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33. Domain decomposition methods for a coupled
vibration between an acoustic field and a plate

Xiaobing Feng1, Zhenghui Xie2

Introduction

The coupled vibration between an acoustic field and a plate is encountered in many
engineering and industrial applications. The interaction between the wind and a
windshield of a car is an interesting example found in the automobile industry. Math-
ematically, such an interaction is described by the coupled system of the second order
scalar wave equation and the fourth order plate vibration equation. Since the thick-
ness of the plate is negligible, the plate serves a dual role in the model. It is the solid
medium and in the same time it is the interface between the acoustic field and the
solid (so it is a part of the boundary of the acoustic field), where they interact each
other.

Let Ω ⊂ R3 be a three-dimensional acoustic field and Γ0 ⊂ R2, a part of the
boundary ∂Ω, denote the domain of the plate. Let Γ1 = ∂Ω\Γ0 be the remaining
portion of the boundary of Ω. Let p = p(x1, x2, x3) denote the pressure function of
the fluid in the acoustic field Ω and u = u(x′) (x′ = (x1, x2)t) denote the vertical
displacement of the plate Γ0. Then the governing partial differential equations of the
fluid–plate interaction is given by [CS76]

1
c2 ptt − ∆p = f, in Ω × (0, T ), (1)
1
cpt + ∂p

∂n = 0, on Γ1 × (0, T ), (2)
∂p
∂n + ρfutt = 0, on Γ0 × (0, T ), (3)

ρsutt + D∆2
Γ0

u = p, on Γ0 × (0, T ), (4)

u = ∂u
∂ν = 0, on ∂Γ0 × (0, T ), (5)

p(x, 0) = p0(x), pt(x, 0) = p1(x), in Ω, (6)
u(x′, 0) = u0(x′), ut(x′, 0) = u1(x′), on Γ0, (7)

where c is the sound speed in the fluid, D flexural rigidity of plate. ρf and ρs are the
air mass density and plate mass density, and n and ν are the outward normal vector
on Γ0 and ∂Γ0, respectively. ∆2

Γ0
stands for the biharmonic operator defined on Γ0 in

variables x1, x2.
In the model, equations (3) and (4) are the interface condition which describe the

interaction between the acoustic field and the plate. Equation (2) is the first order
absorbing boundary condition for the acoustic wave. We use this boundary condition,
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instead of the Dirichlet condition as used in [CS76], to limit the (computational) size
of the acoustic domain. Using the energy method it is not hard to show the following
theorem.

Theorem 1 For f ∈ H−1(Ω), pj ∈ H1−j(Ω), and uj ∈ H2−j(Γ0), j = 0, 1, the
problem (1)–(7) has a unique solution (p, u) ∈ L2(H1(Ω))∩H1(L2(Ω))×L2(H2(Γ0))∩
H1(H1(Γ0)).

The goal of this paper is to develop some parallelizable non–overlapping domain
decomposition iterative methods for effectively solving the problem (1)–(7). Due to
the heterogeneous nature of the problem, the non–overlapping domain decomposition
approach is a very practical and natural way to solve the problem. In §2 we introduce
two classes of domain decomposition iterative methods to decouple the problem into
fluid and plate subdomain problems. In §3 we establish usefulness of these methods
by showing their strong convergence in the energy norm of the underlying problem.
Finally, in §4 we present some numerical models based on finite difference methods, and
some numerical tests to validate the theory and to show effectiveness of the methods,
in particular, with respect to different choices of the relaxation parameter.

Domain decomposition methods

In this section we first propose a family of new interface conditions which are equivalent
to the original interface condition (3). This is the key step towards developing non-
overlapping domain decomposition methods for the problem. Based on these new
interface conditions, we then introduce two classes of parallelizable non-overlapping
domain decomposition iterative algorithms for solving the system (1)–(7) and show
their strong convergence in the energy norm of the underlying interaction problem.
The methods and the analysis of this paper are inspired by its companion paper
[Fen98], where non-overlapping domain decomposition methods were developed for a
general fluid–solid interaction problem in which the solid is a 3–dimensional elastic
body. For applications of domain decomposition methods to other heterogeneous
problem, we refer to [CF99, Fen98, QPV92] and references therein.

