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15. Direct Mehtod of Lines for Solving an Elliptic
Transmission Problem

Kiyoshi Kitahara 1, Hideyuki Koshigoe 2

Introduction

The object of this paper is to present the numerical algorithm to obtain a finite
difference solution for an elliptic transmission problem by use of the direct method of
lines ([Nak65],[KK98], [KK99]). Let Π be a rectangular domain in R

2, Ω1 be an open
subset of Π and Ω2 = Π \ Ω1, Γ = ∂Ω1 (see Figure 1). Then the elliptic transmission
problem is formulated as follows. And it is well known that (3) and (4) are called the
conditions of transmission (cf. [DL90], [Lio71]).

Problem I Find (u1, u2) ∈ H1(Ω1)×H1(Ω2) such that

−ε1�u1 = f1 in Ω1 , (1)
−ε2�u2 = f2 in Ω2 , (2)

u1 = u2 on Γ , (3)

ε1
∂u1

∂ν
= ε2

∂u2

∂ν
on Γ , (4)

u2 = g on ∂Π . (5)

Hhere ε1 and ε2 are positive constants, {f1, f2} ∈ L2(Ω1) × L2(Ω2), g ∈ H1/2(∂Π)
and ν is the unit normal vector on Γ directed from Ω1 to Ω2 .

✛
ν

Π

Ω2

Ω1

Γ

Figure 1: Interface Γ and unit normal ν

Equations (1)-(5) of this type are arisen in various contexts. One of such examples
can be found in the context of electricity. In fact, let {ε1, ε2} denote dielectric con-
stant, {u1, u2} be potential of the electric field and {f1, f2} be charge density in the
dielectric material {Ω1,Ω2} respectively. Then the conditions (3) and (4) mean that
the tangential component of the electric field and the normal component of electric
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flux density are continuous across Γ respectively. Moreover if g=0, (5) represents that
R

2 \Π is occupied by a perfect conductor.
The problem of transmission type has been studied from the viewpoint of both

theoretical and numerical researchs. And the method of the auxilliary domain plays
the important role in the field of numerical analysis. In this paper we present another
point of view to solve it numerically. That is to use the method of the successive
eliminations of lines and to solve directly the kernel of the Steklov-Poincaré operator
T , which is defined as the linear operator from the Dirichlet data on Γ to the Neumann
data on Γ

T : H1/2(Γ) � w → ε1
∂u1

∂ν
− ε2

∂u2

∂ν
∈ H−1/2(Γ),

in the sense of the finite difference. We remark here that the discretized equations
of Problem I is reduced to solve the linear system of equations defined on Γ (i.e.,
the kernel of the Steklov-Poincaré operator T ) and another parts of unknowns are
automatically decided by the algebraic computation using the explicit formula of the
approximate solutions stated in the section 4.
Now considering the kernel of the Steklov-Poincaré operator T , Problem I is rewrit-

ten by Problem II. In fact, two formulations are equivalent by use of the distribution
theoretical approach and Green’s formula. Hence from now on, we consider the con-
struction of the solution for Problem II in the sense of the finite difference.

Problem II Find u ∈ H1(Π) such that{
−div (a(x)∇u) = f in D′(Π) ,

u = g on ∂Π .
(6)

Here a(x) = ε1 χΩ1(x) + ε2 χΩ2(x), f(x) = f1(x)χΩ1 (x) + f2(x)χΩ2 (x) and χΩ(x)
is defined by

χΩ(x) =

{
1 if x ∈ Ω
0 if x /∈ Ω

for any subset Ω of Π.
The contents of this paper are as follows. In the second section, we introduce a

small perturbation on Γ for the numerical computation, which is defined by 1
2 ( f1(x)+

f2(x) ) δ(x − Γ), in the discretized formulation of Problem II. Roughly speaking, it
implies that T (uh) = O(h) for any mesh size h . In the third section, we prepare the
representation formula of the solution for a system of linear equations. This is the
background in the numerical algorithm we propose here. In the fourth section, the
kernel of the Steklov-Poincaré operator T and the explicit formula of the approximate
solutions will be presented using the results in the third section. In the fifth section,
two numerical results will be shown by use of the explicit formula in the fourth section.

