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16. Finite Difference Method with Fictitious
Domain Applied to a Dirichlet Problem

Hideyuki Koshigoe 1 Kiyoshi Kitahara 2,

Introduction

In this paper we shall consider the construction of the solution by the method of lines
coupled with a fictitious domain for the following Dirichlet problem (1) in a bounded
domain Ω of R2.

Problem I. For given functions f and g, find u in H2(Ω) such that{
− ∆u = f in Ω ,

u = g on ∂Ω .
(1)

Here f ∈ L2(Ω) , g ∈ H3/2(∂Ω) and Ω is a bounded domain in R2 with the smooth
boundary ∂Ω ( see Figure 1 ).
The method of lines for solving Problem I works well if Ω is a rectangular domain

since the finite difference solution is expressed explicitly by use of eigenvalues and
eigenvectors for the finite difference scheme([BGN70], [Nak65]). But one says that
this method seems difficult to be applied to the case where Ω is not a rectangular
domain. However the solution algorithm using the fictitious domain and the domain
decomposition has been developed recently ( [AKP95], [GPP94], [HH99], [FKK95],
[KK99], [MKM86]). Hence from this point of view we shall propose a numerical
algorithm by the method of lines coupled with a fictitious domain in this paper.
First of all, we embed Ω in a rectangular domain Π whose boundary ∂Π consists

of straight lines parallel to axes and set Ω1 = Π \ (Ω ∪ ∂Ω) ( see Figure 2 ). Then Π
is called a fictitious domain.

Ω
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Figure 1: Figure 1
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Figure 2: ( Π = Ω ∪Ω1 )

Hereafter we shall construct the numerical algorithm for solving Poisson’s equa-
tion (1) in the fictitious domain Π. In §2, Problem I is reduced to a fictitious domain
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formulation by use of the distribution theoretical approach. In §3, we shall discuss
characterizations of the solution for the fictitious domain formulation. In §4, a nu-
merical algorithm of the direct method of lines will be proposed and the results of
numerical computations will be shown.

A fictitious domain formulation of Problem I.

Using the trace operator γ in Sobolev space and distribution theoretical argument,
we deduce a fictitious domain formulation from Problem I. It is well-known that there
exists a function G ∈ H2(Ω) such that γG = g on ∂Ω because of g ∈ H3/2(∂Ω). Then
putting u = v +G, Problem I is reduced to

Problem II. Find v ∈ H2(Ω) such that{
− ∆v = f + ∆G in Ω,

v = 0 on ∂Ω.
(2)

Remark 1 Set u = v +G where v is a solution of Problem II. Then u is a unique
solution of Problem I. In this case, it is important to be independent of a choice of G
in Problem II ( see p.232 in [Miz73] ). And this fact will be used in §4.
We now define a function ṽ as follows: for any function v ∈ L2(Ω),{

ṽ(x) = v(x) (x ∈ Ω)
ṽ(x) = 0 (x ∈ R2\Ω). (3)

Then for v ∈ H1
0 (Ω), ṽ belongs to H

1(R2) and the equality

∂

∂xi
ṽ =

∂̃v

∂xi
(4)

holds( see p.187-189 in [Miz73]). Moreover operating ∆ to ṽ, we have the following
lemma which was shown by Kawarada([Kaw89]).

Lemma 1 Let v ∈ H2(Ω) ∩H1
0 (Ω). Then

∆̃v = ∆ṽ +
∂v

∂n
· δ(∂Ω) in the sense of distribution in R2, (5)

holds where n is the unit normal vector at ∂Ω, directed towards the outer of Ω and
δ(∂Ω) means the delta measure supported on ∂Ω .

By use of (3)-(5) and the definition of the weak derivative in the sense of the distri-
bution, we have

Theorem 1 Problem II is equivalent to the following Problem III. i.e.,

Problem III. Find ṽ ∈ H1
0 (Π) and w ∈ L2(∂Ω) such that

− ∆ṽ = ˜f +∆G+ w δ(∂Ω) in D′(Π) (6)
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Remark 2 ṽ ∈ H1
0 (Π) means that v ∈ H1

0 (Ω) and v ≡ 0 in Ω1.

Corollary 1 The solution {ṽ, w} of (6) has the following relation:

w =
∂v

∂n
on ∂Ω.

Remark 3 We call (6) a fictitious domain formulation of Problem II and this formu-
lation is essential for our discussions. It will be used to construct the finite difference
solution of Problem I in §4.

Characterization of the solution of the fictitious do-

main formulation (6)

Before proceeding to the construction of the finite difference scheme under the ficti-
tious domain formulation, we state the relation between (6) and the auxiliary domain
method ([Lio73]).

Proposition 1 The following statements are equivalent to each other.
(i) There exists a unique solution v ∈ H2(Ω) satisfying Problem II. And set w =

∂v
∂n .

