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41. Application of the Domain Decomposition
Method to the Flow around the Savonius Rotor

Testuya Kawamura1, Tsutomu Hayashi2, Kazuko Miyashita3

Introduction

In this study, we focus on the Savonius Rotor and try to compute the flow field under
its operation and make clear the running performance by means of the numerical
simulation. Our final objective is to simulate the flow field around the whole rotor
and estimate the effect of the sidewall or the other rotor. Incompressible Navier-Stokes
equations are solved in a few regions separately where the fixed coordinate and the
rotating coordinate are used respectively. We employ domain decomposition method
in order to connect these regions with adequate accuracy. The basic equations in each
region are solved by using standard MACmethod[HW65]. The physical quantities such
as the velocity and the pressure in each region are transferred through the overlapping
region, which is common in each domain. Reasonable results are obtained in the
present calculations.

Recently, the wind force is widely recognized as the environmentally friendly energy
and attracts public attention. The wind power plant using windmills is the typical
example. In order to make an effective windmill, it is very important to analyze the
flow field around a windmill. In this case, numerical simulation becomes a promising
method. The most important part of the investigation is to analyze the flow field
near the rotating rotor of the windmill. On the other hand, it is also very important
to investigate the interaction among the windmills if they are placed without long
distance.

For the numerical simulation of rotating body, it is convenient to use the rotating
coordinate system, which rotates with the same speed. However, if there is another
body which is not rotating or if there are many rotors which rotate at different position
and with different speed, it is very difficult to choose one special rotating coordinate
system. In these situations, it is natural to use many coordinate systems separately,
which are suitable for the flow simulation around each rotor and connect these co-
ordinates adequately. We focus on these points and simulate the flow fields around
a windmill by using domain decomposition method in which the whole computation
region is divided into several domains and they are connected adequately.

The Savonius rotor[Sav31] is chosen for the simulation since in this case the ro-
tating bluff body generates the complex flow field with large separation and it is very
interesting to investigate such flow from the fluid dynamical point of view. Figure 1
is the schematic figure of the Savonius rotor. The features of this windmill are easy
to make, independent of the direction of the wind, low speed and high torque. The
Savonius rotor is usually used as the pump.
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Figure 1: Savonius rotor

There are several experimental and numerical works concerning with Savonius rotor
[RESF78] [Oga83] [IST94]. Among them, Ishimatsu et al.[IST94] calculated the flow
around a Savonius rotor. Their objective is to compute running performance of one
windmill. Therefore, they ignore the effect of the sidewall, ground and other windmills.
Their numerical method is based on the finite volume method with unstructured
grids. As is discussed above, one of the important objectives of the present study is to
investigate the effect of the obstacles. Therefore, we employ the domain decomposition
method in this study.

Numerical Method

Since the rotational frequency is low enough, the flow around the Savonius rotor is
assumed as incompressible. The basic equations are

∇v = 0

∂v
∂t

+ (v · ∇v) = −∇p+
1

Re
∇2v

where Re is the Reynolds number. We use both Cartesian coordinate system (x,y) and

R: radius of rotation
D: bucket diameter
ω: angular velocity
θ: attack angle

Figure 2: Savonius Rotors without walls & obstacle

the rotating coordinate system (X,Y) which rotates around vertical axis with constant
angular velocity ω. If we use the symbols indicated in Figure 2, the relation between
two coordinate systems is

X = x cos θ − y sin θ,
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Y = x sin θ + y cos θ,

where θ is the angle between two coordinate systems. The basic equations are ex-
pressed in the rotating coordinate system as
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where (U,V) are the velocity components in (X,Y) direction while (u,v) are those in
the fixed Cartesian coordinate system. These velocity components are connected to
each other through the following relations:

U = u cos θ − v sin θ − ωY,

V = u sin θ + v cos θ + ωX.

We use two computational domains. One domain(region1) includes the rotating rotor
and another(region2) includes the fixed walls. Since the shape of the Savonius rotor is
semicircular, it is convenient to use a semicircular region. The region including rotors
consists of two semicircular regions whose centers are located at different positions.
These two regions are connected by one line which passes two centers as is shown in
Figure 3. Clearly, it is convenient to use the grid system based on the cylindrical co-
ordinate. Another domain(region2) is rectangular and includes the fixed walls(Figure
4). The Cartesian coordinate system is used and the non-uniform rectangular grid is

Figure 3: Inner region(region1).
The bold lines indicate two blades

Figure 4: Outer region(region2).
The bold lines indicate the sidewalls

employed in this region. The grid points do not coincide with each other in both x(X)
and y(Y) direction. The computations in the two domains, which have the overlapping
region are performed alternatively at every time step. Figure 5 indicates the whole
computational region. The physical quantities (velocity and pressure) are exchanged
through the common overlapping region as is shown in Figure 6. When we compute
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Figure 5: Whole computational region

