
12th International Conference on Domain Decomposition Methods
Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c©2001 DDM.org

37. Parallel 3D Maxwell Solvers based on Domain
Decomposition Data Distribution

G. Haase1, M. Kuhn2, U. Langer3

Introduction

The most efficient solvers for finite element (fe) equations are certainly multigrid, or
multilevel methods, and domain decomposition methods using local multigrid solvers.
Typically, the multigrid convergence rate is independent of the mesh size parameter,
and the arithmetical complexity grows linearly with the number of unknowns. How-
ever, the standard multigrid algorithms fail for the Maxwell finite element equations
in the sense that the convergence rate deteriorates as the mesh-size decreases. To
overcome this drawback, R. Hiptmair proposed to modify the smoothing iteration by
adding a smoothing step in the discrete potential space [Hip99]. Similarly, D. Arnold,
R. Falk and R. Winther suggested a special block smoother that has the same ef-
fect [AFW00].

The parallelization of these or, more precisely, of appropriately modified multigrid
solvers is certainly the only principle way to enhance the efficiency of these algorithms.
Due to the peculiarities of the multigrid methods for the Maxwell equations, the par-
allelization is not straightforward. In this paper, we propose a unified approach to
the parallelization of multigrid methods and domain decomposition methods. In or-
der to develop a basic parallel Maxwell solver that can be used for more advanced
problems as basic module, it is sufficient to consider the magnetostatic case. In the
magnetostatic case, the Maxwell equation can be reduced to the curl-curl–equation
that is not uniquely solvable because of the large kernel of the curl-operator (poten-
tial fields). In practice, a gauging condition is imposed in order to pick out a unique
solution. The so-called Coulomb gauging aims at a divergence-free solution (vector
potential). The weak formulation of the curl-curl–equation and the gauging condition
together with a clever regularization leads to a regularized mixed variational formula-
tion of the magnetostatic Maxwell equations in H0(curl) × H1

0(Ω) that has a unique
solution. The discretization by the Nédélec and Lagrange finite elements results in
a large, sparse, symmetric, but indefinite system of finite element equations. Elimi-
nating the Lagrange multiplier from the mixed finite element equations, we arrive at
a symmetric and positive definite (spd) problem that can be solved by some parallel
multigrid preconditioned conjugate gradient (pcg) method. More precisely, this pcg
solver contains a standard scaled Laplace multigrid regularizer in the regularization
part and a special multigrid preconditioner for the regularized Nédélec finite element
equations that we want to solve. (see second section). The parallelization of the

1Johannes Kepler University Linz, Institute of Analysis and Computational Mathematics,
ghaase@numa.uni-linz.ac.at

2Johannes Kepler University Linz, SFB “Numerical and Symbolic Scientific Computing”,
kuhn@sfb013.uni-linz.ac.at

3Johannes Kepler University Linz, Institute of Analysis and Computational Mathematics,
ulanger@numa.uni-linz.ac.at

354 HAASE, KUHN, LANGER

pcg algorithm, the Laplace multigrid regularizer and the multigrid preconditioner are
based on a unified domain decomposition (dd) data distribution concept that will be
briefly described in the following two sections. From the parallelization point of view,
we prefer Hiptmair’s multigrid method with some modifications for the construction
of the special multigrid preconditioner. We also propose a concept for coupling finite
elements with boundary elements in 3D. As in 2D, a really efficient parallel solver
should be based on a hybrid parallelization concept using some Dirichlet dd precondi-
tioner the components of which are a dd parallelized global multigrid preconditioner
for the finite element part and algebraically parallelized components for the bound-
ary element parts. The final part contains some results of our numerical experiments
on a parallel machine with distributed memory that show the high efficiency of our
approach for a real-life application.

