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38. A Fictitious Domain Decomposition Method for
High Frequency Acoustic Scattering Problems
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Introduction

It is well known that most PDE problems defined over an axisymmetric domain can be
efficiently solved by a Fourier based solution method. However, for many applications,
the underlying computational domain is not entirely axisymmetric, but has one or
several major axisymmetric subdomains. For such problems, an axisymmetric analysis
method is not applicable, and a straightforward one can be inefficient because it does
not exploit the geometrical properties of the axisymmetric components. The objective
of this paper is to fill this existing gap, and propose a computationally efficient method
for solving problems on a class of partially axisymmetric domains [FUR99].

We illustrate our method for a submarine problem. Indeed, a submarine can be
represented as the assembly of a major cylindrical component, and a few minor “fea-
tures” that are however essential for the application itself. Our approach is presented
here in the context of the finite element solution of the three-dimensional exterior
Helmholtz problem in the high frequency regime. This problem is challenging be-
cause it leads to large-scale computations. For example, at a wave length equal to
the length of a submarine divided by 360, the finite element discretization of such a
problem requires hundreds of millions of grid points.

The proposed methodology is based on a fictitious domain approach (for example,
see [DGH+92]) where the original exterior Helmholtz problem is extended into an
axisymmetric exterior problem, and where parts of the genuine boundary conditions
are enforced through the utilization of Lagrange multipliers. The axisymmetry of the
enlarged domain is then exploited by expanding the solution into a Fourier series.
The Fourier modes of the solution are computed by solving a series of bidimensional
problems coupled altogether by the Lagrange multipliers. The associated constrained
problem is treated by extension of the FETI-H method [FML00], and a special coarse
problem is constructed for accelerating the convergence of the corresponding interface
problem. The resulting fictitious domain decomposition method is a fast solver because
it transforms a 3D problem into a series of 2D ones.

For simplicity but without any loss of generality, we consider in this paper the
case of a scatterer with a single component and one arbitrarily shaped feature. The
generalization to an arbitrary number of axisymmetric components and features is
straightforward.
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Mathematical formulation

Extension of the solution to a fictitious domain

We consider an impenetrable obstacle Ω composed of two substructures

Ω̄ = C̄ ∪ W̄
where C and W are two disjoint open sets and C is axisymmetric, as illustrated on
Fig. 1.

= +

Figure 1: Physical decomposition of the scatterer

BR is the ball of radius R centered at the center of geometry of Ω, n is the outward
normal to ∂BR and ∂

∂n is the normal derivative operator. We define the following
exterior domains and their intersection with BR.{

Ωe = R
3\Ω̄

Ωe,R = Ωe ∩BR

{
Ce = R

3\C̄
Ce,R = Ce ∩BR

The surface Γ is defined as the intersection of ∂W with Ce,R.
The focus model problem is given by

Find u ∈ H1(Ωe,R) such that




∆u+ k2u = f in Ωe,R

u = 0 on ∂Ω
∂u
∂n = iku on ∂BR

(1)

where u is the acoustic scattered field and f belongs to L2(Ωe,R).
In this paper we consider only a spherical artificial boundary with a first-order

approximation of the Sommerfeld condition. But any other axisymmetric boundary
or absorbing condition could be used to ensure that the waves are outgoing.

In order to obtain an axisymmetric computational domain, we embed the original
domain Ωe,R into Ce,R which satisfies

C̄e,R = Ω̄e,R ∪ W̄
We extend u from Ωe,R to the enlarged domain Ce,R to a function (still denoted

by u for simplicity) with H1(Ce,R) regularity. This regularity requirement implies the
continuity of the trace of u across the surface Γ.

Solving problem (1) is equivalent to solving the following problem

Find u ∈ V = {v ∈ H1(Ce,R) | v = 0 on Γ} such that
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


∆u+ k2u = f̃ in Ce,R

u = 0 on ∂C
∂u
∂n = iku on ∂BR

(2)

in the sense that the solution of problem (2) restricted to Ωe,R satisfies the boundary
value problem (1), and f̃ is an L2-extension of f , for example, by 0.

We include the boundary condition on ∂C into the definition of the functional
space

Y = {v ∈ H1(Ce,R) | v = 0 on ∂C}

We can rewrite problem (2) into the following saddle-point problem :

Find (u, µ) ∈ Y ×H−1/2(Γ) such that




∫
Ce,r

∇u.∇v − k2uvdx+
∫

∂BR
ikuvdσ =

∫
Ce,R

fvdx+
∫
Γ
µvdσ, ∀v ∈ W

∫
Γ
ζ.udσ = 0, ∀ζ ∈ H−1/2(Γ)

(3)

Domain decomposition

For high-frequency acoustic scattering problems, numerical discretization leads to
large-scale systems of equations. Thus a domain decomposition technique is useful
for solving these systems. For the sake of clarity, but without any loss of generality,
we present our domain decomposition method for the case of two subdomains.

