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3. Dual and Dual-Primal FETI Methods for Elliptic
Problems with Discontinuous Coefficients in Three
Dimensions

Axel Klawonn1, Olof B. Widlund2

Introduction

The Finite Element Tearing and Interconnecting (FETI) methods were first introduced
by Farhat and Roux [FMR94]. An important advance, making the rate of convergence
of the iteration less sensitive to the number of unknowns of the local problems, was
made by Farhat, Mandel, and Roux a few years later [FMR94]. For a detailed intro-
duction, see [FR94] and we also refer to our own papers for many additional references.
Our own work, cf. [KW01, KW00b], owes a great deal to the pioneering theoretical
work by Mandel and Tezaur [MT96, MT00].

The principal purpose of this paper is to survey some recent results developed by
the authors. We introduce new one-parameter families of one-level FETI as well as of
dual–primal FETI preconditioners which have a rate of convergence which is bounded
independently of possible jumps of the coefficients of an elliptic model problem often
considered in the theory of Neumann–Neumann and other iterative substructuring
algorithms; see, e.g., [DW95, DSW94, MB96] and the references therein. Our new
results become possible because of special scalings. One of them, for the precondi-
tioner, is closely related to an important algorithmic idea used in the best of the
Neumann–Neumann methods. The other scaling affects the choice of the projection
which is used in each step of the one–level FETI iteration, whether preconditioned
or not. For a certain choice of the two scalings, our preconditioner for the one–level
FETI methods results in a method that is identical to one recently tested successfully
for very difficult and large problems by Bhardwaj et al. [BDF+00]. The scaling used
in the preconditioner was originally introduced by Rixen and Farhat; see [RF99]. We
note that, by now, many variants of the FETI algorithms have been designed and that
a number of them have been tested extensively; see in particular [RFTM99]. Some of
our results have also already been extended to Maxwell’s equation in two dimensions
by Toselli and Klawonn [TK99].

Recently, Farhat et al. [FLLT+99] introduced a dual–primal FETI algorithm suit-
able for second order elliptic problems in the plane and for plate problems. A con-
vergence analysis in the case of benign coefficients is given by Mandel and Tezaur
[MT00]. Numerical experiments show a poor performance for this algorithm in three
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dimensions; cf. [FLLT+99]. Recent experiments with alternative algorithms are re-
ported in [FLP00, Pie00]. We give a brief description of our own recent work in the
final section; see [KW00b] for many more details.

The remainder of this paper is organized as follows. In the next, the second section,
we introduce our elliptic problems and the basic geometry of the decomposition. In
the following section, we give a short introduction to one–level FETI methods. In
the fourth section, we introduce our family of preconditioners and formulate one of
our main results; our results could also be extended to certain other elliptic problems
as in [KW00a]. Finally, we present results on a new dual–primal FETI method for
problems with discontinuous coefficient in three dimensions; see [KW00b].

A model problem, finite elements, and geometry

Let Ω ⊂ R
3, be a bounded, polyhedral region, let ∂ΩD ⊂ ∂Ω be a closed set of positive

measure, and let ∂ΩN := ∂Ω \ ∂ΩD be its complement. We impose homogeneous
Dirichlet and general Neumann boundary conditions, respectively, on these two subsets
and introduce the Sobolev space H1

0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}.
For simplicity, we will only consider a piecewise linear, conforming finite element

approximation of the following scalar, second order model problem:
Find u ∈ H1

0 (Ω, ∂ΩD), such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂ΩD), (1)

where

a(u, v) :=
∫

Ω

ρ(x)∇u · ∇vdx, f(v) :=
∫

Ω

fvdx +
∫

∂ΩN

gNvds, (2)

where gN is the Neumann boundary data defined on ∂ΩN ; it provides a contribution
to the load vector of the finite element problem. The coefficient ρ(x) > 0 for x ∈ Ω.

We decompose Ω into non-overlapping subdomains Ωi, i = 1, . . . , N, also known
as substructures, and each of which is the union of shape-regular elements with the
finite element nodes on the boundaries of neighboring subdomains matching across the

interface Γ :=
(⋃N

i=1 ∂Ωi

)
\ ∂Ω. The interface Γ is decomposed into subdomain faces,

regarded as open sets, which are shared by two subregions, edges which are shared
by more than two subregions and the vertices which form the endpoints of edges. We
denote faces of Ωi by F ij , edges by E ik, and vertices by V i�.