3D Magnetostatic Field Problems

The magnetostatic equations, in which we are interested throughout the paper, can
be rewritten as

curl(H) = J, H = νB, div(B) = 0, (1)

where H and B denote the magnetic field intensity and the magnetic flux density,
respectively. The permeability µ (ν := 1/µ ≥ νmin > 0) and current density J are
given. Furthermore, we note that the current density J is physically divergence-free,
i.e., div(J) = 0. Theoretically, the computational domain Ω coincides with the space
R

3 in any case. The behavior of the magnetic field at infinity is described by radiation
conditions. In practice, one may often simplify the problem by considering a bounded,
simply connected computational domain Ω ⊂ R

3 with Lipschitz boundary Γ = ∂Ω and
by replacing the radiation condition by the boundary condition

B · n = 0 on ∂Ω, (2)

where n stands for the unit outward normal with respect to ∂Ω. Introducing some
vector potential u for the B-field B = curl(u) and taking into account the Coulomb
gauging condition div(u) = 0 ensuring uniqueness, we arrive at the following mixed
variational formulation that is fundamental for our approach to the numerical solution
of the magnetostatic Maxwell equations (1):
Find (u, p) ∈ X ×M := H0 (curl,Ω)×H1

0 (Ω) such that

a(u, v) + b(v, p) = 〈f, v〉 ∀ v ∈ H0 (curl,Ω), (3)
b(u, q) = 0 ∀ q ∈ H1

0 (Ω), (4)

where a(u, v) :=
∫
Ω ν curl(u)·curl(v) dx, b(v, p) :=

∫
Ω v ·∇p dx, and 〈f, v〉 :=

∫
Ω J ·v dx.

Now it is not difficult to conclude from the Brezzi-Babuška theory that the mixed varia-
tional problem (3) - (4) has a unique solution. Moreover, choosing v = ∇p ∈ H0(curl,Ω)
in (3), we immediately observe that p = 0. This simple observation is crucial for our
approach. Indeed, adding an arbitrary spd bilinear form c(·, ·) : M ×M → R

1 to the
second equation of our mixed variational problem (3) - (4) we arrive at the equivalent

PARALLEL 3D MAXWELL SOLVERS 355

mixed variational problem: Find (u, p) ∈ X ×M such that

a(u, v) + b(v, p) = 〈f, v〉 ∀ v ∈ X, (5)
b(u, q)− c(p, q) = 0 ∀ q ∈M. (6)

Let now be Xh := N 1
h ⊂ X and Mh := S1

h ⊂ M the lowest order edge element
space (see [N8́6]) and the space of piecewise linear nodal elements on a shape-regular
tetrahedral triangularization of Ω with the mesh-width h, respectively [Cia78]. Then
the mixed fe approximation to the regularized mixed variational problem (5) - (6)
leads us to the following symmetric, but indefinite system(

A BT

B −C
) (

uh

p
h

)
=

(
f

h
0

)
(7)

of linear finite element equations for defining the edge unknowns uh and the nodal
unknowns p

h
, where the matrices A, B, C and the first component f

h
of the right-

hand side are derived from the bilinear forms a(·, ·), b(·, ·), c(·, ·), and the linear form
〈f, ·〉, respectively.

Eliminating p
h
= C−1Buh from the second equation in (7) and inserting it into

the first equation, we obtain the spd Schur complement system

Guh := (A+BTC−1B)uh = f
h
. (8)

Let C̃ be some spd matrix that is spectrally equivalent to C (briefly, C̃ ≈ C). Then the
original Schur complement system (8) is equivalent to the modified Schur complement
system

G̃uh := (A+BT C̃−1B)uh = f
h
. (9)

Instead of solving the symmetric, but indefinite system (7), we solve the spd modified
Schur complement system (9).

Let us choose the spd bilinear form

c(p, q) :=
1

νmin

∫
Ω

∇p∇q dx, (10)

corresponding to the Laplace operator scaled by 1/νmin, and let us consider a spd
preconditioner CH for the spd matrix H := A+M̃ , where M̃ is here the appropriately
scaled mass matrix in Xh defined by (M̃uh, vh) := νmin

∫
Ω
uh vh dx. The discrete LBB–

condition and the spectral equivalence CH ≈ H imply that CH ≈ G ≈ G̃ (see [Kuh98]
for the detailed proof). Once a good preconditioner CH and an appropriate regular-
izer C̃ is available, we can solve the modified Schur complement system (9) by the pcg
method. In practice, we choose the multigrid preconditioner CH := H(I −MH)−1

and the multigrid regularizer C̃ := CC := C(I − MC)−1, where MH and MC are
the corresponding multigrid iteration operators with respect to H and C. Choos-
ing appropriate symmetric multigrid cycles, we can now conclude from the results
of [AFW00, Hac85, Hip99] that the pcg method is asymptotically optimal with re-
spect to the operation count and to the memory demand [JLM+89]. The numerical

356 HAASE, KUHN, LANGER

results obtained from the serial implementation of this algorithm confirm this state-
ment [KLS00]. In this paper, we are interested in the parallel implementation of this
algorithm. The parallelization of this algorithm is far from being straightforward be-
cause of the peculiarities connected with the multigrid regularizer CC and with the
special multigrid preconditioner CH .

