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39. Numerical computation for some
competition-diffusion systems on a parallel
computer

R. Ikota1, M. Mimura2, T. Nakaki3

Introduction

In theoretical biology, spatial segregation of biological species has been investigated by
many scientists (see [DHMP99], [IMY98] and the references therein). Among several
models explaining such a phenomenon, we deal with the systems of competition-
diffusion type.

We consider n kinds of species Ui (1 ≤ i ≤ n). Let ui(x, t) be the population
density of the species Ui (1 ≤ i ≤ n) at time t > 0 and the position x ∈ Ω, where Ω is
a bounded domain in RN . Then our model can be described by

∂ui

∂t
= di∆ui + (ri −

n∑
j=1

aijuj)ui (i = 1, 2, . . . , n), x ∈ Ω, t > 0, (1)

where di is the diffusion rate, ri the intrinsic growth rate, aii the intraspecific compe-
tition rate, and aij (i �= j) the interspecific competition rate between Ui and Uj . We
assume that all these parameters are nonnegative and impose initial and Neumann
boundary conditions on (1):

ui(x, 0) = ui0(x) (i = 1, 2, . . . , n), x ∈ Ω, (2)
∂ui

∂ν
= 0 (i = 1, 2, . . . , n), x ∈ ∂Ω, t > 0, (3)

where ν is the unit outer normal to ∂Ω, and ui0 is a nonnegative function.
Specifically we are interested in the case where the competition is extremely strict.

In order to treat such situations we rewrite the equations (1) and obtain the following:

∂ui

∂t
= di∆ui + (ri − aiiui)ui − k

n∑
j = 1
j �= i

bijuiuj (i = 1, 2, . . . , n) x ∈ Ω, t > 0.

(4)

The parameter k represents the magnitude of interspecific competition. We study (4)
when k is very large. As k → ∞, we can observe in our numerical computations that
the region Ω is divided into each region Ωi which only a single species Ui occupies.
One of our interests is to analyze the behavior of interfaces between {Ωi}. If we use
typical numerical methods, we have some difficulties to track the interfaces. That is
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because they appear in the limit case where k → ∞. In fact, for a fixed large value of
k, we can easily perform numerical computations to (4), however, we have no criterion
to determine the numerical interfaces by using numerical solutions to ui.

In this paper we propose a method to analyze (4) when k → ∞, by which we can
track the interfaces. Our method is described as follows:

A-Method

Step 1: For ui(·, t), solve the following PDE:

∂ūi

∂τ
= di∆ūi + (ri − aiiūi)ūi in Ω, 0 < τ < ∆t,

∂ūi

∂ν
= 0 on ∂Ω, 0 < τ < ∆t,

ūi(x, 0) = ui(x, t) in Ω,

where ∆t > 0 is a given constant (1 ≤ i ≤ n).

Step 2: Solve the following ODE until τ = ∞, that is, compute the equilibrium
points for 1 ≤ i ≤ n:

dǔi(x, τ)
dτ

= −
n∑

j = 1
j �= i

bijǔiǔj in Ω, 0 < τ <∞,

ǔi(x, 0) = ūi(x,∆t) in Ω.

Step 3: Put ui(x, t+ ∆t) = ǔi(x,∞) (1 ≤ i ≤ n).

This method has the advantage that we can determine the interfaces naturally as
shown in Fig. 5 without complicated procedure even in the multi-component (n ≥ 2)
and multi-dimensional (N ≥ 2) cases.

The aim of this paper is as follows: We show the mathematical justification of
A-Method when n = 2 and d1 = d2 in the second section. The condition d1 = d2

is imposed by the mathematical reason. We also propose a parallel algorithm to
A-Method in the third section. We describe the algorithm and perform numerical
simulations for the typical case n = 3. When n �= 3, we can similarly treat the
problem.

Mathematical justification for the two-component case

Known Results

We consider the following two-component (that is, n = 2) system:

ut = d1∆u+ f(u)u− kuv in Q = Ω× R+, (5)
vt = d2∆v + g(v)v − αkuv in Q = Ω× R+, (6)

∂u

∂ν
= 0,

∂v

∂ν
= 0 on S = ∂Ω× R+, (7)

u(x, 0) = uk
0(x), v(x, 0) = vk

0 (x) for x ∈ Ω, (8)
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where f(u) = r1 − a11u and g(v) = r2 − a22v.
Let (u(k), v(k)) be a solution to (5)–(8) and put w(k) = u(k) − v(k)/α. If u(k)

0 and
v
(k)
0 converge to u0 and v0 respectively, then by Proposition 2.1 in [DHMP99], w(k)

converges to a weak solution w of the following problem as k → ∞:

wt = ∇(d(w)∇w) + h(w) in Q, (9)
∂w

∂ν
= 0 on S, (10)

w(x, 0) = w0(x) ≡ u0(x)− v0(x)
α

for x ∈ Ω, (11)

where

d(s) =
{
d1 if s > 0,
d2 if s < 0,

h(s) =
{
f(s)s if s > 0,
g(−αs)s if s < 0.

Under certain conditions, by putting u = [w]+ and v = α[w]−, we observe that the
above problem (9)–(11) is equivalent to the following problem (see [DHMP99]):

ut = d1∆u+ f(u)u in Qint, (12)
vt = d2∆v + g(v)v in Qext, (13)

u = 0 and v = 0 on Γ, (14)

d1
∂u

∂n
= −d2

α

∂v

∂n
on Γ, (15)

∂v

∂n
= 0 on ∂Ω× (0, T ], (16)

u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω, (17)

where

Qint = {(x, t) ∈ R × (0, T ]; u(x, t) > 0 and v(x, t) = 0} ,

Qext = {(x, t) ∈ R × (0, T ]; u(x, t) = 0 and v(x, t) > 0} .

