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39. Numerical computation for some
competition-diffusion systems on a parallel
computer

R. Ikota!, M. Mimura?, T. Nakaki®

Introduction

In theoretical biology, spatial segregation of biological species has been investigated by
many scientists (see [DHMP99], [IMY98] and the references therein). Among several
models explaining such a phenomenon, we deal with the systems of competition-
diffusion type.

We consider n kinds of species U; (1 < i < n). Let u;(z,t) be the population
density of the species U; (1 <i <mn) at time ¢ > 0 and the position z € 2, where  is
a bounded domain in R". Then our model can be described by

8ui
ot

:diAui—l—(ri—Zaijuj)ui (i: 1,2,...,71,)7 z e, t>0, (1)
j=1

where d; is the diffusion rate, r; the intrinsic growth rate, a;; the intraspecific compe-
tition rate, and a;; (¢ # j) the interspecific competition rate between U; and U;. We
assume that all these parameters are nonnegative and impose initial and Neumann
boundary conditions on (1):

ui(x,0) = uio(z) (it=1,2,...,n), z€Q, (2)
Ou; .
8V_O (1=1,2,...,n), z€0Q, t>0, (3)

where v is the unit outer normal to 9f2, and w,o is a nonnegative function.
Specifically we are interested in the case where the competition is extremely strict.
In order to treat such situations we rewrite the equations (1) and obtain the following:

5ui
ot

n
=d;Au; + (’I’i — aiiui)ui —k Z bijuiuj (Z =1,2,... ,TL) reQ, t>0.
j=1
J#
(4)
The parameter k represents the magnitude of interspecific competition. We study (4)
when k is very large. As k — oo, we can observe in our numerical computations that
the region 2 is divided into each region €); which only a single species U; occupies.
One of our interests is to analyze the behavior of interfaces between {§2;}. If we use
typical numerical methods, we have some difficulties to track the interfaces. That is
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because they appear in the limit case where k& — oo. In fact, for a fixed large value of
k, we can easily perform numerical computations to (4), however, we have no criterion
to determine the numerical interfaces by using numerical solutions to ;.

In this paper we propose a method to analyze (4) when k — oo, by which we can
track the interfaces. Our method is described as follows:

A-Method
Step 1:  For u;(-,t), solve the following PDE:

ZUi =d;Au; + (Ti - aimi)ﬁi in Q, 0<7<At,
-
8ui:0 on 092, 0< 71 <AL,
v
i (x,0) = u;(x,t) in Q,

where At > 0 is a given constant (1 <i <mn).

Step 2:  Solve the following ODE until 7 = oo, that is, compute the equilibrium
points for 1 <7 < n:

di;(z,T) - o .

17,1(1‘,0 :ﬁi(x,At) in Q.

Step 3:  Put w;(x,t + At) = 4;(z,00) (1 <1i<n).

This method has the advantage that we can determine the interfaces naturally as
shown in Fig. 5 without complicated procedure even in the multi-component (n > 2)
and multi-dimensional (N > 2) cases.

The aim of this paper is as follows: We show the mathematical justification of
A-Method when n = 2 and d; = ds in the second section. The condition di = da
is imposed by the mathematical reason. We also propose a parallel algorithm to
A-Method in the third section. We describe the algorithm and perform numerical
simulations for the typical case n = 3. When n # 3, we can similarly treat the
problem.

Mathematical justification for the two-component case

Known Results

We consider the following two-component (that is, n = 2) system:

ur = diAu+ f(u)u —kuv in Q=2 xRT, (5)
vy = doAv + g(v)v — akuv in Q = Q x RT, (6)
ou Ov "
5—0, 5—0 onS—anR, (7)
u(x,0) = uf(x), v(x,0)=1vk(x) for ze€Q, (8)
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where f(u) =11 — aj1u and g(v) = ro — agov.

Let (u®,v®) be a solution to (5)-(8) and put w®) = u®) — v*) /o, If uék) and
o8 converge to ug and vo respectively, then by Proposition 2.1 in [DHMP99], w(®
converges to a weak solution w of the following problem as k — oo:

wy = V(d(w)Vw) + h(w) in Q, (9)
ow
= 0 on S, (10)
vo()

w(z,0) = wo(x) = up(x) — for z €, (11)

«

where

o d1 if S>O,
d(s)_{dg it s<0,

h(s):{ f(s)s if s>0,

g(—as)s if s<0.

Under certain conditions, by putting u = [w]™ and v = a[w] ™, we observe that the
above problem (9)—(11) is equivalent to the following problem (see [DHMP99)):

w=diAu+ fwu in Q™ (12)
vy = daAv + g(v)v in Q% (13)
u=0 and v=0 on I, (14)
Ou  dp Ov
Yon —  a on on I (15)
% =0 on 09 x (0,7T], (16)
u(z,0) = up(x), v(z,0) = vo(x) for =€, (17)

where

Q™ = {(z,t) € R x (0,T]; u(x,t) > 0 and v(z,t) = 0},

Q™" = {(z,t) € R x (0,T); u(x,t) = 0 and v(x,t) > 0}.