A Unified Data Distribution Concept

Vector and matrix types

We decompose Ω in P non-overlapping subdomains Ωs which are discretized by a
mesh τh,s, such that the whole triangulation τh =

⋃P
s=1 τh,s of Ω is conform. The

index set of the Ns unknowns in Ωs is denoted by ωs. The mapping of a vector
u ∈ R

N in global numbering onto a local vector us ∈ R
Ns in subdomain Ωs (s = 1, P) is

represented symbolically by subdomain connectivity matrices As of dimension Ns×N
with entries A[i,j]

s := 1 if j ∈ ω is the global number of i ∈ ωs and A[i,j]
s := 0

otherwise.
The index set of all those subdomains, an unknown u[j], j ∈ ω belongs to, is denoted
by σ[j] := {s | ∃i ∈ ωs : A[i,j]

s �= 0}. We store the data of a vector component u[i] in
the subdomain Ωs if s ∈ σ[i].
There are two opportunities to store those components and finally that vector. A
vector u is called an accumulated vector if each vector component u[i] is stored in all
subdomains Ωs, s ∈ σ[i] with its full value. The local vectors us can be represented
as us := As · u . We name a vector r as distributed vector if it is decomposed into
local vectors rs such that r =

∑P
s=1AT

s · rs holds, i.e., all subdomains Ωs, s ∈ σ[i]

store only rs and possess a portion of the full vector value r[i] which can be determined
only by taking the sum. The conversion of a distributed vector v into an accumulated
vector w can be done by evaluating the sum above and restrict the result afterwards,
i.e.,

w ← v : ws := As ·w = As ·
P∑

s=1

AT
s · vs . (11)

With respect to an element-wise domain decomposition, the matrix defined by the
bilinear form in (3) can also be stored in two ways. A matrix M is called accu-
mulated if its local restrictions Ms possess the full entries of it, and we can write
Ms := As ·M · AT

s . We call a matrix K distributed if we have locally stored matri-
ces Ks such that K :=

∑P
s=1AT

s ·Ks · As holds, i.e., each subdomain Ωs stores only a
part of its full values. We obtain distributed system matrices Ks automatically in our
approach.

Basic operations

The inner product of different type vectors requires one global reduce operation of the
local inner products, for details see [Haa98, Haa99, HLM91]. The multiplication of a
distributed matrix with an accumulated vector results in a distributed vector and its

PARALLEL 3D MAXWELL SOLVERS 357

local realization vs = Ks ·ws requires no communication at all:

〈w, r〉 =
P∑

s=1

〈ws, rs〉 and K ·w = v . (12)

The situation changes if we use an accumulated matrix M. If the pattern of M fulfills
the condition

∀i, j ∈ ω : σ[i] �⊆ σ[j] =⇒ M[i,j] = 0 , (13)

then no communication is needed for the operations w = M · u and d = MT · r, i.e.,
we performed locally ws = Ms · us and ds = MT

s · rs, ∀s = 1, P .

Basic algorithms

The operations (12) allow us already to formulate a parallel pcg algorithm for solving
the matrix equation Ku = f with a preconditioner CK . Besides the inner products,

Algorithm 1 Parallel pcg method pcg(K, u, f, CK)

repeat
v← K · s
α← σ/ 〈s, v〉
u← u + α · s
r← r − α · v
w⇐ C−1

K · r
σ ← 〈w, r〉 , β ← σ/σold , σold ← σ
s← w + β · s

until termination

only the preconditioning step w⇐ C−1
K · r involves communication indicated by using

⇐ instead of ←. In the case of CK = I, i.e., no preconditioning, this step reduces to
a type conversion (11) involving communication. We require that the communication
costs for applying any other preconditioner C−1

K are in the same range.
One possible choice for the preconditioner is C−1

K = (I−MK)K−1, withMK being
the multigrid iteration operator for K. The parallel multigrid iteration is presented
in Alg. 2, where (denotes the level such that (= 1 stands for the coarsest grid.
The algorithm needs a smoother Smooth with a good parallel performance, e.g.,
a block Jacobi smoother with Gauss-Seidel smoothing in blocks containing interior
unknowns of the subdomains. Furthermore, the interpolation P has to fulfill the
pattern condition (13) and we take PT as restriction. The coarse grid system can be
solved directly or by some iterative method similar to the pcg in Alg. 1. Despite the
coarse grid solver, only the smoothing sweep requires communication.