We describe the axisymmetric domain Ce,R in cylindrical coordinates (r, θ, z). Ce,R

is generated by rotation around the z-axis of a meridian plane ce,R. We partition ce,R

into two non-overlapping subdomains c1 and c2. The decomposition of ce,R induces a
partition of Ce,R

C̄e,R = C̄1
e,R ∪ C̄2

e,R

where C1
e,R (resp. C2

e,R) is generated by the rotation of c1 (resp. c2) around the z-axis.
Let us denote the restriction to Cs

e,R of the solution of problem (2), for s = 1, 2.
The interface between C1

e,R and C2
e,R is denoted ΣI , which is axisymmetric. Now, we

are looking for the functions us in the following functional spaces

Vs = {v ∈ H1(Cs
e,R) | v = 0 on Γ ∩Cs

e,R}

for s = 1, 2.
For solving problem (2) on a partitioned domain, we adopt the FETI-H method

[FML00] which introduces the two following problems

Find (u1, u2) ∈ V1 × V2 such that
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


∆u1 + k2u1 = f̃|C1
e,R

in C1
e,R

u1 = 0 on ∂C ∩ ∂C1
e,R

∂u1

∂n = iku1 on ∂BR ∩ ∂C1
e,R

∂u1

∂ν1 + iku1 = λ on ΣI




∆u2 + k2u2 = f̃|C2
e,R

in C2
e,R

u2 = 0 on ∂C ∩ ∂C2
e,R

∂u2

∂n = iku2 on ∂BR ∩ ∂C2
e,R

−∂u2

∂ν2 + iku2 = λ on ΣI

(4)

with the constraint

u1 − u2 = 0 on ΣI (5)

Here, νs denotes here the unit outward normal on the interface boundary between
C1

e,R and C2
e,R, and λ is a Lagrange multiplier field for enforcing the continuity at the

interface of the solution.
Similarly to the previous section, we can introduce a saddle-point problem with the

boundary condition on ∂C inside a functional space and two Lagrange multipliers: λ
for the continuity at the interface of the solution, µ for enforcing the genuine boundary
condition on Γ.

A Fourier based finite element discretization

Each function us is 2π-periodical with respect to the cylindrical coordinate θ. Hence,
it can be expanded in a Fourier series with respect to θ as follows

us(r, θ, z) =
∞∑

n=−∞
us

n(r, z)einθ (6)

The Fourier coefficients of us are now functions of (r, z) defined on cs.
Discretizing the two-dimensional subdomains cs by finite elements and truncating

the Fourier expansions leads to the following discrete expression of u1 and u2




u1(r, θ, z) =
nθ∑

n=−nθ

n1
cyl∑

j=1

u1
n,jX

1
j (r, z)einθ

u2(r, θ, z) =
nθ∑

n=−nθ

n2
cyl∑

j=1

u2
n,jX

2
j (r, z)einθ

(7)

where nθ denotes the selected number of Fourier modes, Xs
j (r, z) denote the shape

functions associated with the chosen two-dimensional finite element discretization in
cs and us

n,j denote the corresponding nodal values.
We enforce all the constraints pointwise with discrete Lagrange multipliers, assum-

ing the subdomains have matching discrete interfaces.
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This discretization leads to the following algebraic system




(K1
nθ

− k2M1
nθ

− ikM1
S,nθ

+ ikB1T

nθ
MbbB

1
nθ

)u1
nθ

+ B1T

nθ
λ + C1T

nθ
µ = F 1

nθ

(K2
nθ

− k2M2
nθ

− ikM2
S,nθ

− ikB2T

nθ
MbbB

2
nθ

)u2
nθ

+ B2T

nθ
λ + C2T

nθ
µ = F 2

nθ

B1
nθ

u1
nθ

+ B2
nθ

u2
nθ

= 0
C1

nθ
u1

nθ
+ C2

nθ
u2

nθ
= 0

(8)

Ks
nθ

, Ms
nθ

are the so-called stiffness and mass matrices for the substructure Cs
e,R.