Figure 6: Domain decomposition by the overlapping region

the flow field of region1, the boundary conditions are required on each boundary. If
the boundary locates outside of the region, the boundary conditions are determined
by the usual way, i.e. free stream condition or something like this. If the boundary
locates inside of the region2, the boundary values can be obtained from the computa-
tional results of the region2. In this case, some interpolations are required since the
grid systems in both regions are different. In this study, the interpolation shown in
Figure 7 is used. Since this formula requires only the distance from the four corners
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Figure 7: Interpolation in the overlapping region

in one grid cell, it can be used even if the grid cell is highly deformed.
Similar technique is used for determining the boundary conditions of region2 from

the computational results of region1. In region1, two regions of semicircular shape are
connected through one line without overlapping region. The boundary conditions on
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this line are given by the average value of the nearest grid points in each region(Figure
8) as follows: The numerical method to solve incompressible Navier-Stokes equation

fP = (fQ + (1− r)fR + rfS)/2.

Figure 8: Interpolation along the line

is the standard MAC method. All the spatial derivatives except the nonlinear term
of the Navier-Stokes equation is approximated by the second order central difference.
Nonlinear terms are approximated by the third order upwind scheme[KK84] due to
the numerical stability. Euler explicit scheme is employed for the time integration.

Result

Typical results obtained by the present study are shown here. The dimensionless
gap width(=S/D, see Figure 2) is chosen to 0.15 and tip speed ratio λ(= Rω/u∞) is
changed from 0.25 to 1.25. Figure 9 indicates the initial position of the rotor. In this

Figure 9: Initial position of the rotor

case, the rotational angle θ is defined as zero and the rotor begins to rotate clockwise
from this position. Figure 10 is an example of the instantaneous velocity vectors.
Both the vectors in the inner region and the outer region are plotted in the same
figure. The vectors vary continuously from the inner region to the outer region, which
indicates the interpolation works well in this calculation. Figure 11 is time history of
the torque coefficient. The torque coefficient Cr(= T/qRA where T is the torque, q
is the dynamic pressure, R is the radius of the rotor, and A is the projection area).
The tip speed ratio is 0.25 and no walls exist. Clearly, it has a period of 180 degree.
The torque becomes maximum and minimum around 30 and 150 degree respectively
and becomes zero around 120 and 180 degree. Figure 12 is also time history of the
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Figure 10: An example of the instantaneous velocity fields in the whole region

torque coefficient but the tip speed ratio is 0.5 and 0.75. As tip speed ratio becomes
large, the negative part of the curve becomes large indicating the total torque becomes
small. Figure 13 is the result of the calculation with walls. It corresponds to Figure
11 and Figure 12. Although the shape of each curve is similar, the absolute value
becomes large for the latter case. Figure 14 is the time-averaged torque coefficient

Figure 11: Time history of the torque coefficient without walls(Tip speed ratio is 0.25)

for various tip speed ratio λ. Both the results of the calculations with and without
walls are indicated in the same figure. Torque coefficients decrease nearly linear as the
tip speed ratio increases and become negative around 0.8. They become almost twice
when the walls exist. Figure 15 is the time-averaged power coefficients Cp(= λCr)
for various tip speed ratio. Both the results with and without walls are shown. The
power coefficient has its maximum value around λ = 0.5 and λ = 0.4 for the case with
and without walls respectively. The maximum value is almost twice for the case with
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Figure 12: Time history of the torque coefficient without walls(Tip speed ratio is 0.5
and 0.75)

Figure 13: Time history of the torque coefficient with walls(Tip speed ratio is 0.25,
0.5 and 0.75)

Figure 14: Time-averaged torque coeffi-
cient for various tip speed ratios for the
cases with and without walls

Figure 15: Time-averaged power coeffi-
cient for various tip speed ratios for the
cases with and without walls
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walls.

Summary

In this study, the flow field around the windmill is computed by using domain decom-
position method. Although the Savonius rotor is chosen for the present computation,
this method can be applied for the computations of other windmills. Two compu-
tational domains are used and connected to each other. One domain contains the
rotating rotor and rotational coordinate system is employed. Another contains the
fixed walls and the Cartesian coordinate system is used. Both regions have common
overlapping region. The physical quantities on the boundary of one domain in the over-
lapping region are calculated by interpolating the physical values at the grid points
in another region which are located inside of the region. The running performance of
the Savonius rotor such as the torque coefficient and the power coefficient is obtained
for various tip speed ratios. The effect of the walls on the running performance is
also investigated. It is found that torque coefficient and the power coefficient become
almost twice when the walls are placed adequately.
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