(ii) There exists a solution {ṽ, w} ∈ H1
0 (Π)×L2(∂Ω) in Problem III which satisfies

− ∆ṽ = ˜f +∆G+ w δ(∂Ω) in D′(Π).

(iii) There exists a solution {v0, v1, w} ∈ H1
0 (Ω)×H1

0 (Ω1)× L2(∂Ω) such that

− ∆v0 = f +∆G in Ω ,
− ∆v1 = 0 in Ω1 ,

v0 = v1 = 0 on ∂Ω ,
∂v0
∂n

= w on ∂Ω ,

v1 = 0 on ∂Π.

(iv) There exists a solution {v, w} ∈ V × L2(∂Ω) satisfying∫
Π

∇v · ∇ϕ dx =
∫

Ω

(f +∆G)ϕ+
∫

∂Ω

ωϕ dΓ for any ϕ ∈ V (7)

where V = H1(Π) ∩H1
0 (Ω1).

Remark 4 ω in the form (7) is usually called a Lagrange multiplier .

Proposition 2 The solution ṽ of Problem III with g = 0 is the limit function of the
approximate solutions {vε0, vε1} as ε→ 0:

− ∆vε0 = f in Ω ,

−ε2α∆vε1 + ε
−2βvε1 = 0 in Ω1 ,

vε0 = v
ε
1 on ∂Ω ,

∂vε0
∂n

= ε2α ∂v
ε
1

∂n
on ∂Ω ,

vε1 = 0 on ∂Π
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for any α, β satisfying 0 < α < β.

Proof In fact, it is known that for α and β (0 < α < β),
vε0 → v0 in H1(Ω), vε1 → 0 in L2(Ω1), and v0 is the solution of Problem II

( see Theorem 10.1, pp. 78-82 in [Lio73]). Hence setting w = ∂v0
∂n , ṽ0 is exactly the

solution of Problem III by (iii) of Propostion 1.

Numerical Algorithm of the fictitious domain formu-

lation (6) by use of the direct method of lines

In this section, we shall propose a numerical algorithm of the direct method of lines
by use of the fictitious domain formulation (6).

Discretization of the fictitious domain formulation (6)

We first assume the fictitious domain Π given by

Π = { (x, y) | 0 < x < 1, 0 < y < 1 }, (8)

which consists of Ω and Ω1 where Ω1 = Π \Ω (see Figure 2).
While the set of grid points, Πh, is of the form

Πh = { (xi, yj) | 0 ≤ i ≤ m, 0 ≤ j ≤ m },

here xi = ih, yj = jh for a suitable spacing h = 1/m and P (i, j) = (xi, yj).
With each grid point (xi, yj) of Πh, we associate the cross line with center (xi, yj):

M
(
(xi, yj)

)
= { (xi + s, yj), s ∈ (−h2 ,

h

2
)} ∪ { (xi, yj + s), s ∈ (−h2 ,

h

2
)}.

We then define

Ω0
h = { (xi, yj) : (xi, yj) ∈ Πh, M((xi, yj)) ⊂ Ω },
Ω1

h = { (xi, yj) : (xi, yj) ∈ Πh, M((xi, yj)) ⊂ Ω1 },
∂Ω0

h = { (xi, yj) : (xi, yj) ∈ Πh,M((xi, yj)) ∩ ∂Ω �= φ },
∂Ω1

h = { (xi, yj) : (xi, yj) ∈ Πh, M((xi, yj)) ∩ ∂Ω1 �= φ }.

We then define for each i, j (0 ≤ i, j ≤ m),

Fi,j = F (xi, yj) =

{
f(xi, yj) for P (i, j) ∈ Ω0

h ,

0 otherwise .

Gi,j = G(xi, yj) =

{
g(xi, yj) for P (i, j) ∈ ∂Ω0

h

0 otherwise .

Here g(xi, yj) is defined as follows:
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(xi, yj)
hy

hx

B

A
�❤

g(xi, yj) =



g(xi, yj) if hx = 0 or hy = 0,
g(A) if 0 < hx ≤ h/2 and hy > h/2,
g(B) if hx > h/2 and 0 < hy ≤ h/2,
g(A)× hy + g(B)× hx

hx + hy
if 0 < hx, hy < h/2.

Then the finite difference approximation of (6) can be formulated as follows.
Find v(= {vi,j}) and w(= {wi,j}) such that

−(∆hv)(xi, yj) = Fi,j + (∆hG)(xi, yj) +
√
2
h
wi,j δ(Pi,j) for all (xi, yj) ∈ Πh (9)

where δ(Pi,j) = 1 if Pi,j ∈ ∂Ω0
h, δ(Pi,j) = 0 if Pi,j /∈ ∂Ω0

h and the finite difference
operator −∆h, approximating the Laplace operator −∆ is of the form

−(∆hv)(xi, yj) =
1
h2
[vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j ]

and vi,j = v(xi, yj) as usual.

