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14. The Coupling of Natural BEM and Composite
Grid FEM

Q.Y. Hu1, D.H. Yu2

Introduction

The coupling of boundary elements and finite elements is of great importance for
the numerical treatment of boundary value problems posed on unbounded domains.
It permits us to combine the advantages of boundary elements for treating domains
extended to infinity with those of finite elements in treating the complicated bounded
domains.

The standard procedure of coupling the boundary element and finite element meth-
ods is described as follows. First, the (unbounded) domain is divided into two sub-
regions, a bounded inner region and an unbounded outer one, by introducing an
auxiliary common boundary. Next, the problem is reduced to an equivalent one in the
bounded region. There are many ways to accomplish this reduction (refer to [Cos87],
[FY83], [GHW94], [HZ94], [JN80], [Med98] and [ESH79]). The FEM-BEM coupled
method can be viewed as a domain decomposition method to solve unbounded domain
problems.

The natural boundary reduction method proposed by [FY83] has obvious advan-
tages over the usual boundary reduction methods: the coupled bilinear form preserve
automatically the symmetry and coerciveness of the original bilinear form,so not only
the analysis of the discrete problem is simplified, but also the optimal error estimates
and the numerical stability are restored (see [FY83] and [Yu93]).

It is well known that the analytic solution of the Dirichlet exterior problem is in
general singular at the corner points. The fast adaptive composite grid (iteration)
method advanced by McCormick (refer to [BPWX91], [MT86] and [McC89]) is very
effective in dealing with this kind of local singularity. However, it can not be applied
directly to the case of unbounded domain.

In the present paper we combine the composite grid method with the coupling
method of natural boundary element and finite element to handle the corner singu-
larity of the Dirichlet exterior problems. Under suitable assumptions we obtain the
optimal error estimates of the corresponding approximate solutions. The underlying
linear system is expensive to solve directly due to the complicated structure (which
is neither sparse nor band). Instead, we introduce two iterative methods to solve this
coupled system: (1) a combination algorithm between the inexact two-level multi-
plicative Schwarz method and the steepest descent method; (2) the preconditioning
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conjugate gradient (PCG) method by constructing a kind of simple preconditioner
for the coupled “stiffness” matrix. Both the two algorithms have the fast conver-
gence speed independent of the (coarse and fine) mesh sizes, which has been proved
in [HY99b] and [HY99a]. We give numerical examples to illustrate our theoretical
results.

The FEM-BEM coupling

We consider the following model exterior Dirichlet problem in two dimensions:

−∆u = f in Ωc = R2\(Ω ∪ Γ), (1)
u = g on ∂Ω (2)

with the asymptotic condition:

u(x, y) is bounded as r =
√
x2 + y2 → ∞.

Where Ω is a Lipschitz bounded domain, f and g are given functions satisfying f ∈
L2(Ωc) and g ∈ H

1
2 (∂Ω).

The variational form of the boundary value problem (1) is: to find u ∈ H̄1(Ωc),
such that

D(u, v) = (f, v), ∀ v ∈ H̄1
0 (Ω

c), (3)

where
H̄1(Ωc) = {v : v√

(r2 + 1) · ln(r2 + 2)
,
∂v

∂x
,
∂v

∂y
∈ L2(Ωc)},

H̄1
0 (Ω

c) = {v : v ∈ H1(Ωc), v|∂Ω = 0},
D(u, v) = (∇u,∇v), ∀ u, v ∈ H̄1(Ωc),

with (·, ·) be the L2 innerproduct on Ωc.
Let Ω0 is a circle disc ( with the radius R ) containing Ω and having a boundary

Γ. Set Ω1 = Ωc ∩Ω0 and Ω2 = Ωc
0 = R2\Ω0. We assume that the ratio of the area of

Ω1 over the area of Ω is not small.
Let G(p, p′) denote the Green function of the Laplace operator on the domain Ω2.

Set
∂

∂n
G(p, p′) = G(2)

n (p, p′), p, p′ ∈ Γ,
and

−
∫

Γ

∂2

∂n∂n′G(p, p
′) · u(p′)dp′ = K2u(p), p ∈ Γ.

where n and n′ denote respectively the exterior normal vectors of Γ (which is regarded
as the boundary of Ω2) at the points p and p′.