We denote the standard finite element space of continuous, piecewise linear func-
tions on Ωi by Wh(Ωi). For simplicity, we assume that the triangulation of each
subdomain is quasi uniform. The diameter of Ωi is Hi, or generically, H . We denote
the corresponding finite element trace spaces by Wi := Wh(∂Ωi), i = 1, . . . , N, and
by W :=

∏N
i=1Wi the associated product space. We will often consider elements of

W which are discontinuous across the interface.
The finite element approximation of the elliptic problem is continuous across Γ and

we denote the corresponding subspace of W by Ŵ . We note that while the stiffness
matrixK and Schur complement S which correspond to the product spaceW generally
are singular those of Ŵ are not.
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For the dual–primal FETI methods, we will also use an additional, intermediate
subspace W̃ of W for which a relatively small number of continuity constraints are
enforced across the interface throughout the iteration. In our dual–primal FETI meth-
ods, the selection of these constraints will be closely related to the coarse spaces of
certain primal iterative substructuring methods. One of the benefits of working in W̃ ,
rather than in W , is that certain related Schur complements S̃ and S∆ are positive
definite.

We assume that possible jumps of ρ(x) are aligned with the subdomain boundaries
and, for simplicity, that on each subregion Ωi, ρ(x) has the constant value ρi > 0. Our
bilinear form and load vector can then be written, in terms of contributions from
individual subregions, as

a(u, v) =
N∑

i=1

ρi

∫
Ωi

∇u · ∇vdx, f(v) =
N∑

i=1

( ∫
Ωi

fvdx +
∫

∂Ωi∩∂ΩN

gNvds
)
. (3)

In our theoretical analysis, we assume that the subregions Ωi are tetrahedra or hex-
ahedra and that they are shape regular, i.e., not very thin. We also make a number
of technical assumptions on the intersection of the boundary of the substructures and
∂ΩD; see [KW01]. We assume that Hi and Hj are comparable if the subdomains Ωi

and Ωj are neighbors. The sets of nodes in Ωi, on ∂Ωi, and on Γ are denoted by
Ωi,h, ∂Ωi,h, and Γh, respectively.

As in previous work on Neumann–Neumann algorithms, a crucial role is played
by the weighted counting functions µi ∈ Ŵ , which are associated with the individual
subdomain boundaries ∂Ωi; cf., e.g., [DSW96, DW95]. In this paper they will be used
primarily in the definition of certain diagonal scaling matrices. These functions are
defined, for γ ∈ [1/2,∞), and for x ∈ Γh ∪ ∂Ωh, by a sum of contributions from Ωi,
and its relevant next neighbors

µi(x) =




∑
j∈Nx

ργ
j (x) x ∈ ∂Ωi,h ∩ ∂Ωj,h,

ργ
i (x) x ∈ ∂Ωi,h ∩ (∂Ωh \ Γh),
0 x ∈ (Γh ∪ ∂Ωh) \ ∂Ωi,h.

(4)

Here, Nx is the set of indices of the subregions which have x on its boundary. We
note that any node of Γh belongs either to two faces, more than two edges, or to the
vertices of several substructures.

The pseudo inverses µ†i are defined, for x ∈ Γh ∪ ∂Ωh, by

µ†i (x) =
{
µ−1

i (x) if µi(x) �= 0,
0 if µi(x) = 0.

A review of one–level FETI methods

In this section, we give a brief review of the original FETI method of Farhat and Roux
[FMR94, FR94] and the variant with a Dirichlet preconditioner introduced in Farhat,
Mandel, and Roux [FMR94]. The more general projection operators, described in
this section, were first introduced for heterogeneous problems in [FR94] and they have
been tested in very large scale numerical experiments; see [BDF+00].
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For a chosen finite element method and for each subdomain Ωi, we assemble the
local stiffness matrix K(i) and the local load vector corresponding to a single, ap-
propriate term in the sums of (3). Any nodal variable, not associated with Γh, is
called interior and it only belongs to one substructure. The interior variables of any
subdomain can be eliminated by a step of block Gaussian elimination; this work can
clearly be parallelized across the subdomains. The resulting matrices are the Schur
complements

S(i) = K
(i)
ΓΓ −K(i)

ΓI (K(i)
II )−1K

(i)
IΓ , i = 1, . . . , N.