Finite difference approximation for Problem II

We partition the region Π into rectangles by vertical m− 1 lines and horizontal n− 1
lines. We denote mesh size for x direction as ∆x and for y direction as ∆y. Moreover
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by Γ∆ we denote the set of all mesh points (which are interior of Π) such that from
each point the horizontal distance to Γ is less than ∆x/2 or the vertical distance to Γ
is less then ∆y/2 (see Figure 2). We designate the point in Γ∆ as artifitial interface
mesh point. By Π∆ we denote the set of all interior mesh points which do not belong
to Γ∆.
In order to denote a discretized model for Problem II we prepare some notations.

We assume that the boundary data g is continuous on ∂Π and the charge densities f1,
f2 are coutinuous on Ω1, Ω2 respectively. Let denote uij as approximate value of the
solution u at mesh point Pij . We denote Pi+1/2,j as the center of the points Pij and
Pi+1,j and denote Pi,j+1/2 as the center of the points Pij and Pi,j+1. For every mesh
piont Pij ∈ Γ∆ we denote PΓ

ij as the nearest point form Pij among the points which
are on the intersection of mesh lines and Γ (see Figure 3).

Ω2

Ω1

Γ

�

�
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�

Figure 2: Mesh point near Γ
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Figure 3: The point PΓ
ij

Let us define the function ε(P ) and the elements fij as the following :

ε(P ) =



ε1 if P ∈ Ω1,

(ε1 + ε2)/2 if P ∈ Γ,
ε2 if P ∈ Ω2,

fij =

{
f(Pij) if Pij ∈ Π∆,

(f1(PΓ
ij) + f2(PΓ

ij))/2 if Pij ∈ Γ∆.

By use of above notations we define a discretized model for Problem II at a mesh piont
Pij by the following form :

Discretized formula for Problem II at Pij

− 1
∆x

[
ε(Pi+1/2,j)

ui+1,j − uij

∆x
− ε(Pi−1/2,j)

uij − ui−1,j

∆x

]

− 1
∆y

[
ε(Pi,j+1/2)

ui,j+1 − uij

∆y
− ε(Pi,j−1/2)

uij − ui,j−1

∆y

]
= fij .

(7)

Now we put that

bWij = ε(Pi−1/2,j), bEij = ε(Pi+1/2,j), cSij = ε(Pi,j−1/2), cNij = ε(Pi,j+1/2), (8)
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then we can rewrite the equation (7) to the following form :

−tcSijui,j−1 +
(
bWij + bEij + t(cSij + cNij )

)
uij − tcNijui,j+1

= bWij ui−1,j + bEijui+1,j + (∆x)2fij ,
(9)

where t = (∆x)2/(∆y)2. The coefficients bWij , . . . , c
E
ij have the following properties.

bEij = bWi+1,j , cNij = cSi,j+1 for all mesh points , (10)

bWij = bEij = ε(Pij) = cSij = cNij if Pij ∈ Π∆. (11)

These properties are obvious from definitions (8).
Now for i = 1, 2, . . . ,m−1, we denote Ui as unknown columun vector [uij ]1≤j≤n−1

and define coefficient matrices Aε
i , B

W
i and BE

i by the following forms.

Aε
i =



aε

i,1 −tcNi,1 0 · · · · · ·
−tcSi,2 aε

i,2 −tcNi,2 0 · · ·
...

...
...

...
...

· · · · · · 0 −tcSi,n−1 aε
i,n−1


 , (12)

BW
i = diag[bWij ]1≤j≤n−1, BE

i = diag[b
E
ij ]1≤j≤n−1, (13)

where aε
ij = bWij + bEij + t(cSij + cNij ) and A

ε
i is a tridiagonal matrix.

By use of these notations we can rewrite equations (9) to the following system of
equations which is a discretized model for Problem II .

Problem III Find vectors Ui (1 ≤ i ≤ m− 1) such that
Aε

i Ui = BW
i Ui−1 +BE

i Ui+1 + Fi (1 ≤ i ≤ m− 1), (14)

where U0 = 0, Um = 0 and Fi (1 ≤ i ≤ m − 1) are known vectors constructed form
the functions f and g.
From the equations (10) we know that Aε

i (1 ≤ i ≤ m−1) are symmetric matricies
and BE

i = BW
i+1 (1 ≤ i ≤ m− 2).