Define the bilinear form

D1(u, v) =
∫

Ω1

∇u · ∇vds, u, v ∈ H1(Ω1)
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and the Sobolev spaces

H1
g (Ω1) = {v : v ∈ H1(Ω1), v|∂Ω = g}

and
H1

0 (Ω1) = {v : v ∈ H1(Ω1), v|∂Ω = 0}.
Let < ·, · >Γ denote the L2 innerproduct on Γ. Then, it can be verified by the Green
formular that (3) is equivalent to the coupling variational problem (see [Yu93]): to
find u ∈ H1

g (Ω1) such that

D1(u, v)+ < K2u, v >Γ=
∫ ∫

Ω1

fvdxdy− < wf , v >Γ, ∀ v ∈ H1
0 (Ω1), (4)

where
wf (p) =

∫ ∫
Ω2

f(p′)G(2)
n (p, p′)dp′, p ∈ Γ.

The coupling bilinear form

A(u, v) = D1(u, v)+ < K2u, v >Γ

is symmetric, bounded and coercive in H1
0 (Ω1), so (4) has unique solution u ∈ H1

g (Ω1).

Composite grid discretization

Without loss of generality, we assume that: (i) the domain Ω is a polygon; (ii) g ≡ 0.
Let the auxiliary boundary Γ be divided into m circular arcs with the same length.
Moreover, let the domain Ω1 be divided into some quasi-uniform triangular or quari-
lateral elements with the diameter H (≈ 2πR/m), such that the finite element nodes
on Γ coincide with the m dividing points on Γ. The corresponding piecewise linear
finite element space is denoted by SH(Ω1)⊂H1

g (Ω1) = H1
0 (Ω1). Because the analytic

solution u is in general singular nearby the concave angle points of Ω1, even if the
given functions f and g are smooth enough on their definition domains Ωc and ∂Ω,
the finite-dimensional subspace SH(Ω1) can not provide a “good” approximation of
u unless the mesh size H is very small. Let Ω3 is a subdomain of Ω1, such that Ω3

containes the concave angle points of Ω1. We assume that Ω3 is just the union set of
some elements of Ω1. Set

H1
0 (Ω3) = {v : v∈H1(Ω1), supp v ⊂ Ω3}.

We make a refining division to Ω3, such that the diameter of finer elements is h < H .
Let S0

h(Ω3)⊂H1
0 (Ω3) be the corresponding piecewise linear finite element space. We

define the composite grid space Sh,H⊂H1
g (Ω1) = H1

0 (Ω1) by Sh,H = SH(Ω1)+S0
h(Ω3).

The discrete variational problem of (4) is: to find uh,H∈Sh,H such that

A(uh,H , v) =
∫ ∫

Ω1

fvdxdy− < wf , v >Γ, ∀ v∈Sh,H∩H1
0 (Ω1). (5)

For this approximation, we have the following error estimates ( which have been
proved in [HY99b] or [HY99a]).
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Theorem 1 Assume that f∈L2(Ωc) and g∈H 1
2 (∂Ω). Then, there is a decomposition

u = û + ũ, such that û∈H2(Ω1)∩H1
0 (Ω1) and ũ∈H1

0 (Ω3)∩H1+α(Ω3) with 0 < α < 1.
Moreover, we have

(‖uh,H − u‖2
1,Ω1

+ ‖uh,H − u‖2
1
2 ,Γ)

1
2≤C(hα‖ũ‖1+α,Ω3 +H‖û‖2,Ω1) (6)

and

‖uh,H − u‖0,Ω1≤C(h2α‖ũ‖1+α,Ω3 +H2‖û‖2,Ω1). (7)

Remark 1 The above theorem indicates that the fine mesh size h and the coarse mesh
size H should satisfy hα≈H.

It is clear that the stiffness matrix of the bilinear form A(·, ·) is neither sparse nor
band. Thus, it is expensive to solve the discrete problem (5) in the direct way.

A iteration algorithm of the discrete problem

In this section, we introduce an iteration algorithm to solve (5).
For ease of notation, we set

V = Sh,H , V1 = S0
h(Ω3) and V2 = SH(Ω1).

At first, we describe a version of the composite grid iteration algorithm (refer to
[MT86] and [McC89]), which is applied to solving (5).
The standard algorithm Let u0 ∈ V be a initial approximation. When we have
gotten un ∈ V , we look for un+1 ∈ V as follows:
1o Solving u1 ∈ V1 by

A(u1, v1) = Φ(v1)−A(un, v1), ∀v1 ∈ V1,

namely,
D1(u1, v1) = (f, v1)−D1(un, v1), ∀v1 ∈ V1.

