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12. Mortar Projection in Overlapping Composite
Mesh Difference Methods

Serge Goossens1, Xiao-Chuan Cai2

Introduction

We study experimentally the effect of the mortar projection in an overlapping com-
posite mesh difference method for two-dimensional elliptic problems. In [CDS99], an
overlapping mortar element method was proposed. This method has several desirable
properties. For example, the discretisation is consistent, the accuracy is of optimal
order and the error is independent of the size of the overlap, as well as the ratio of
the mesh sizes. However, a major disadvantage of the method is that it needs weights
in the bilinear form. The artificially introduced piecewise constant weights make the
scheme consistent, but at the same time make it impossible to use fast solvers for
the subdomain problems. On the other hand, the composite mesh difference method
(CMDM) [Sta77, CMS00, GC99] does not need any weights, and its accuracy is also
of optimal order if used with higher order interface interpolations. For example, the
2D bicubic or modified 1D cubic interface interpolation [GC99] is needed if one uses
P1 or Q1 finite elements for the interior of the subdomains. But if the computation-
ally more efficient low order interpolation is used on the interfaces, it may lead to
a local inconsistent discretisation, resulting in an error that depends on the size of
the overlap. The goal of this paper is to take the mortar approach, drop the weights
and compare its results to the non-mortar methods. Of course, in an ideal scheme,
which is yet to be discovered, the accuracy should be of optimal order and the error
be independent of the size of the overlap and the ratio of mesh sizes. In order to be
able to use fast solvers for the subdomain problems, it is also desirable not to have
weights in the discretisation on the overlapping parts of subdomains.

Overlapping Nonmatching Grids Mortar Element
Method

In this section we briefly describe the overlapping nonmatching grid mortar method.
A two-subdomain version was given in [CDS99] and a many subdomain version was
given by Maday et al3. Let Ω = Ω′

1 ∪ Ω′
2 be the union of two overlapping, polygonal
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subdomains. On each Ω′
i (i = 1, 2), we define a function space for P1 or Q1 finite

elements on a uniform grid with mesh size hi and denote this function space by Vhi .
We denote h = mini{hi}. We define the interface by γi = ∂Ω′

i \ ∂Ω and the trace
space Vhi(γj) as the restriction of Vhi on γj . The mortar projection π1 maps the space
Vh2(γ1) into Vh1(γ1): ∫

γ1

(ϕ− π1ϕ)ψ ds = 0 ∀ψ ∈ W̃h1(γ1). (1)

The interface test function space W̃h1(γ1) denotes the space of continuous piecewise
linear functions that are constants in the first and last intervals, see [BMP94, CDS99].
Similarly we can define π2. This projection is used in the definition of the solution
space

Vh = {(u1, u2)|u1 ∈ Vh1 , u2 ∈ Vh2 , u1|γ1 = π1(u2|γ1), u2|γ2 = π2(u1|γ2)}. (2)

With the space Vh the variational form can be defined as:

Find u = (u1, u2) ∈ Vh such that ah(u, v) = fh(v) ∀v = (v1, v2) ∈ Vh, (3)

where the weighted bilinear form is defined as

ah(u, v) =
∫

Ω′
1\Ω′

2

∇u1.∇v1 dx +
1
2

∫
Ω′

1∩Ω′
2

∇u1.∇v1 dx

+
1
2

∫
Ω′

1∩Ω′
2

∇u2.∇v2 dx +
∫

Ω′
2\Ω′

1

∇u2.∇v2 dx (4)

and the right-hand side is given by

fh(v) =
∫

Ω′
1\Ω′

2

fv1 dx +
1
2

∫
Ω′

1∩Ω′
2

fv1 dx+
1
2

∫
Ω′

1∩Ω′
2

fv2 dx +
∫

Ω′
2\Ω′

1

fv2 dx. (5)

Here f ∈ L2(Ω) is given. The theory by Cai et al. [CDS99] shows that the H1 norm
of the error is of order h. Their numerical results confirm this and show further that
the L∞ norm and the L2 norm of the error are both of order h2.

Composite Mesh Difference Method

A CMDM on two subdomains was described by Starius [Sta77], while Cai et al.
[CMS00] studied the case of many subdomains. In [GC99] we outlined a CMDM
for solving the second-order elliptic partial differential equation Lu = f in Ω with a
Dirichlet boundary condition u = g on ∂Ω.