Definition of the Approximation and Results

In this subsection, we show a mathematical justification that A-Method gives an
approximation to our problem. In Step 1 of A-Method we solve the following systems:

up = di1Au+ f(u)u in Q,
(P){ v =9 ~on S,
u(z,0) =up(z) € C(Q) for x€Q,
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vy = daAv + g(v)v in Q,
(Py) % =0 on S,

v(z,0) = vo(z) € C(Q) for =z €.

We denote the solutions to (P,) and (P,) by H"(t)up and H"(t)vo, respectively.
In Step 2, we solve the following ordinary differential equations:

d_u = —uw
dt ’
@ = —auv
dt ’
u(0) = up, v(0) = vp.
Recalling
d v
Zu=2)Y=0
then we obtain
. Vo V04—
1 t),v(t)) = S - =1). 18
Jim (u(t), 0() = (fuo — —]7 afuo — —]7) (18)

Let us define an operator IC(t) parameterized with non-negative number ¢ by
1 _
()20 = HU(0) 20l — —H (1) alzo] ). (19)
Then we can describe the approximated solution constructed by A-Method as
K(T/n)"wo. (20)
If dy = do, under certain conditions imposed on wg we have proven

IK(T/n)"wo — w(T)|L2@) < Ci(T/n)"/?,
IK(T/n)" wo — w(T)|[r) < Co(T/n).
These inequalities implies that the numerical solutions of A-Method converges as At —

0. Unfortunately at present we can not prove the convergence when dy # ds. However
our numerical computations suggest that the solution also converges.

Parallel computations for the three-component case

Algorithm

Our algorithm here is shown when n = 3. For n # 3, it is quite easy to extend
our algorithm. We describe our algorithm for a computer with three CPUs which
are called CPU1, CPU2 and CPU3. To CPU:i we assign three arrays, say Arrayi-u,
Arrayi-v and Arrayi-w (i = 1,2, 3).

The first step (Fig. 1): First of all, we put the data u, v and w into Arrayl-u,
Array2-v and Array3-w, respectively
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The second step (Fig. 1): Then we solve

uy = d1Au+ (11 —ajpu)u on  Arrayl-u using CPUIL,
vy = de Av + (r2 — agv)v on Array2-v using CPU2,
wy = d3Aw + (r3 — azgsw)w on Array3-w using CPU3.

The third step (Fig. 2): We copy Arrayl-u into Array2-u and Array3-u, Array2-v
into Arrayl-v and Array3-v, Array3-w into Arrayl-w and Array2-w.

The fourth step (Fig. 3): We compute the ODE system. We separate the region
into three parts. We assign each part to CPUi (i = 1,2, 3) respectively.

The fifth step (Fig. 4): Gather data u into Arrayl-u, v into Array2-v and w into
Array2-w.

We note that the second and fourth steps stated above correspond to Steps 1 and 2
of A-Method, respectively.

Numerical experiments

Let us demonstrate our numerical simulations when the region 2 is the two dimen-
sional interval (0,1)%. We use the workstation Sun Enterprise 450 (4 CPUs, Total
memory 2GB). The programs are written in Sun Fortran 77 (Option: -fast -05) and
MPI [GLS94].

Numerical parameters we use are 256x256 space mesh and At = 0.001. Compu-
tations are halted if one of three species u, v or w becomes extinct.

We obtain the following table which shows the CPU times of the single and parallel
computations. We have used 3 CPUs and obtained about 2.3 times speed-up. In our
experience, the parallel performance goes up when the nodal points near the interfaces
are assigned equally to each CPU.

CPU times
| case || Single | Parallel || ratio |
a 769sec. 328sec. 2.34

2544sec. 1104sec. 2.30
2562sec. | 1112sec. 2.30
2951sec. 1242sec. 2.38
3967sec. | 1742sec. 2.28

oo |lT

On this table, we remark the following;:
e Single in the table means the computation using a usual code without MPIL.
e Parallel means that the computation by our algorithm with 3 CPUs.

e We vary the initial function and parameters {r;} and {a;;} in cases (a)—(e).
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Figure 1: The first and second steps.
Array2-v and Array3-w, respectively.

The data u, v and w are stored in Arrayl-u,
Then solve the PDE on each CPUs.

CPUL
1
Arrayl-u
[ |
' Arrayl-v h
[ |
' Arrayl-w 1

Array3-w

Figure 2: The third step. Message passing between CPUs.

Figure 4: The fifth step

. Gather the data.
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Figure 5: Numerical solutions by the present method for the three-component case in
two dimensional space (0,1)2. The solutions are drawn at t = 0 (left), t = 0.5 (center)
and ¢ = 1 (right). We can clearly observe the interfaces between regions {;}.

Concluding remarks

A problem in mathematical biology is considered. The method, which we propose
in this paper, has the advantages that we can determine the interfaces naturally and
clearly as shown in Fig. 5 and that an implementation to the parallel computer can
be easily done. We obtained 2.3 times speed-up by using 3 CPUs.

For the two-component case, we justified the method rigorously when dy = ds. We
can expect that the condition d; = ds is not essential.
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