Construction of the solution for linear equations based
on the direct method of lines

Before proceeding to solve Problem III, we shall state our result about linear equations
for the unkown matrix {Xi} as follows:

AXi = Xi−1 +Xi+1 + Yi (1 ≤ i ≤ m− 1). (15)

Here we make the following assumptions:
(H1) A is a square matrix of order N .
(H2) Xi (0 ≤ i ≤ m) and Yi (1 ≤ i ≤ m − 1) are N ×M matrices which satisfy

the system of equations (15).
Then we have the following representation for any one Xk.
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Theorem 1 We assume (H1),(H2). Then we have

AmXk = Am−k X0 +Am−k

k−1∑
i=1

Ai Yi

+Ak

m−1∑
i=k

Am−i Yi +Ak Xm (1 ≤ k ≤ m− 1)
(16)

where the sequence of matrices {Ai} is defined by

A1 = I, A2 = A, Ai+1 = AAi −Ai−1 (i = 2, 3, . . . ). (17)

If A = [aij ] is the (n− 1)− symmetrix tridiagonal matrix as follows:

ajj = 2 s aj,j+1 = aj+1,j = −t where s = 1 + t (18)

then the representation (16) turns out to be a very simple form. In fact we can reduceA
to a diagonal form by means of the orthgonal transfomation : P = t[P1 , P2 , . . . , Pn−1]
where

pl,j =

√
2
n
sin
(
l j π

n

)
(1 ≤ l, j ≤ n− 1). (19)

and P has the following properties,

tP = P, P 2 = I. (20)

Multiplying P A−1
m on the both sides of (16), we obtain the following result.

Proposition 1 Assume X0 = Xm = O, then we have

P Xk =
k−1∑
i=1

Dm−k,i P Yi +
m−1∑
i=k

Dk,m−i P Yi (1 ≤ k ≤ m− 1) (21)

where for l and i (1 ≤ l, i ≤ m− 1)

Dl,i = P A−1
m Al Ai P = diag

[
sinh(l aj) sinh(i aj)
sinh(maj) sinhaj

]
1≤j≤n−1

. (22)

Explicit formula of the solution for Problem III

We return to Problem III. We can rewrite the system of equations (14) to the following
new system of equations, which is more useful forms for the Method of Lines, by use
of splitting unknown vectors. Then our last problem is reduced to the following.

Problem IV Find {Vi, Wi} (1 ≤ i ≤ m− 1) such that

AVi =Vi−1 + Vi+1 + Fi +BW
i Wi−1 −Aε

i Wi +BE
i Wi+1 (1 ≤ i ≤ m− 1) (23)



148 KITAHARA, KOSHIGOE

where V0 = Vm =W0 =Wm = 0 and the matrix A is given by the equation (18).
Now we will derive the system of equations (23) from the system (9). At first, for

any column vector V (= [vj ]), we define a set of indices as that supp(V ) = {j | vj �= 0}.
Let us divide each unknown vector Ui into two parts.

Ui = U ′
i +Wi, (1 ≤ i ≤ m− 1) (24)

where

supp(U ′
i) ⊆ {j |Pij ∈ Π∆} and supp(Wi) ⊆ {j |Pij ∈ Γ∆}. (25)

If j ∈ supp(U ′
i) then by use of the above definition (25) and the relation (11), we

obtain the eqaution that BW
i U ′

i = BE
i U

′
i . Then we define the new unknown vectors

Vi:

Vi = BW
i U ′

i = BE
i U

′
i (1 ≤ i ≤ m− 1). (26)

From the definition of Vi and Wi we have the following relations.

supp(Vi) ∩ supp(Wi) = ∅ (1 ≤ i ≤ m− 1). (27)

Moreover it follows from (10) that

Vi = BE
i−1U

′
i = BW

i+1U
′
i and Aε

iU
′
i = AVi (1 ≤ i ≤ m− 1), (28)

where the matrix A is given by the equation (18). By use of the relations (28) we can
rewrite the system of equations (14) to the new system of equations (23).
Applying Proposition 1 to our difference equations (23) we obtain the following

expressions.