Given a domain Ω consisting of p nonoverlapping subdomains Ωi such that Ω̄ =
∪p

i=1Ω̄i, we independently construct a grid of size hi on each extended subdomain Ω′
i

of Ωi. Due to the extension of the subdomains these grids overlap. We denote by
Γi = ∂Ω′

i ∩ ∂Ω the intersection of the boundaries ∂Ω′
i and ∂Ω. The global discretisa-

tion uh = (uh1 , uh2, · · · , uhp) on the composite grid is obtained by coupling the local
discretisations through the requirement that the solution matches the interpolation
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of the discrete solutions from adjacent grids. The system of equations consists of p
subproblems, each having the following form:


Lhiuhi = fhi in Ω′

i,
uhi = ghi on Γi,
uhi = zhi = Iiuh on ∂Ω′

i \ Γi.
(6)

Here Ii is an interface interpolation operator. As shown in [CMS00], the error in the
discrete solution satisfies

p∑
i=1

‖ehi‖∞ ≤
(
1 +

σ

1− τ
)( p∑

i=1

Ki‖αi‖∞ +
p∑

i=1

‖βi‖∞
)
. (7)

In this bound the truncation error αi(x) = (Lhi − L) u(x) is of order pi:

‖αi‖∞ ≤ Cαih
pi

i (8)

and the interpolation error βi(x) = (u− Iiu) (x) is of order qi:

‖βi‖∞ ≤ Cβih
qi

i . (9)

The constants Cαi , Cβi and Ki are independent of the mesh size hi. The interpolation
constant σ = maxi σi is the maximum of the norms σi = ‖Ii‖∞ of the interpolation
matrices. Let uhi be the solution of (6) with fhi = 0 and ghi = 0 restricted to the
nonoverlapping domain Ω̄i. Then, in terms of the data zhi on the interface ∂Ω′

i \ Γi,
it can be proved that

‖uhi‖∞,Ω̄i
≤ ρi‖zhi‖∞,∂Ω′

i\Γi
. (10)

The convergence theory requires the contraction factor of the mapping to be smaller
than 1, i.e. τ = maxi (ρiσ) < 1. Since ρi generally depends on the size of the overlap,
τ may also depend on the size of the overlap.

Standard P1 Stencil & Bilinear Interpolation

Since both the standard P1 stencil and bilinear interpolation are second order, the
error bound (7) shows that the resulting CMDM is also second order. However this
scheme does not satisfy the consistent interpolation condition, see [GCR98, GC99],
i.e.,

S

h2
− (uxx + uyy) =

γ2
k

2
(ξ(1− ξ)uxx + η(1− η)uyy) +O(h), (11)

where S is the stencil, γk = k/h is the ratio of the mesh sizes. The scaled local
coordinates (ξ, η) used in the interpolation and the mesh sizes h and k are shown in
Fig. 1. The scheme is consistent only if ξ and η are either 0 or 1, which implies that
the two meshes match each other on the interface.
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Figure 1: The scaled local coordinates (ξ, η) used in the interpolation.

Mortar Projection in CMDM

We now study a new scheme which takes the mortar approach and drops the weights
in the bilinear form (4). In every subdomain we set up a finite element discretisation
with the classic bilinear form

ahi(ui, vi) =
∫

Ωi

∇ui.∇vi dx (12)

and use the mortar projection (1) to compute the Dirichlet conditions along the in-
terfaces γi = ∂Ω′

i \ Γi. Hence we have p local problems of the form (6). The mortar
projection is a second order accurate interpolation and can be used in a CMDM. The
interpolation constant σ can be larger than 1 in the bound ‖πϕ‖∞ ≤ σ‖ϕ‖∞ and we
may need a large overlap to make the contraction factor ρ small enough in order to
have τ < 1.

In Fig. 2 we illustrate that the mortar projection does not, in general, satisfy the
maximum principle, i.e. there exists a function ϕ that satisfies:

‖πϕ‖∞ > ‖ϕ‖∞. (13)

In this special example, the master function is obtained by sampling the function
sin(πx) at the grid points x(m)

i = ihm for i = 0, 1, . . . , 5 where h−1
m = 5. The slave

nodes are x(s)
i = ihs for i = 0, 1, . . . , 4 where h−1

s = 4. The slave function is set to 0 at
the grid points x(s)

0 and x(s)
4 and the values at x(s)

i for i = 1, 2, 3 are determined from
(1). We see that the slave function is larger than the master function at x(s)

2 = 0.5.
The P1 and Q1 finite element discretisations on a uniform mesh can be considered

as finite difference stencils for which the local truncation error is second order. All
the assumptions for a CMDM are satisfied and the error bound (7) shows that the
resulting scheme is second order.