Matrix Ms
S,nθ

is induced by the Sommerfeld radiation condition and is non-zero only
at the degrees of freedom lying on the outer boundary of the domain. Matrix Mbb

is an interface mass matrix introduced in the FETI-H method for local damping, in
order to avoid local resonance. The vectors us

nθ
and F s

nθ
are respectively the vectors

of Fourier coefficients of the solution and the load on substructure Cs
e,R, and λ is

the vector of Lagrange multipliers for enforcing the continuity at the interface of the
Fourier coefficients. The matrices Bs

nθ
depend on the shape functions Xs

j (r, z) and
on the discretization of the Lagrange multiplier field λ. With our assumptions, each
Bs

nθ
becomes a Boolean substructure connectivity matrix. µ is the vector of Lagrange

multipliers for enforcing pointwise the constraints on Γ. The matrices Cs
nθ

depend on
the discretization of us and of the Lagrange multiplier field µ. For each node k lying
on Γ ∩ cs and for which the second cylindrical coordinate in Cs

e,R is denoted by θk, a
constraint equation can be written as follows

n=nθ∑
n=−nθ

us
n,ke

inθk

= 0 (9)

The system of equations (8) has the pattern of the FETI-H equations with a
set of multipoint constraints (MPCs). Therefore, it is most efficiently solved by the
numerically scalable FETI-H solver [FML00] coupled with an appropriate treatment
of the MPCs [FLR98].

By gathering the Lagrange multipliers λ, µ together and also the matrices Bs
nθ

,
Cs

nθ
together, we can define an extended dual interface problem. We solve this dual

problem with the FETI-H solver, where at each iteration the MPCs are exactly satis-
fied and where the Krylov space for the search directions is enriched by the range of
a coarse matrix Q [FML00] based now on the Fourier coefficients of planar waves.

The generalization to an arbitrary number of subdomains is straightforward. One
needs only to follow the methodology defined in [FML00] for signing efficiently all the
interfaces of the subdomains.

Numerical experiments

We illustrate our embedding method with the resolution of the Helmholtz equation on
the exterior domain of an obstacle. The structure is composed of a large cylindrical
component and a conical tower of 45 degrees.
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The problem is formulated as follows




∆u+ k2u = 0 in Ωe,R

u = 1 on ∂Ω

∂u
∂n = 0 on SR




Diameter of the cylinder : a = 1
Length of the cylinder : L = 10
Wavenumber : kL = 10
Wavelength : λ = 2π
Mesh size : h = λ/25
Distance SR - obstacle : 0.5λ

(10)

For this computation, SR has a cylindrical shape.
We discretize the domain Ωe,R by 343,680 8-noded brick elements. We compute

a reference solution by performing a global finite element analysis with Q1 functions,
using the classical FETI-H method.

We compute a solution obtained by our methodology with 40 Fourier modes and
172 Lagrange multipliers for enforcing part of the boundary condition. The two-
dimensional mesh for computing the Fourier coefficients is made of 1,072 Q1 elements.

As shown on Fig. 2 and Fig. 3, the results obtained by the fictitious method are
in excellent agreement with those obtained by a global analysis method.

Figure 2: Isovalues of the reference solution

Figure 3: Isovalues of the solution with 40 modes
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In all the cases, we use the following convergence criterion

‖ K̃u − f ‖≤ 10−6 ‖ f ‖
where K̃ denotes the generalized stiffness matrix of the system to be solved, u denotes
either the nodal values of the 3D solution or the nodal values of the Fourier coefficients
of the solution and f the corresponding right-hand side.

The performance results of the FETI-H method applied to the solution of the
3D computation are reported on the table 1. These results are achieved for 200
subdomains on a single processor Origin 2000 computer. The size of the coarse grid
problem, on which the GCR solver iterates, is 1,577.

Number of Total CPU Total memory
iterations time cost

130 2,548 s 2,172 Mb

Table 1: Performance results for the 3D computation on a single processor Origin
2000

The performance results of the method with fictitious domain are reported on the
table 2, using 1, 3 and 5 subdomains for the axisymmetric component on a single
processor. Note that for the case of one subdomain, the constrained problem is solved
by a direct method.

Nb. of Size of Number of Total CPU Total memory
subd. pb. coarse iterations time cost

1 172 DIRECT 145 s 449 Mb
3 216 10 232 s 402 Mb
5 260 12 253 s 426 Mb

Table 2: Performance results for the fictitious methodology

As expected, the fictitious domain method is an order magnitude faster and less
memory intensive than the 3D domain decomposition based FETI-H method, because
this fictitious domain transforms a 3D problem into a series of 2D ones. We also note
that for the considered wavenumber k, the size of the 2D mesh is such that solving
the 2D Fourier problems by a direct method is faster than solving them by a domain
decomposition one. However, one can expect this trend to reverse for larger values of
ka.

Conclusion

In this paper, we have presented a fictitious domain decomposition method that allows
exploiting a potential partial axisymmetry of a given computational domain. This in
turn results in a dramatic reduction of the size of the system of equations to be
solved, without a loss of accuracy. Therefore, this fictitious domain decomposition
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method enables the solution of high frequency 3D acoustic scattering problems on
contemporary computational platforms.
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