Definition of the Approximation and Results

In this subsection, we show a mathematical justification that A-Method gives an
approximation to our problem. In Step 1 of A-Method we solve the following systems:

(Pu)




ut = d1∆u+ f(u)u in Q,
∂u
∂ν = 0 on S,
u(x, 0) = u0(x) ∈ C(Ω̄) for x ∈ Ω,
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(Pv)




vt = d2∆v + g(v)v in Q,
∂v
∂ν = 0 on S,
v(x, 0) = v0(x) ∈ C(Ω̄) for x ∈ Ω.

We denote the solutions to (Pu) and (Pv) by Hu(t)u0 and Hv(t)v0, respectively.
In Step 2, we solve the following ordinary differential equations:



du

dt
= −uv,

dv

dt
= −αuv,

u(0) = u0, v(0) = v0.

Recalling

d

dt
(u− v

α
) = 0,

then we obtain

lim
t→∞(u(t), v(t)) = ([u0 − v0

α
]+, α[u0 − v0

α
]−). (18)

Let us define an operator K(t) parameterized with non-negative number t by

K(t)z0 ≡ Hu(t)[z0]+ − 1
α
Hv(t)(α[z0]−). (19)

Then we can describe the approximated solution constructed by A-Method as

K(T/n)nw0. (20)

If d1 = d2, under certain conditions imposed on w0 we have proven

‖K(T/n)nw0 − w(T )‖L2(Ω) ≤ C1(T/n)1/2,

‖K(T/n)nw0 − w(T )‖L1(Ω) ≤ C2(T/n).

These inequalities implies that the numerical solutions of A-Method converges as ∆t→
0. Unfortunately at present we can not prove the convergence when d1 �= d2. However
our numerical computations suggest that the solution also converges.

Parallel computations for the three-component case

Algorithm

Our algorithm here is shown when n = 3. For n �= 3, it is quite easy to extend
our algorithm. We describe our algorithm for a computer with three CPUs which
are called CPU1, CPU2 and CPU3. To CPUi we assign three arrays, say Arrayi-u,
Arrayi-v and Arrayi-w (i = 1, 2, 3).

The first step (Fig. 1): First of all, we put the data u, v and w into Array1-u,
Array2-v and Array3-w, respectively
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The second step (Fig. 1): Then we solve

ut = d1∆u+ (r1 − a11u)u on Array1-u using CPU1,
vt = d2∆v + (r2 − a22v)v on Array2-v using CPU2,
wt = d3∆w + (r3 − a33w)w on Array3-w using CPU3.

The third step (Fig. 2): We copy Array1-u into Array2-u and Array3-u, Array2-v
into Array1-v and Array3-v, Array3-w into Array1-w and Array2-w.

The fourth step (Fig. 3): We compute the ODE system. We separate the region
into three parts. We assign each part to CPUi (i = 1, 2, 3) respectively.

The fifth step (Fig. 4): Gather data u into Array1-u, v into Array2-v and w into
Array2-w.

We note that the second and fourth steps stated above correspond to Steps 1 and 2
of A-Method, respectively.

Numerical experiments

Let us demonstrate our numerical simulations when the region Ω is the two dimen-
sional interval (0, 1)2. We use the workstation Sun Enterprise 450 (4 CPUs, Total
memory 2GB). The programs are written in Sun Fortran 77 (Option: -fast -O5) and
MPI [GLS94].

Numerical parameters we use are 256×256 space mesh and ∆t = 0.001. Compu-
tations are halted if one of three species u, v or w becomes extinct.

We obtain the following table which shows the CPU times of the single and parallel
computations. We have used 3 CPUs and obtained about 2.3 times speed-up. In our
experience, the parallel performance goes up when the nodal points near the interfaces
are assigned equally to each CPU.

CPU times

case Single Parallel ratio
a 769sec. 328sec. 2.34
b 2544sec. 1104sec. 2.30
c 2562sec. 1112sec. 2.30
d 2951sec. 1242sec. 2.38
e 3967sec. 1742sec. 2.28

On this table, we remark the following:

• Single in the table means the computation using a usual code without MPI.

• Parallel means that the computation by our algorithm with 3 CPUs.

• We vary the initial function and parameters {ri} and {aij} in cases (a)–(e).
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Figure 1: The first and second steps. The data u, v and w are stored in Array1-u,
Array2-v and Array3-w, respectively. Then solve the PDE on each CPUs.
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Figure 2: The third step. Message passing between CPUs.
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Figure 3: The fourth step. Solve the ODE on each CPUs.
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Figure 4: The fifth step. Gather the data.
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Figure 5: Numerical solutions by the present method for the three-component case in
two dimensional space (0, 1)2. The solutions are drawn at t = 0 (left), t = 0.5 (center)
and t = 1 (right). We can clearly observe the interfaces between regions {Ωi}.

Concluding remarks

A problem in mathematical biology is considered. The method, which we propose
in this paper, has the advantages that we can determine the interfaces naturally and
clearly as shown in Fig. 5 and that an implementation to the parallel computer can
be easily done. We obtained 2.3 times speed-up by using 3 CPUs.

For the two-component case, we justified the method rigorously when d1 = d2. We
can expect that the condition d1 = d2 is not essential.
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