To decouple the problem on the interface, we rewrite the interface condition (3) as

∂p

∂n
+ αpt = −ρfutt + αpt, on Γ0 × (0, T ), (8)

for any nonzero constant α.

Hence, the problem (1)–(7) is equivalent to the problem consisting equations (1),
(2), (8), and (4)–(7). That is,
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1
c2 ptt − ∆p = f, in Ω × (0, T ), (9)
1
cpt + ∂p

∂n = 0, on Γ1 × (0, T ), (10)
∂p
∂n + αpt = −ρfutt + αpt, on Γ0 × (0, T ), (11)

ρsutt + D∆2
Γ0

u = p, on Γ0 × (0, T ), (12)

u = ∂u
∂ν = 0, on ∂Γ0 × (0, T ), (13)

p(x, 0) = p0(x), pt(x, 0) = p1(x), in Ω, (14)
u(x′, 0) = u0(x′), ut(x′, 0) = u1(x′), on Γ0. (15)

Domain decomposition algorithms

Based on the above new form of the interface conditions we propose the following two
types of iterative algorithms. The first one resembles to block Gauss-Seidel iteration
and the other resembles block Jacobi iteration.

Algorithm 1
Step 1: ∀p0 ∈ H1(L2(Γ0)).
Step 2: Compute {(uk, pk)}k≥1 by solving

ρsu
k
tt + D∆2

Γ0
uk = pk−1, on Γ0 × (0, T ), (16)

uk = ∂uk

∂ν = 0, on ∂Γ0 × (0, T ), (17)
uk(x′, 0) = u0(x′), uk

t (x′, 0) = u1(x′), on Γ0 × (0, T ); (18)
1
c2 pk

tt − ∆pk = f, in Ω × (0, T ), (19)
∂pk

∂n + αpk
t = −ρfuk

tt + αpk−1
t , on Γ0 × (0, T ), (20)

∂pk

∂n + 1
cpk

t = 0, on Γ1 × (0, T ), (21)
pk(x, 0) = pk

0(x), pk
t (x, 0) = p1(x), in Ω. (22)

Algorithm 2
Step 1: ∀H2(L2(Γ0)) × H1(L2(Γ0)).
Step 2: Compute {(uk, pk)}k≥1 by solving

ρsu
k
tt + D∆2

Γ0
uk = pk−1, on Γ0 × (0, T ), (23)

uk = ∂uk

∂ν = 0, on Γ0 × (0, T ), (24)
uk(x′, 0) = u0(x′), uk

t (x
′, 0) = u1(x′), on Γ0 × (0, T ); (25)

1
c2 pk

tt − ∆pk = f, in Ω × (0, T ), (26)
∂pk

∂n + αpk
t = −ρfuk−1

tt + αpk−1
t , on Γ0 × (0, T ), (27)

∂pk

∂n + 1
cpk

t = 0, on Γ1 × (0, T ), (28)
pk(x, 0) = p0(x), pk

t (x, 0) = p1(x), in Ω. (29)
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Convergence analysis

In this subsection we shall establish the utility of Algorithm 1 and 2 by showing their
strong convergence. Since the proof of the convergence of Algorithm 1 and 2 are
similar, we only give the proof for Algorithm 1.