Here, Γ and I represent the interface and interior, respectively. We note that the S(i)

are only needed in terms of matrix-vector products and that therefore the elements of
these matrices need not be explicitly computed.

The values of the right hand vectors also change when the interior variables are
eliminated. We denote the resulting vectors, representing the modified load originating
in Ωi, by fi and the local vectors of interface nodal values by ui.

We can now reformulate the finite element problem, reduced to the interface Γ,
as a minimization problem with constraints given by the requirement of continuity
across Γ :

Find u ∈ W , such that

J(u) := 1
2 〈Su, u〉 − 〈f, u〉 → min

Bu = 0

}
(5)

where u = [u1 . . . uN ]t, f = [f1 . . . fN ]t, and S = diagN
i=1(S(i)) is block–diagonal.

The matrix B = [B(1), . . . , B(N)] is constructed from {0, 1,−1} such that the values
of the solution u, associated with more than one subdomain, coincide when Bu = 0.
We note that the choice of B is far from unique. The local Schur complements S(i)

are positive semidefinite and they are singular for any subregion with a boundary
which does not intersect ∂ΩD. The problem (5) is uniquely solvable if and only if
ker (S) ∩ ker (B) = {0}, i.e., if and only if S is invertible on ker (B).

By introducing a vector of Lagrange multipliers λ, to enforce the constraints Bu =
0, we obtain a saddle point formulation of (5):

Find (u, λ) ∈ W × U , such that

Su + Btλ = f
Bu = 0

}
. (6)

We note that the solution λ of (6) is unique only up to an additive vector of ker (Bt).
The space of Lagrange multipliers U is therefore chosen as range (B).

We will also use a full column rank matrix built from all of the null space elements
of S; these elements are associated with individual subdomains (the rigid body motions
in the case of elasticity),

R = [R(1) . . . R(N)].

Thus, range (R) = ker (S). We note that no subdomain with a boundary which inter-
sects ∂ΩD contributes to R.

The solution of the first equation in (6) exists if and only if f − Btλ ∈ range (S);
this constraint will lead to the introduction of a projection P . We obtain,

u = S†(f −Btλ) +Rα if f −Btλ ⊥ ker (S),
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where S† is a pseudoinverse of S. The value of α can be determined easily once λ has
been found.

Substituting u into the second equation of (6) gives

BS†Btλ = BS†f +BRα. (7)

We now introduce a symmetric, positive definite matrix Q which induces an inner
product on U ; it is defined by 〈λ, µ〉Q := 〈λ,Qµ〉. By considering the component
which is Q−1−orthogonal to G := BR, we find that

P tFλ = P td
Gtλ = e

}
(8)

with F := BS†Bt, d := BS†f, P := I −QG(GtQG)−1Gt, and e := Rtf . We note that
P is an orthogonal projection, from U onto ker (Gt), in the Q−1−inner product, i.e.,
the inner product defined by 〈λ,Q−1µ〉.

There are different good choices for Q. In the case of homogeneous coefficients,
it is sufficient to use Q = I, while for problems with jumps in the coefficients, we
have to make a more elaborate choice to make our proofs work satisfactorily. In our
analysis, Q will be a diagonal scaling matrix or we will use the preconditioner; other
alternatives are discussed in [BDF+00, FR94].

By multiplying (7) by (GtQG)−1GtQ, we find that α := (GtQG)−1GtQ(Fλ − d)
which then fully determines the primal variables in terms of λ.

We introduce the space

V := {µ ∈ U : 〈µ,Bz〉 = 0 ∀z ∈ ker (S)} = ker (Gt) = range (P ),

and a space that is isomorphic to its dual,

V ′ := {λ ∈ U : 〈λ,Bz〉Q = 0 ∀z ∈ ker (S)} = range (P t).

As is usual in the literature on FETI methods, we can call V the space of admissible
increments. The original FETI method is a conjugate gradient method in the space
V applied to

P tFλ = P td, λ ∈ λ0 + V, (9)

with an initial approximation λ0 chosen such that Gtλ0 = e. The most basic FETI
preconditioner, as introduced in Farhat, Mandel, and Roux [FMR94], is of the form

M−1 := BSBt.

