution p(x, t) = cos πx

2 (cos 6t + 2). This problem is discretized on a uniform mesh
of size h = 2−j, j ∈ N using RT0 MFE with mass condensation. Figure 1 reports the
convergence history of the error pn

h − pn in l∞(L2(Ω)) norm for 3 different time dis-
cretizations: (a) the incremental scheme (9), (b) the incremental scheme with second
order Crank-Nicholson time discretization in the subdomains at step (i), (d) the first
order Euler backward fully coupled discretization.

From the numerical results displayed Figures 1, we see that the error behaves like
min( ∆t

h1/2 ,
∆t2

h ) for the incremental projection scheme (a), like min( ∆t
h1/2 ,

∆t2

h ) +∆t for
the incremental projection scheme (b). The same results can be observed for the flux
u and the interface pressure pγ .

These results suggest that the error is the sum of the error produced by the coupled
scheme and the splitting error (between the coupled scheme and the projection scheme)
of order min( ∆t

h1/2 ,
∆t2

h ).
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Conclusion

The method introduced in this paper combines Mortar Mixed Finite Element domain
decomposition spatial discretization with projection schemes, in order to obtain a fully
parallel algorithm for parabolic equations. In addition this method enables the use of
hybrid meshes and local time steppings.

Although the scheme is shown to be unconditionally stable, the convergence is
obtained only if the condition ∆t <∼ h

1
2 is verified. This is the price to pay to decouple

the interface problem from the computation of the subdomain solutions.
This strategy has proven to be efficient to solve single phase Darcy flows around

2D wells and faults with high physical heterogeneities and complex geometries, and
we refer to [Gai00] where such numerical tests are reported.
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