Due to the fact that the values for the Dirichlet boundary conditions on the interior
subdomain boundaries, obtained by the mortar projection, are only O(h2) accurate,
the discretisations which use these values will be inconsistent, since the discretisation
error contains the interpolation error divided by h2. This leaves a constant term in
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Figure 2: The mortar projection does not satisfy the maximum principle.

the error expansion of the combined discretisation interpolation pair, which does not
tend to zero as the mesh size h tends to zero. Consequently this scheme does not
satisfy the consistent interpolation condition defined in [GCR98] and we expect the
global accuracy to depend on the size of the overlap.

The interpolation from the master to the slave side of the mortar on the interface is
only one part of the interpolation issue. In the case of overlapping nonmatching grids
we also need to compute the master side of the mortar, which requires evaluating the
P1 or Q1 finite element function. This boils down to linear interpolation. As a result
for P1 and Q1 finite elements a linear interpolation is done in the direction normal on
interface.

Based on our experience with bilinear interpolation we can estimate the effect of
doing linear interpolation in the direction normal on interface. Suppose the interface
is at x = xΓ between the grid lines at xi and xi+1. The coefficients for the linear
interpolation in the direction normal on the interface are ξ = (xΓ − xi)/(xi+1 − xi)
and (1 − ξ). We expect this interpolation to give rise to a term ξ(1 − ξ)uxx in the
bound on the error in the extended subdomain just as in the case of the standard P1
stencil with bilinear interpolation. The numerical results in Table 1 clearly show the
influence of the term ξ(1− ξ)uxx in the error bound.

A final point is the dependency on the overlap. We have already pointed out
that a large overlap may be required since the mortar projection does not satisfy the
maximum principle. However this does not imply that the error on the nonoverlapping
subdomain depends on the size of the overlap. The standard stencils with bicubic
interpolation and our modified stencil with 1D cubic interpolation also require some



122 GOOSSENS, CAI

Table 1: Effect of inconsistent discretisation: results for P1 stencil with bilinear inter-
polation (columns 3–6) and with mortar projection (columns 7–10).

bilinear interpolation mortar projection
l ξ1 ‖eΩ′

1
‖∞ γe ‖eΩ′

2
‖∞ γe ‖eΩ′

1
‖∞ γe ‖eΩ′

2
‖∞ γe

0 0.6 1.65e-2 1.02e-2 2.95e-2 1.64e-2
1 0.2 2.97e-3 5.57 2.98e-3 3.42 5.02e-3 5.88 5.02e-3 3.26
2 0.4 9.58e-4 3.10 1.55e-4 19.1 1.85e-3 2.71 1.57e-4 32.0
3 0.8 1.60e-4 6.00 2.59e-5 6.00 3.11e-4 5.96 2.59e-5 6.04
4 0.6 5.98e-5 2.67 9.70e-6 2.67 1.17e-4 2.66 9.71e-6 2.67
5 0.2 9.97e-6 6.00 1.62e-6 6.00 1.95e-5 5.99 1.62e-6 6.00
6 0.4 3.74e-6 2.67 6.06e-7 2.67 7.32e-6 2.66 6.06e-7 2.67

overlap in order to make sure that τ < 1 because the interpolation constants are larger
than 1. But the numerical results show that there is no dependency on the amount of
overlap since these schemes are fully consistent.

In this case the error depends on the size of the overlap and this is due to the
inconsistency mentioned above. In Table 2 we show numerical results illustrating the
effect of the size of the overlap. These results also confirm the well known fact that
increasing the size of the overlap results in faster convergence of the additive Schwarz
method.

Numerical results

Our testcase concerns the solution of −∇2u = f on Ω = Ω1 ∪ Ω2, where Ω1 =
[0, 1]×[0, 1] and Ω2 = [1, 2]×[0, 1]. The r.h.s. f and the Dirichlet boundary conditions g
are chosen so that the exact solution is u(x, y) = x2. The overlapping subdomains are
Ω′

1 = [0, 1.4]× [0, 1] with h1 = 0.2×2−l and Ω′
2 = [0.75, 2]× [0, 1] with h2 = 0.25×2−l.

In Table 1 we list the L∞ norm of the error ‖eΩ′
1
‖∞ and ‖eΩ′

2
‖∞ on the overlapping

extended domains Ω′
1 and Ω′

2 for the standard P1 stencil with bilinear interpolation
and with mortar projection. Both these combinations satisfy all the assumptions for
a CMDM so the error bound (7) shows that these methods are second order. For a
second order scheme, the ratio between two successive error norms should be 4 when
the mesh sizes are halved.