Set
un+ 1

2
= un + u1;

2o Solving u2 ∈ V2 by

D1(u2, v2) = Φ(v2)−A(un+ 1
2
, v2), ∀v2 ∈ V2.

Set
un+1 = un+ 1

2
+ θu2,

where θ > 0 is a relaxation parameter (remaining to be determined).
We define the projection-like operator QH : V → V2

D1(QHϕ,ψ) = A(ϕ,ψ), ϕ ∈ V, ∀ψ ∈ V2.
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Here, we have used the fact that D1(·, ·) is symmetric and positive definite in V2. Let
en = uh,H − un denote the error function. It can be verified directly that the error
propagation relation is

en+1 = (I − θQH)(I − Ph)en.

It can be shown (refer to [HY99b]) that there is a constant C̃ > 1, such that

D1(ϕ,ϕ) ≤ A(ϕ,ϕ) ≤ C̃D1(ϕ,ϕ), ∀ϕ ∈ V.

Thus, from the convergence theory of the multiplicative Schwarz iteration (see [SBG96]
and [Xu92]), we know that the above iteration algorithm is convergent, provided the
relaxation parameter θ is chosen as 0 < θ < 2/C̃. However, there is no simple way to
estimate the value of the constant C̃.

We discuss how to choose the relaxation parameter θ when we do not know the
value of the constant C̃.

Set e0(θ0−1) = uh,H − u0. If we have determined value of positive number θ0
n−1,

then we set

en+1(θn) = (I − θnQH)(I − Ph)en(θ0
n−1), n = 0, 1, · · · .

Let ‖ · ‖ denote the norm generated by the innerproduct [·, ·] = A(·, ·). We define the
function of θn by

F (θn) = ‖en+1(θn)‖2, n = 0, 1, · · · .
Our idea is to select properly a positive number θ0

n, such that

F (θ0
n) = min

θn

F (θn), n = 0, 1, · · · . (8)

Without loss of generality, we assume that gn = (I − Ph)en(θ0
n−1) �= 0 (otherwise,

un+ 1
2
= uh,H). Since there is a decomposition gn = v1

n+v2
n, with v1

n ∈ V1 and v2
n ∈ V2,

we have

‖gn‖2 = [gn, v
1
n + v2

n] (9)
= D1(gn, v

1
n) + [gn, v

2
n] (10)

= D1(QHgn, v
2
n). (11)

Hence QHgn �= 0. Therefore, it follows from (4.1) that

F ′(θn) = 0.

Thus, we obtain

θ0
n =

[gn, QHgn]
‖QHgn‖2

.

We must illustrate how to calculate these positive numbers θ0
n. In fact, QHgn can

be obtained directly by the step 1 and step 2 in the above standard algorithm, namely,
QHgn = u2. Furthermore, we have

[gn, QHgn] = D1(QHgn, QHgn) = |u2|21,Ω1
.
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Now, we can describe an new algorithm.
Schwarz-steepest descent algorithm Let u0 ∈ V be a initial approximation. When
we have gotten un ∈ V , we look for un+1 ∈ V as follows:

1o Solving u1 ∈ V1 by

D1(u1, v1) = (f, v1)−D1(un, v1), ∀v1 ∈ V1,

and set
un+ 1

2
= un + u1;

2o Solving u2 ∈ V2 by

D1(u2, v2) = Φ(v2)−A(un+ 1
2
, v2), ∀v2 ∈ V2.

3o Computing norms |u2|21,Ω1
and ‖u2‖2, and set

un+1 = un+ 1
2
+ θ0

nu
2,

with θ0
n =

|u2|21,Ω1
‖u2‖2 .

For the above algorithm, we have the following convergence result (see [HY99b]).

Theorem 2 There is a constant C independent of h and H, such that

‖en+1(θ0
n)‖2 ≤ (1− 1

C
)‖en(θ0

n−1)‖2, n ≥ 1. (12)

Remark 2 If we set θ0
n = 1, which corresponds to the standard two-level multiplicative

Schwarz algorithm, this algorithm may be divergent.

A preconditioner for the discrete system

Because the stiffness matrix associated with the discrete problem (5) is symmetric and
positive definite, this linear system can also be solved by the PCG method.