Define the error functions ek = p − pk, rk = u − uk. It follows from (1)–(7) and
(9)–(15) that

ρsr
k
tt + D∆2

Γ0
rk = ek−1, on Γ0 × (0, T ), (30)

rk = ∂rk

∂ν = 0, on Γ0 × (0, T ), (31)
rk(x′, 0) = rk

t (x′, 0) = 0, in Ω × (0, T ); (32)
1
c2 ek

tt − ∆ek = 0, in Ω × (0, T ), (33)
∂ek

∂n + αek
t = −ρfrk

tt + αek−1
t , on Γ0 × (0, T ), (34)

∂ek

∂n + 1
cek

t = 0, on Γ1 × (0, T ), (35)
ek(x, 0) = ek

t (x, 0) = 0, in Ω. (36)

Lemma 1 For ∀τ ∈ (0, T ], we have∫ τ

0

∫
Γ0

ek−1
t rk

ttdsdt = 1
2 [‖

√
ρsr

k
tt(·, τ)‖2

0,Γ0
+ ‖√D∆Γ0r

k
t (·, τ)‖2

0,Γ0
]. (37)∫ τ

0

∫
Γ0

∂ek

∂n ek
t dsdt = 1

2

[∥∥1
cek

t (·, τ)
∥∥2

0,Ω
+ ‖∇ek(·, τ)‖2

0,Ω

]
+

∫ τ

0

∥∥∥ 1√
c
ek

t (·, t)
∥∥∥2

0,Γ1

dt.(38)

Proof: Testing (30)) against rk
tt after taking one derivative with respect to t, we

get ∫
Γ0

ek−1
t rk

ttdsdt =
1
2

d

dt
‖√ρsr

k
tt‖2

0,Γ0
+

1
2

d

dt

∥∥∥√D∆Γ0r
k
t

∥∥∥2

0,Γ0

. (39)

Integrating (39) in t from 0 to τ yields (37).
Similarly, test (33) against ek

t , we get

∫
Γ0

∂ek

∂n
ek

t ds =
1
2

d

dt

[∥∥∥∥1
c
ek

t

∥∥∥∥
2

0,Ω

+
∥∥∇ek

∥∥2

0,Ω

]
+

∥∥∥∥ 1√
c
ek

t

∥∥∥∥
2

0,Γ1

. (40)

Integrating (40) in t from 0 to τ gives (38).
Notice that in the proof we have used the fact that

rk(·, 0) = rk
t (·, 0) = rk

tt(·, 0) = ∆Γ0r
k(·, 0) = ek

t (·, 0) = ek(·, 0) = 0, ∇ek(·, 0) = 0.

Next, define the “pseudo-energy”

Ek(τ) ≡
∥∥∥∥∂ek

∂n
+ αek

t

∥∥∥∥
2

L2((0,τ),L2(Γ0))

=
∫ τ

0

∫
Γ0

[
∂ek

∂n
+ αek

t

]2

dsdt. (41)

By a direct calculation, we can show that {Ek(τ)} satisfy the following identity.
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Lemma 2 For k ≥ 1 there holds the following identity

Ek(τ) = Ek−1(τ) − Rk−1(τ), (42)

where

Rk−1(τ) =
∥∥∥∥∂ek−1

∂n

∥∥∥∥
2

L2((0,τ),L2Γ0))

− ρ2
f‖rk

tt‖2
L2((0,τ),L2(Γ0)) (43)

+2α
∫ τ

0

∫
Γ0

∂ek−1

∂n
ek−1

t dsdt + 2αρf

∫ τ

0

∫
Γ0

ek−1
t rk

ttdsdt.

An immediate consequence of Lemma 1 is the following lemma.

Lemma 3 For k ≥ 1 there holds the equality

Rk−1(τ) = [αρf‖√ρsr
k
tt(·, τ)‖2

0,Γ0
− ρ2

f‖rk
tt‖2

L2((0,τ);L2(Γ0))
] (44)

+α

[
ρf‖

√
D∆Γ0r

k
t (·, τ)‖2

0,Γ0
+

∥∥∥∥1
c
ek

t (·, τ)
∥∥∥∥

2

0,Ω

+ ‖∇ek(·, τ)‖2
0,Ω

]

+
∥∥∥∥∂ek−1

∂n

∥∥∥∥
2

L2((0,τ);L2(Γ0))

+ α

∫ τ

0

∥∥∥∥ 1√
c
ek

t (·, t)
∥∥∥∥

2

0,Γ1

dt.