Parallel Multigrid Maxwell Solver

We want to solve (9) by the pcg algorithm (Alg. 1) using a multigrid preconditioner
(Alg. 2) for the realization of C−1

K . In this section, we will discuss how these compo-

358 HAASE, KUHN, LANGER

Algorithm 2 Parallel multigrid pmg(K, u, f, ()

if (== 1 then
u⇐ Solve (

∑P
s=1AT

s KsAs · u = f)
else

ũ⇐ Smooth(K, u, f)
d← f − K · ũ
dH ← PT · d
wH ⇐ pmg(KH ,wH ← 0, dH , (− 1)
w← P ·wH

u⇐ SmoothT (K, ũ + w, f)
end if

nents have to be adapted to the case of our Maxwell solver presented in the second
section.

Our reduced primal formulation (9) has been derived from (7). As discussed in the
previous section, the matrices are generated locally, such that the local components
As, Bs, Cs are available. Denoting the subdomain connectivity matrices with respect
to the spaces Xh := R

nh and Mh := R
mh by AX,s and AM,s, respectively, we have the

following relations:

A =
P∑

s=1

AX,sAsAT
X,s, B =

P∑
s=1

AM,sBsAT
X,s, C =

P∑
s=1

AM,sCsAT
M,s.

The system matrix in (9) is defined by G̃ := A+BTC̃−1B, where C̃ is a preconditioner
for C. In order to apply pcg(G̃, u, f, C

eG) we explain in Alg. 3 how the matrix-by-vector
operation is defined for the distributed matrix G̃. Hereby, the required operation

Algorithm 3 The operation v⇐ G̃ · s.
q← B · s
p⇐ pmg(C, p, q, ()
v← A · s + BT · p

C̃−1 is being realized by one multigrid iteration step pmg(C, p, q, () in the space Mh.
Although the matrix G̃ is distributed, the corresponding matrix-by-vector operation
requires as many communications as one multigrid iteration step for C in Mh.

Furthermore, the operation C−1
K in Alg. 1 is now realized by one iteration step of

Hybridpmg(H̃,C, u, f, () defined in Alg. 4. Comparing Alg. 4 and Alg. 2 we observe
that only the smoother has to be adapted to our special application.

In particular we use a hybrid smoother as proposed in [Hip99] which is suitable for
parallelization. As in [Hip99], we introduce the lifting operator L : Xh →Mh where
L[i,j] := −1, L[i,k] := 1 if the oriented edge with the unknown index i in Xh connects
the two unknowns with the indices j and k in Mh. Otherwise we have L[i,j] := 0.
We observe that LT satisfies the pattern condition (13). Now Alg. 5 is the correct
definition of the parallel hybrid smoother hybridsmooth(H,C, u, f). Note, using the

PARALLEL 3D MAXWELL SOLVERS 359

Algorithm 4 Parallel hybrid multigrid hybridpmg(H,C, u, f, ()

if (== 1 then

u⇐ Solve (
P∑

s=1
AT

s HsAs · u = f)

else
ũ⇐ HybridSmooth(H,C, u, f)
d← f − H · ũ
dH ← PT · d
wH ← 0
w̃

H ⇐ hybridpmg(HH ,CH ,wH , dH , (− 1)
w← P · w̃H

û← ũ + w
u⇐ HybridSmoothT (H,C, û, f)

end if

Algorithm 5 Parallel hybrid smoother hybridsmooth(H,C, u, f)

ũ⇐ Smooth(H, u, f)
q← L · (f − H · ũ)
p← 0
p̃⇐ Smooth(ν2

min · C, p, q)
u← ũ + LT · p̃

matrix C derived from (10) for defining the smoother in Mh we have to use the correct
scaling by ν2

min corresponding to the definition of scaled mass matrix M̃ . Now, the
smoother Smooth can be any standard smoother with a good parallel performance,
e.g., a block Jacobi smoother with Gauss-Seidel smoothing in blocks containing interior
unknowns of the subdomains. Since HybridSmooth involves at least two smoothing
steps, one in Xh and one in Mh, at least two subsequent communications are required.