To apply M−1 to a vector, N independent Dirichlet problems have to be solved, one
on each subregion; it is therefore called the Dirichlet preconditioner.

To keep the search directions of the resulting preconditioned conjugate gradient
method in the space V , the application of the preconditioner M−1 is followed by an
application of the projection P . Hence, the Dirichlet variant of the FETI method is
the conjugate gradient algorithm applied to the equation

PM−1P tF λ = PM−1P t d, λ ∈ λ0 + V. (10)
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We note that for λ ∈ V , PM−1P tFλ = PM−1P tP tFPλ, and that we can therefore
view the operator on left hand side of (10) as the product of two symmetric matrices.

It is well known that an appropriate norm of the iteration error of the conjugate
gradient method will decrease at least by a factor

2(
√
κ− 1√
κ+ 1

)k,

in k steps. Here κ is the ratio of the largest and smallest eigenvalues of the iteration
operator. The main task in the theory is therefore always to obtain a good bound for
the condition number κ.

We note that several different possibilities of improving the FETI preconditioner
M−1 have already been explored. Some interesting variants are discussed by Rixen
and Farhat [RF99], in a framework of mechanically consistent preconditioners, in the
case of redundant Lagrange multipliers; see also Klawonn and Widlund [KW01, section
5] for an analysis.

New one-level FETI preconditioners with non-redundant
Lagrange multipliers

In this section, we outline some of our results on a family of new FETI preconditioners
with an improved condition number estimate compared to that of Mandel and Tezaur
[MT96]. Most importantly, we obtain a uniform bound for arbitrary positive values of
the ρi if the scaling matrix Q, which enters the definition of P , is chosen carefully. In
our proofs, we use several arguments developed in [MT96], but our presentation also
differs considerably in several respects.

We now assume that B has full row rank, i.e., the constraints are linearly inde-
pendent and there are no redundant Lagrange multipliers.

Our new preconditioner is defined, for any diagonal matrix D with positive ele-
ments, as

M̂−1 := (BD−1Bt)−1BD−1SD−1Bt(BD−1Bt)−1. (11)

To obtain a method, which converges at a rate which is independent of the coefficient
jumps, we now choose a special family of matrices D; a careful choice of the scaling
Q, introduced in the definition of the operator P , will also be required. As in previous
work on Neumann–Neumann algorithms, a crucial role is played by the weighted
counting functions µi, associated with the individual ∂Ωi, and already introduced in
(4). The diagonal matrix D(i) has the diagonal entry ργ

i (x)µ†i (x) corresponding to the
point x ∈ ∂Ωi,h. Finally, we set D := diagN

i=1(D(i)). We note that this matrix is a
block–diagonal matrix which operates on elements in the product space W.

We now give a condition number estimate for the preconditioned FETI operator
PM̂−1P tF ; cf. [KW01]. The result holds for Q = M̂−1 and also for a special choice
of B and a special diagonal Q; in the case of continuous coefficients, it is sufficient to
choose Q as a multiple of the identity matrix for the next theorem to be valid.
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Theorem 1 The condition number of the FETI method, with the new preconditioner
M̂, satisfies

κ(PM̂−1P tF ) ≤ C (1 + log(H/h))2.

Here, κ(PM̂−1P tF ) is the spectral condition number of PM̂−1P tF , and C is inde-
pendent of h,H, γ, and the values of the ρi.

A New Dual–Primal FETI method

In previous studies of dual–primal FETI methods for problems in two dimensions, see
Farhat, Lesoinne, Le Tallec, Pierson, and Rixen [FLLT+99] and Mandel and Tezaur
[MT00], the constraints on the degrees of freedom associated with the vertices of the
substructures are enforced, i.e., the corresponding degrees of freedom have been added
to the global set of variables, while all the constraints associated with the edge nodes
are enforced only at the convergence of the iterative method. In each step of the
iteration a fully assembled linear subsystem is solved. In a simple two–dimensional
case, this subsystem corresponds to all the interior and cross point variables; these
variables can be eliminated at a modest expense since we can first eliminate all the
interior variables, in parallel across the subdomains, resulting in a Schur complement
for the cross point variables which can be shown to be sparse. It has a dimension
which equals the number of subdomain vertices which do not belong to ∂ΩD.