Now we construct a kind of preconditioner for this bilinear form.
For convenience’ sake, we define the operators A, Ā : V → V by

(Aϕ,ψ) = D1(ϕ,ψ)+ < K2ϕ,ψ >Γ, ∀ϕ, ψ ∈ V

and
(Āϕ, ψ) = D1(ϕ,ψ), ϕ ∈ Sh,H , ∀ψ ∈ V.

Let A1 : V1 → V1 and A2 : V2 → V2 denote the restrictions of the operator Ā, which
satisfy

(A1ϕ1, ψ1) = (Āϕ1, ψ1), ϕ1 ∈ V1, ∀ψ1 ∈ V1

and
(A2ϕ2, ψ2) = (Āϕ2, ψ2), ϕ2 ∈ V2, ∀ψ2 ∈ V2.

It is clear that the operators A1 and A2 are symmetric and positive definite with
respect to the L2 innerproduct.
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We define the preconditioner of the operator A as

B = A−1
1 Q1 +A−1

2 Q2, (13)

where Q1 : V → V1 and Q2 : V → V2 are the L2 orthogonal projection operators.
The following result has been proved in [HY99a].

Theorem 3 There exists a constant C independent of h and H, such that

cond(BA) ≤ C. (14)

Remark 3 Since the operator K2 in the second section can be expressed explicitly,
we need not solve any (singular) integral equation. Instead, we need only to calculate
some singular integrations (refer to [HY99b], [HY99a] and [Yu93]). Besides, only
two subproblems with two standard bases are needed to be solved. These are the main
merits of the algorithm introduced in this paper.

Remark 4 The preconditioning algorithm introduced in this section has faster con-
vergence speed than the Schwarz algorithm introduced in the last section (see the next
section). Moreover, it is additive, so the result can be extended directly to the case
of inexact local solver. On the other hand, the stiffness matrix of (5) can not be ob-
tained directly (refer to [MT86], [McC89] and [SBG96]), because V1∩V2 �= ∅. For the
Schwarz algorithm given in the last section, the global stiffness matrix of the bilinear
form A(·, ·) need not be generated (therefore, no need to care about basis for V ). Be-
sides, this algorithm has minimal memory requirement. These are the merits of the
Schwarz algorithm.

Numerical examples

To illustrate the theoretical results stated in this paper, we consider

−∆u = f, ∈ Ωc, (15)
u = g, on ∂Ω, (16)

where Ω = [−1, 0]× [−1, 0]; f and g are given functions such that its exact sulution is

u(x, y) = (x2+y2)
1
3

(x+ 1
2 )2+(y+ 1

2 )2
.

(f(x, y) = −u(x, y){ 2/3
(x2 + y2)[(x+ 1

2 )
2 + (y + 1

2 )
2]
+

8/3
(x+ 1

2 )
2 + (y + 1

2 )
2
− 8/9

x2 + y2
})

It is clear that the analytic solution u is singular at the corner point (0,0) (α = 2
3 ).

This problem is solved by the method introduced in the second section. Here, radius
of the auxiliary circle Γ is R = 2. Moreover, the subdomain Ω3 is chosen as the sector
with radius 1. We use quasi-uniform triangular elements. The resulting linear system
is solved by the Schwarz-steepest descent algorithm (or the PCG method with the
preconditioner defined in the last section).

The error estimates (6) and (7) are confirmed by Table 1 (with the equivalent
discrete norms).
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Table 1
error estimates (H = 4π/m, h = H/4)

m ‖uH − u‖1,Ω1 ‖uh,H − u‖1,Ω1 ‖uH − u‖0,Ω1 ‖uh,H − u‖0,Ω1

20 9.87D-1 7.25D-1 9.31D-1 4.66D-1
40 6.37D-1 3.64D-1 3.75D-1 1.20D-1
80 4.12D-1 1.83D-1 1.53D-1 3.14D-2
160 2.65D-1 9.24D-2 6.14D-2 8.07D-3 (or 8.09D-3)

The numbers of iteration are given in Table 2 (or Table 3), which can confirm
Theorem 8 (or Theorem 13). Here, the domination error with the discrete l2 norm is
5.0× 10−5.

Table 2
numbers of iteration
m 20 40 80 160
iter 21 22 21 22

Table 3
numbers of iteration
m 20 40 80 160
PCG 14 14 15 14
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