Proposition 2 For each number k (1 ≤ k ≤ m− 1),

P Vk =
k−1∑
i=1

Dm−k,i P
[
BW

i Wi−1 −Aε
i Wi +BE

i Wi+1

]

+
m−1∑
i=k

Dk,m−i P
[
BW

i Wi−1 −Aε
i Wi +BE

i Wi+1

]

+

(
k−1∑
i=1

Dm−k,i P Fi +
m−1∑
i=k

Dk,m−i P Fi

)
(29)

From the equations (29), we can elimimate Vk and get the linear equations for {Wi}
by use of the support property (27) and the orthogonarity of {Pl} .
Theorem 2 (Equations for Wi) For l ∈ supp(Wk),

k−1∑
i=1

tPlDm−k,i P
[−BW

i Wi−1 +Aε
i Wi −BE

i Wi+1

]

+
m−1∑
i=k

tPl Dk,m−i P
[−BW

i Wi−1 +Aε
i Wi −BE

i Wi+1

]

= tPl

(
k−1∑
i=1

Dm−k,i P Fi +
m−1∑
i=k

Dk,m−i P Fi

)
.

(30)
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By use of the orthogonarity of {Pl}, we get the following Theorem.

Theorem 3 (Expressions for vi,j) For l ∈ supp(Vk),

vk,l =
k−1∑
i=1

tPl Dm−k,i P
[
BW

i Wi−1 −Aε
i Wi +BE

i Wi+1

]

+
m−1∑
i=k

tPlDk,m−i P
[
BW

i Wi−1 −Aε
i Wi +BE

i Wi+1

]

+ tPl

(
k−1∑
i=1

Dm−k,i P Fi +
m−1∑
i=k

Dk,m−i P Fi

)
.

(31)

Examples

Using Theorem 2 and 3, we show the numerical results for the elliptic transmission
problem (1) under the following geometry.
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Figure 4: Example 1
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Figure 5: Example 2

Example 1:

Let Π = (0, 1) × (0, 1) = Ω1 ∪ Γ ∪ Ω2 , Γ : x − y + 1/4 = 0 as Figure 4. Set
ε1 = 1, ε2 = 3 in Problem I and ∆x = ∆y = h in (7).
We then use test functions:

u =

{
sin(x− y + 1/4) + x+ 1 in Ω1,

(x− y + 1/4)2 + x+ 1 in Ω2,
f =

{
2 ε1 sin(x− y + 1/4) in Ω1,

−4 ε2 in Ω2.

and get the Table 1 below.

Example 2:

Let Π = (−0.5,−0.5)× (0.5, 0.5) = Ω1 ∪Γ∪Ω2 , Γ : x2+ y2 = R2 , R = 1/4 as Figure
5. Set ε1 = 5, ε2 = 3 in Problem I and ∆x = ∆y = h in (7).
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We then use test functions:

u =

{
x3 − y3 in Ω1,

(x3 − y3)(x2 + y2)/R2 in Ω2,

f =

{
−6 ε1 (x− y) in Ω1,

−2 ε2 (11 x3 − 3 x2 y + 3 x y2 − 11 y3)/R2 in Ω2.

and get the Table 2 below.

In the table 1 and 2, we use the following notations. The ’maximum point’ (i, j)
means the mesh point where the muximum error occurs and
‖u− uh‖∞ = maxi,j |u(i h, j h)− ui,j |. Moreover ’ratio’ means the percentage of the
number of unknowns {wij} for the system of linear equations in Theorem 2 to the
total number of unknowns {uij} in (7).

mesh size ratio maximum point ‖u− uh‖∞
1/16 4.89% ( 6, 10) 6.232701× 10−5

1/32 2.39% ( 12, 20) 1.557993× 10−5

1/64 1.18% ( 24, 40) 3.894824× 10−6

1/128 0.59% ( 48, 80) 9.736942× 10−7

Table 1: Numerical result of example 1

mesh size ratio maximum point ‖u− uh‖∞
1/16 10.67% ( 4, 12) 7.426605× 10−3

1/32 4.58% ( 9, 19) 2.119219× 10−3

1/64 2.32% ( 28, 47) 8.459878× 10−4

1/128 1.12% ( 58, 95) 4.221186× 10−4

Table 2: Numerical result of example 2

Remark

Both examples show that the ’ratio’ is decreasing in proportion to mesh size. Hence
our method seems to be advantageous in the situation where the mesh size is very
small.
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