Theorem 2 If α > Tρf/ρs, then
(1) pk → p strongly in L2((0, T );H1(Ω)) ∩ H1((0, T );L2(Ω)).
(2) uk → u strongly in H1((0, T );H2(Γ0)) ∩ H2((0, T );L2(Γ0)).

Proof: It is easy to check that (42) implies that

∫ T

0

Ek(τ)dτ =
∫ T

0

E0(τ)dτ −
k−1∑
l=0

∫ T

0

Rl(τ)dτ. (45)

Since

∫ T

0

‖rk
tt‖2

L2((0,τ);L2(Γ0))
dτ =

∫ T

0

(∫ τ

0

‖rk
tt(·, t)‖2

0,Γ0
dt

)
dτ ≤ T ‖rk

tt‖2
L2((0,T );L2(Γ0))

,

(46)

we have

∫ T

0

[
αρf‖√ρsr

k
tt(·, τ)‖2

0,Γ0
− ρ2

f‖rk
tt‖2

L2((0,τ);L2(Γ0))

]
dτ (47)

≥ ρf (αρs − Tρf)‖rk
tt‖2

L2((0,T );L2(Γ0))
.

Hence, if α > Tρf/ρs, every term on the right hand side of (43) is a nonnegative
term. Now it follows from (45) that

∞∑
l=0

∫ T

0

Rl(τ)dτ < ∞,
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which implies that

lim
l→∞

∫ T

0

Rl(τ)dτ = 0. (48)

Finally, the proof is completed by combining (44), (47) and (48).

Numerical experiments

We shall present some numerical tests for the domain decomposition algorithms de-
veloped in the previous sections. Finite difference methods are used to discretize the
differential equations. The acoustic field is chosen as the unit cubic Ω = [0, 1]3 and the
plate domain is the unit square Γ0 = [0, 1]2 on the x1x2– plane. Zero source function
f ≡ 0 and the parameters c = 2.5, D = 2, ρf = 5, ρs = 50 are assumed in all tests.
Also, the uniform meshes are used in both acoustic domain and the plate domain.
The mesh size of the acoustic domain is ∆x1 = ∆x2 = ∆x3 = 0.1 and the mesh size
of the the plate domain is ∆x1 = ∆x2 = 0.05. The time step size ∆t = 0.01 is used
in all tests. Finally, we choose the following initial conditions.

p0(x) = 1, p1(x) = 0.1, u0(x1, x2) = sinπx1 sinπx2, u1(x1, x2) = 0.1.

Figure 1 shows the plate displacement (u) profiles at four different time steps, in
which (a)–(d) are plots of u at t = 4∆t, 8∆t, 12∆t, 16∆t, respectively. Figure 2 gives
the pressure (p) profiles on the interface x3 = 0 at (a) t = 4∆t, (b) t = 8∆t, (c)
t = 12∆t, (d) t = 16∆t, which show the acoustic wave action on the plate. Figure
3 shows the contour plots of the pressure p on the cross section of Ω at x1 = 0.5
at (a) t = 4∆t, (b) t = 8∆t, (c) t = 12∆t, (d) t = 16∆t. Figure 4 presents a
comparison of the iteration numbers for different choices of the relaxation parameter
α at various time steps. Graph (a) compares the iteration numbers for α = 10−9 and
α = 10, while Graph (b) compares for α = 1 and α = 100. The criterion used to
stop the domain decomposition iteration at all time steps is that the relative error
of successive iterates should be less than 10−3. These comparisons suggest that the
algorithms perform better with large relaxation parameter α, which is predicted by
the convergence analysis. It is also interesting to note that for a fixed α the number of
iterations required at different time steps varies significantly. We believe that this is
caused mainly by the fact that the solution varies significantly at different time steps.
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Figure 1: Plate displacement profiles at different time steps
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Figure 2: Pressure profiles on the interface at different time steps
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Figure 3: Contour plots of the pressure p on the cross section x1 = 2 at different time
steps
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Figure 4: Comparison of the iteration numbers for different value α at various time
steps