Note, the post–smoothing step hybridsmoothT (H,C, u, f). in Alg. 4 is obtained
from Alg. 5 by executing step 1 after steps 2-3-4-5 instead of executing the given order
1-2-3-4-5.

Parallel Domain Decomposition Maxwell Solver

If one is interested in the exterior magnetic field, then the coupling of the FEM with
the BEM is certainly the natural technique to handle this problem. For simplicity
of the presentation, let us consider the case where the magnetic sources and the
ferromagnetic materials are located in some bounded and simply connected Lipschitz
domain ΩF where we will use the FEM for approximating the magnetic field. Thus,
we suppose that in the exterior BEM subdomain ΩB := (Ω̄F)c the electric current
density vanishes, i.e., J = 0, and ν = νB > 0 (air). We can again introduce the vector
potential u for the B–field B = curl(u) in ΩF . However, in the exterior domain ΩB,
the H–field can now be represented as a gradient field of some scalar potential ϕ, i.e.
H = grad(ϕ) in ΩB.

360 HAASE, KUHN, LANGER

Therefore, in the exterior subdomain ΩB, the magnetostatic Maxwell equations
(1) are essentially reduced to the scaled Laplace equation for the scalar potential ϕ.
The Cauchy data for the solution of this equation are related by Calderon’s inte-
gral equations ϕ = (1

2I + K)ϕ − νBVλ and λ = − 1
νB
Dϕ + (1

2I − K∗)λ on the in-
terface Γ := ∂ΩF = ∂ΩB, where ϕ denotes the trace of the scalar potential on Γ,
λ = 1

νB

∂ϕ
∂n = B · n on Γ, n := outer unit normal to ΩF , V := single layer potential op-

erator on Γ, K := double layer potential operator on Γ, D := hypersingular operator
on Γ.

Using now Coulomb’s gauging condition div(u) = 0 in ΩF and Cauchy’s represen-
tation formula of the Cauchy data together with the interface condition predicting the
continuity of the tangential part H × n of the H–field and of the normal component
B ·n of the B–field, we arrive at the mixed coupled fe-be variational formulation: Find
(u, ϕ, p) ∈ V := X × Φ×M such that:

a(u, ϕ; v, ψ) + b(v, p) = 〈f, v〉 ∀ (v, ψ) ∈ X × Φ, (14)
b(u, q)− c(p, q) = 0 ∀ q ∈M, (15)

where X := H(curl,ΩF), Φ := H
1/2
� (Γ), and M := H1

� (ΩF). The bilinear forms are
defined by the identities

a(u, ϕ; v, ψ) :=
∫

ΩF

ν curl(u) · curl(v) dx+ 〈νBV(curl(u) · n), curl(v) · n〉Γ

−〈(1
2
I +K)ϕ, curl(v) · n〉Γ + 〈 1

νB
Dϕ,ψ〉Γ + 〈(1

2
I + K∗)(curl(u) · n), ψ〉Γ,

b(u, q) :=
∫

ΩF

u · ∇q dx, c(p, q) :=
1

νmin

∫
ΩF

∇p · ∇q dx, 〈f, v〉 :=
∫

ΩF

J · v dx.

The subscribe ”.” means that the function of the corresponding space should be L2–
orthogonal to the constant functions. Again one can show existence and uniqueness
of the solution. Moreover, p = 0 if

∫
ΩF

J ∇q dx = 0 ∀ q ∈ H1
� (ΩF) (see [Kuh98] for

the proof).
Choosing the finite (boundary) element subspaces Xh := N 1

h ⊂ X , Φh := S1
h ⊂ Φ

andMh := S1
h ⊂M , we derive from (14) the symmetric coupled fe-be Galerkin scheme:

Find (uh, ϕh, ph) ∈ Vh := Xh × Φh ×Mh such that

a(uh, ϕh; vh, ψh) + b(vh, ph) = 〈f, vh〉 ∀ (vh, ψh) ∈ Xh × Φh, (16)
b(uh, qh)− c(ph, qh) = 0 ∀ qh ∈Mh, (17)

that is again equivalent to the following symmetric, but indefinite system of coupled
fe-be equations 

 A KT BT

K −D 0
B 0 −C





 uh

ϕ
h
p

h


 =


 f

h
0
0


 , (18)