In their recent paper, Mandel and Tezaur [MT00] established a condition number
bound of the form C(1 + log(H/h))2 for the resulting FETI method equipped with a
Dirichlet preconditioner which is very similar to those used for the older FETI methods
and which is built from local solvers on the subregions with zero Dirichlet conditions
at the vertices of the subregions. They also established a corresponding result for a
fourth-order elliptic problem in the plane. Their elegant proof in [MT00] relies, for
the second order equation, on linear algebra arguments and a lemma from a classical
paper by Bramble, Pasciak, and Schatz [BPS86, Lemma 3.5].

The same algorithm is also defined for three dimensions but it does not perform
well. This is undoubtedly related to the poor performance of many vertex-based it-
erative substructuring methods; see [DSW94, Section 6.1] and [KW00b]. Recently,
Farhat et al. added constraints to this basic algorithm, see [FLP00], and improved the
performance.

In our approach, we first carry out a change of variables prior to dividing the
variables into a primal and a dual subspace. The number of constraints enforced in
each iteration will now be larger, but we will still be able to work with a number of
constraints which is uniformly bounded for each substructure.

One of our new algorithms is given in terms of a space W̃ ⊂W for which we have
continuity at the subdomain vertices, and also common values of the averages over all
edges and all faces of the interface. This space can naturally be written as a direct
sum of two subspaces, corresponding to a primal and a dual part of the problem, i.e.,

W̃ = ŴΠ ⊕ W̃∆.

The first subspace, ŴΠ ⊂ Ŵ , which together with the interior subspaces, defines
the subsystem which is fully assembled, factored, and solved in each iteration step.
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It is defined as the range of the following interpolation operator Ih
B defined, for any

uh ∈ W̃ , by

Ih
Buh(x) =

∑
Vi�∈Γ

uh(Vi�)ϕVi�(x) +
∑

Eik⊂Γ

ūh
EikθEik(x) +

∑
Fij⊂Γ

ūh
FijθFij (x). (12)

Here,

ūh
Eik =

∫
Eik I

h(θEikuh)ds∫
Eik θEikds

and ūh
Fij =

∫
Fij I

h(θFijuh)dx∫
Fij θFikdx

,

ϕVi� are the standard nodal basis function, and θEik and θFij the discrete harmonic
functions which equal 1 on E ik

h and F ij
h , respectively, and vanish elsewhere on Γh. The

operator Ih
B, introduced in [DSW94, p. 1690], has almost optimal stability properties.

Let us note that several cheaper algorithm, based on different interpolation operators,
are also discussed in [KW00b].

The subspace ŴΠ is thus given in terms of the vertex variables, the averages of
the values over the individual edges of the set of interface nodes Γh, and the averages
over the individual faces of substructures.

We note that the dimension of this first subspace is relatively small; in the case of
hexahedral substructures there are seven global variables for each interior substructure
since there are eight vertices, each shared by eight hexahedra, twelve edges, each shared
by four, and six faces each shared by a pair of substructures. We note that the count is
smaller, relative to the number of substructures, in the case of tetrahedral subregions.
We can demonstrate that the resulting system can be assembled and solved at an
acceptable cost which only exceeds that for the more primitive algorithm in which we
enforce only the vertex constraints in each step, by a constant factor. We note that we
have also developed a second method with only four global variables per subdomain;
our theoretical results for that method involves a third power of the logarithm. We
have no doubts that a number of other promising alternatives could be developed
given the rich choice of coarse spaces for the primal iterative substructuring methods.

The second subspace, denoted by W̃∆, is associated with the nodal points on the
edges and faces of the interface Γ. It is the direct sum of local subspaces of W̃ . For each
subdomain Ωi, the local subspace consists of functions that vanish at the subdomain
vertices and have zero average on each individual edge and face. They are extended
by zero on all of the ∂Ωj, j �= i; it is easy to see that these functions satisfies the
continuity requirements associated with W̃ .