The discussion here is based on the bound on the error in every extended subdo-
main Ω′

i for the standard P1 stencil with bilinear interpolation. The presence of the
inconsistency results in a dependency of the error on ξ(1− ξ), i.e. the relative position
of the interface in the other mesh. For this testcase the dominant term in the error
bound is e ≈ (ξ(1− ξ)c1 + c2)h2, where c1 and c2 are constants independent of ξ and
h. With this expression, we can estimate the ratio γe between two successive error
norms. When the mesh is refined by halving the mesh size, i.e. hi+1 = hi/2, we have

γe =
‖eΩ′

hi
‖∞

‖eΩ′
hi+1

‖∞ =
c1 (ξi(1− ξi) + γc) h2

i

c1 (ξi+1(1− ξi+1) + γc)h2
i+1

=
ξi(1− ξi) + γc

ξi+1(1− ξi+1) + γc
4 (14)

where γc = c2/c1. The worst case scenario is γc = 0 which results in values of 6.00
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Table 2: Effect of overlap on the convergence rate of the Schwarz method and on the
accuracy for the standard P1 stencil with mortar projection. The same results are
obtained with bilinear interpolation.

m nsolver nprec ‖eΩ1‖∞ ‖eΩ2‖∞
0 587 35 1.00e-4 9.99e-5
1 305 26 4.42e-5 4.47e-5
2 159 19 1.74e-5 1.59e-5
3 83 14 6.01e-6 5.07e-6
4 44 10 4.81e-6 3.41e-6
5 24 8 1.77e-6 8.49e-7
6 13 6 1.31e-6 2.77e-7
7 8 5 2.51e-7 1.04e-8

and 2.67 for γe since in this testcase the term ξ(1 − ξ) alternates between 0.24 and
0.16. For the function u(x, y) = x2 we have γc ≈ 0. The numerical results in Table 1
show ratios γe equal to 6.00 and 2.67, illustrating the effect of the inconsistency due
to linear interpolation in the x-direction.

Apart from this phenomenon both schemes are second order, since fitting a power
of the mesh size ‖eΩ′

1
‖∞ ≈ κhλ yields λ ≈ 2. The second order accuracy can also be

seen when the mesh is refined twice, i.e. the mesh size is divided by 4, in this case
ξ(1− ξ) does not change and we get ratios between two successive error norms, which
are very close to the theoretical value of 16.

A fully consistent scheme such as the standard P1 stencil with bicubic interpolation
or the modified stencil with 1D cubic interpolation by Goossens and Cai [GC99],
computes the exact solution up to machine precision for this testcase on any grid.

In order to see the effect of the overlap, we fix the mesh sizes to be h−1
1 = 320

and h−1
2 = 256 and vary the overlap according to δ1 = 2 × 2mh1 and δ2 = 2mh2 for

the values of m listed in Table 2. This table shows the number of additive Schwarz
iterations required to satisfy the convergence criterion of ‖rn‖2 ≤ 10−10‖r0‖2 and the
L∞ norm of the error in the nonoverlapping subdomains Ω1 and Ω2. First we list
the number of iterations (nsolver) the method needs when it is used a solver, i.e. in a
Richardson iteration, in this case the convergence rate is bounded by τ . We also list the
number of iterations (nprec) the method needs when it is used as a right preconditioner
for GMRES. As expected the number of additive Schwarz iterations decreases in both
cases, as the overlap increases. These results clearly show the advantage of using a
Krylov subspace method to accelerate the convergence of the iterative solver. From
the results it is clear that the global accuracy of these two methods increases as the
overlap increases, thus necessitating substantial overlap. The sensitivity to the size
of the overlap is quite high since the error decreases 3 orders of magnitude when
the overlap is increased from m = 0 to m = 7. This is highly undesirable. With a
consistent scheme, this error would be independent of the size of the overlap.
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Concluding remarks

We studied the effect of using a mortar projection as the interface interpolation in a
composite mesh difference method for overlapping nonmatching grids problems. In
this case the results are comparable to using bilinear interpolation for the Dirichlet
boundary conditions on the interfaces. This is due to the fact that a linear interpola-
tion in the direction that is normal to the interface is used to define the values on the
master side of the interface. This results in a dependency of the error on the relative
position of the interface nodes in the other mesh. Also due to the inconsistency, the
global accuracy depends on the size of the overlap.
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