PARALLEL 3D MAXWELL SOLVERS 361

where A = AF + AB consists of the contributions from the first two terms of the
bilinear form a(·, ·). Eliminating again p

h
= C−1Buh from the third equation in (18)

and inserting it into the first equation, we obtain the Schur complement system(
Ã KT

K −D
) (

uh

ϕ
h

)
=

(
f

h
0

)
,

where Ã = AF +AB +BTC−1B. In contrast to the finite element case, here the Schur
complement system remains symmetric and indefinite. Similar to the 2D case discussed
in [Lan94], we can now construct efficient solvers on the basis of the Bramble-Pasciak
transformation [BP88]. In [KS00], M. Kuhn and O. Steinbach describe the ingredients
of the preconditioner and present numerical results showing the high efficiency of this
solver for coupled fe-be equations in 3D.

Numerical Results

In this section, we present an example from magnetostatics and we apply the algo-
rithms presented above. The geometry of our model problem together with the cor-
responding coarse surface mesh is shown in Fig. 1 on the left. We consider the model
of a transformer with a kernel, three coils and the air domain around these parts.
The outer boundary is given by an iron casing of high conductivity that motivates the
boundary condition (2). The magnetic field which is to be computed is generated by
tangential currents within the three coils. The iron core has a permeability of 1000.
The resulting magnetic flux density B is shown in Fig. 1 on the right.

Figure 1: Geometry, initial mesh (left), resulting magnetic flux density B (right).

The basis for our domain decomposition is a tetrahedral mesh generated fully auto-
matically by NETGEN (see [KLS00]). The surface mesh shown in Fig. 1 corresponds
to a volume mesh of 2465 tetrahedra. We apply a modified recursive spectral bisection
(rsb) algorithm which allows to use any number P of subdomains. The use of the rsb
ensures that the elements are distributed almost equally to the P processors being
used. Finer meshes corresponding to the levels (= 2, 3, 4 are obtained from uniform

362 HAASE, KUHN, LANGER

refinement resulting in overall 1262080 tetrahedra. This refinement is purely local and
can be realized without communication. However, newly created unknowns at inter-
faces between different subdomains have to be identified uniquely by all surrounding
processors. For this purpose, one root process per interface receives data from all
surrounding subdomains, it identifies all unknowns uniquely and it finally distributes
this information again to all adjacent processors. This setup phase is required once
after each refinement step.

The numerical experiments presented below are carried out on a SGI Origin 2000
machine with 64 CPU R12000, 300 MHz and overall 20 GB main memory. The numer-
ical simulations are carried out using the object oriented C++ code FEPP [KLS00].
The message passing is based on MPI from the SGI Message Passing Toolkit 1.2. The
wall-clock time has been measured by MPI WTIME().

The system (9) has been solved using the pmg algorithm with the relative accu-
racy 10−4. For the multigrid preconditioner CH a V–cycle with 1 pre– and 1 post–
smoothing step hybridsmooth has been used. The multigrid regularisator C̃ has
been realized by a V–cycle with 2 pre– and 2 post–smoothing steps using a standard
smoother with good parallel efficiency as described before. Table 1 shows the corre-
sponding results including number of unknowns (dof), number of iterations (It.) and
wall-clock time in seconds (T[sec]). We increase the number of unknowns from top to
bottom, while the number of processors is increased from left to right. First, we ob-

1 4 16 32 48 60
(dof It. T T T T T It. T
1 3466 5 0.1 0.1 0.1 0.1 0.1 5 0.1
2 26907 8 7.1 2.9 1.5 1.4 1.4 11 1.7
3 212597 9 84 28 7.3 4.7 3.8 13 4.1
4 1691370 11 1398 496 81 42 28 14 24
T((= 4) 2593 806 160 86 61 54
T(Σ() 2852 886.4 188.4 108.5 83.8 79.6

Table 1: Wall-clock time T for the solver on each level (upper part), overall wall-clock
time for (= 4 and accumulated for all levels (Σ() in seconds.