The linear systems solved in the preconditioning step of our FETI–DP algorithm,
which is directly related to W̃∆, have zero Dirichlet boundary conditions at the vertices
and also satisfy the constraints that the averages over individual edges and faces
vanish. The nodal values represent the original nodal values minus the average over
the edge or face to which the node belongs. This construction makes the local solvers
well defined and the resulting set of variables represent a subspace complementary to
the first subspace; together with the interior spaces they represent the variables of the
entire linear space of the partially subassembled system.

We can now formulate one of our FETI–DP algorithms; for details on its imple-
mentation, we refer to Klawonn and Widlund [KW00b].
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We first eliminate, after a partial change of variables, all unknowns of the first
subspace as well as the interior variables, and obtain a Schur complement S̃.

Analogously, we get from the load vectors associated with each subdomain a re-
duced right hand side f̃∆. We can now reformulate the original finite element problem,
reduced to the degrees of freedom of the second subspace W̃∆, as a minimization prob-
lem with constraints given by the requirement of continuity across Γh:

Find u∆ ∈ W̃∆, such that

J(u∆) := 1
2 〈S̃u∆, u∆〉 − 〈f̃∆, ud〉 → min

B∆u∆ = 0

}
. (13)

The matrix B∆ is constructed from {0, 1,−1} in the same fashion as B. Since we
already have imposed a constraint on the averages over each edge and each face, we
may drop one of the point constraints for each edge and each face when constructing
the matrix B∆. By introducing a set of Lagrange multipliers λ ∈ V := range (B∆),
to enforce the constraints B∆u∆ = 0, we obtain a saddle point formulation of (13),
which is similar to (6). We use that S̃ is invertible and eliminate the subvector u∆,
and obtain the following system for the dual variable:

F∆λ = d∆, (14)

where
F∆ := B∆S̃

−1Bt
∆

and the right hand side
d∆ := B∆S̃

−1f̃∆.

To define the FETI–DP Dirichlet preconditioner, we need to introduce an additional,
third set of Schur complement matrices,

S
(i)
∆∆ := K(i)

∆∆ −K(i)
∆I(K(i)

II )−1K
(i)
I∆, i = 1, . . . , N,

which can also be obtained from S(i) by removing the rows and columns that corre-
spond to the vertices and the edge and face averages, i.e., all the variables of the first
subspace ŴΠ. Here, K(i)

∆∆ is the principal minor of the stiffness matrix after the change
of variables and it is related to the variables of W̃∆. The associated block–diagonal
matrix is denoted by

S∆∆ := diagN
i=1(S(i)

∆∆).

We can compute the action of S∆∆ on a vector from the second subspace W̃∆ by
solving local problems with solutions that are constrained to vanish at the cross points
and to have zero edge and face averages; these constraints can be enforced by using
Lagrange multipliers or a partial change of basis.

As in the fourth section, cf. (11), we solve the dual system (14) using the precon-
ditioned conjugate gradient algorithm with the preconditioner

M−1
B := (B∆D

−1
∆ Bt

∆)−1B∆D
−1
∆ S∆∆D

−1
∆ Bt

∆(B∆D
−1
∆ Bt

∆)−1. (15)

Here, D∆ is a diagonal matrix with positive elements on the diagonal. It can be easily
seen that B∆D

−1
∆ Bt

∆ is a block-diagonal matrix and thus its inverse can be computed
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at essentially no extra cost; the block sizes are nx, where nx is the number of Lagrange
multipliers employed to enforce continuity at the point x. In order to obtain a method
that converges at a rate which is independent of the coefficient jumps, we now choose
a special family of matrices D∆, cf. also Klawonn and Widlund [KW01, sect. 4]. We
first define the contributions of each subdomain boundary ∂Ωi in terms of a diagonal
matrix D(i)

∆ . For any point x on an edge or a face of Ωi, there is an entry on the
diagonal of D(i)

∆ equal to ργ
i (x)µ†i (x). We now set

D∆ := diagN
j=1(D(j)

∆ ).

The dual–primal FETI method is now the standard preconditioned conjugate gra-
dient algorithm for solving the preconditioned system

M−1
B F∆λ = M−1

B d∆.

A proof of the following theorem can be found in Klawonn and Widlund [KW00b].

Theorem 2 The condition number of the FETI–DP method with the preconditioner
MB satisfies

κ(M−1
B F∆) ≤ C (1 + log(H/h))2.

Here, C is independent of h,H, γ, and the values of the ρi.
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