serve that the number of iterations is almost independent of the number of unknowns.
This shows the optimality of our algorithm. However, the number of iterations de-
pends slightly on the number of processors. That is because our smoothers depend on
the partition of the mesh. In particular, the blocks of unknowns at interfaces where
Jacobi steps are performed grow with the number of subdomains. The wall-clock
times for the pcg are given in the upper part for each level (separately. Additionally
we present the overall time for the finest grid ((= 4) and together for all grids (Σ()
in the lower part of Table 1. This time includes the grid refinement together with
the setup phase for the vector accumulation, the assembling of the matrices and the
solution of the system. Table 2 shows the corresponding speedup results. First the
overall speedup for the accumulated time over all 4 levels is given. It performs well
until P = 16 and is no longer optimal for P = 60. This loss of efficiency is due to the
setup phase for interface unknowns which shows rather bad scalability in the current
implementation. So it scales from 32 sec for P = 16 to 15 sec for P = 60 only. The

PARALLEL 3D MAXWELL SOLVERS 363

P 1 4 16 32 48 60
Σ(1.0 3.2 15.1 26.2 34.1 35.6
(= 4 1.0 3.2 16.2 30.0 42.5 48.0

pcg ((= 4) 1.0 2.8 17.2 33.0 49.6 58.5
1 Iter. ((= 4) 1.0 3.3 21.9 42.1 63.2 74.4

Table 2: Speedup results for overall time Σ(, time for (= 4, pcg (solver) for (= 4
and one iteration of pcg for (= 4.

speedup computed for (= 4 shows a slightly better behavior since coarse grid effects
are neglected. However, the speedup computed for the solver and (= 4 only, shows
much better results. Here the speedup is almost optimal for P = 60. For a more
detailed analysis we consider the speedup with respect to one iteration for (= 4. Now
we observe even super-speedups. However this is due to cache effects.

References

[AFW00]Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Multigrid in
H(div) and H(curl). Numer. Math., 85(2):197–217, 2000.

[BP88]James H. Bramble and Joseph E. Pasciak. A preconditioning technique for
indefinite systems resulting from mixed approximations of elliptic problems. Math-
ematics of Computation, 50(181):1–17, 1988.

[Cia78]Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. North-
Holland, Amsterdam, 1978.

[Haa98]Gundolf Haase. Parallel incomplete Cholesky preconditioners based on the
non-overlapping data distribution. Parallel Computing, 24(11):1685–1703, 1998.

[Haa99]Gundolf Haase. Parallelisierung numerischer Algorithmen für partielle Differ-
entialgleichungen. Teubner-Verlag, Stuttgart/Leipzig, 1999.

[Hac85]Wolfgang Hackbusch. Multigrid Methods and Applications. Springer, Berlin,
1985.

[Hip99]Ralf Hiptmair. Multigrid methods for Maxwell’s equations. SIAM J. Numer.
Anal., 36:204–225, 1999.

[HLM91]Gundolf Haase, Ulrich Langer, and Arnd Meyer. The approximate Dirichlet
decomposition method. part I,II. Computing, 47:137–167, 1991.

[JLM+89]Michael Jung, Ulrich Langer, Arnd Meyer, Werner Queck, and Manfred
Schneider. Multigrid preconditioners and their applications. In G. Telschow, ed-
itor, Third Multigrid Seminar, Biesenthal 1988, pages 11–52, Berlin, 1989. Karl–
Weierstrass–Institut. Report R–MATH–03/89.

[KLS00]Michael Kuhn, Ulrich Langer, and Joachim Schöberl. Scientific computing
tools for 3D magnetic field problems. In John R. Whiteman, editor, The Mathemat-
ics of Finite Elements and Applications X, pages 239 – 258. Elsevier, 2000.

[KS00]Michael Kuhn and Olaf Steinbach. FEM–BEM coupling for 3D exterior mag-
netic field problems. In T. Tiihonen and P. Neittaanmäki, editor, ENUMATH 99
- Proceedings of the 3rd European Conference on Numerical Mathematics and Ad-
vanced Applications, Jyväskylä, Finland, July 26-30, 1999, pages 180–187, Singa-
pore, 2000. World Scientific.

364 HAASE, KUHN, LANGER

[Kuh98]Michael Kuhn. Efficient Parallel Numerical Simulation of Magnetic Field
Problems. PhD thesis, Johannes Kepler University Linz, Institute of Analysis and
Computational Mathematics, 1998.

[Lan94]Ulrich Langer. Parallel iterative solution of symmetric coupled BE/FE–
equations via domain decomposition. Contemp. Math., 157:335–344, 1994.

[N8́6]J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math.,
50:57–81, 1986.