Theorem 2 There exists a unique solution {vi,j} and {wi,j} of (9).

Proof In fact, (9) is rewritten as follows. Find v(= {vi,j}) and w(= {wi,j}) such
that

−(∆hv)(xi, yj) = Fi,j + (∆hG)(xi, yj) for all (xi, yj) ∈ Ω0
h (10)

v(xi, yj) = 0 for all (xi, yj) ∈ ∂Ω0
h, (11)

−(∆hv)(xi, yj) = 0 for all (xi, yj) ∈ Ω1
h (12)

v(xi, yj) = 0 for all (xi, yj) ∈ ∂Ω1
h, (13)

−(∆hv)(xi, yj) =
√
2
h
wi,j δ(Pi,m+j) for all (xi, yj) ∈ ∂Ω0

h. (14)

Then it follwos from these forms and the standard arguments in the finite difference
method ([Joh67]) that the Dirichlet problems (10)- (11) and (12)-(13) have unique
solutions vi,j on Πh\∂Ω0

h, from which and (14) , vi,j on ∂Ω
0
h are uniquely determined.
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Now in order to give the matrix expression of (9), we shall introduce the following
notations. For each i(1 ≤ i ≤ m− 1),

Vi = (vi,1, · · · , vi,m−1)T , (15)

Wi = (ξi,1, · · · , ξi,m−1)T , (16)

Zi = h2 (Fi,1 + (∆h)G(xi, y1), · · · , Fi,m−1 + (∆h)G(xi, ym−1) )T (17)

Here we set ξi,j =
√
2 h wi,j (1 ≤ i, j ≤ m− 1).

Remark 5 If P (i, j) ∈ ∂Ω0
h, then vi,j = 0 and wi,j �= 0. If P (i, j) /∈ ∂Ω0

h, then
wi,j = 0.

We introduce the concept of the support of vectors which is used in our numerical
algorithm.

Definition 1. The support for an (m-1)-vector Vi(= {vi,j}) is defined by

supp(Vi) = {j | vi,j �= 0}.

Then Remark 5 shows that supp(Vi) ∩ supp(Wi) = φ and ξi,j = 0 if j /∈ supp(Wi).

Using the above notations, the discrete equation for (6) is to

find {Vi , Wi} (1 ≤ i ≤ m− 1) such that

A Vi = Vi−1 + Vi+1 +Wi + Zi (1 ≤ i ≤ m− 1) (18)

where V0 = 0 , Vm = 0 and A is (m− 1)× (m− 1) matrix as follows;

A =


4 −1
−1 4 ·

· · ·
· · −1

−1 4

 . (19)

Numerical algorithm by use of the direct method of lines

From now on we shall construct a numerical algorithm for (18). Using successive
eliminations by lines, we have

Theorem 3 For each k (1 ≤ k ≤ m− 1),

PVk =
k−1∑
i=1

D−1
m Dm−kDiPWi +

m−1∑
i=k

D−1
m DkDm−iPWi +Gk (20)

holds where Gk =
∑k−1

i=1 D
−1
m Dm−kDiPZi +

∑m−1
i=k D−1

m DkDm−iPZi
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and the diagonal matrix Dk and the orthogonal matrix P are determined by

Dk =


ak1 0

ak2
. . .

0 akm−1


where the elements akj (1 ≤ j ≤ m− 1) are determined exactly by

akj =
sinh(kaj)
sinh(aj)

, aj = cosh−1(
λj

2
), λj = 2

(
2− cos( j

m
π)

)
. (21)

and the orthogonal matrix P = [p1, p2, · · · , pm−1] consists of

pj =

√
2
m



sin( j
mπ)

sin(2j
mπ)·
·
·

sin( (m−1)j
m π)

 (1 ≤ j ≤ m− 1). (22)

Remark 6 By use of the property of the orthogonal matrix P , PVi and PWi are
expressed as follows:

PVi =
∑

j∈supp(Vi)

vi,j pj, PWi =
∑

j∈supp(Wi)

wi,j pj . (23)

Finally we propose a numerical algorithm which is deduced from Theorem 3 and (23).

Numerical algorithm:

(1st step) Calculate {ξi,j}(j ∈ supp(Wi), 1 ≤ i ≤ m− 1) such that
k−1∑
i=1

∑
j∈supp(Wi)

(
pl •D−1

m Dm−kDi pj

)
ξi,j +

m−1∑
i=k

∑
j∈supp(Wi)

(
pl •D−1

m DkDm−i pj

)
ξi,j

= −pl •Gk for all l ∈ supp(Wk).

(2nd step) Compute {vk,l} (l ∈ supp(Vk), 1 ≤ k ≤ m− 1) by

vk,l =
k−1∑
i=1

∑
j∈supp(Wi)

(
pl •D−1

m Dm−kDi pj

)
ξi,j +

m−1∑
i=k

∑
j∈supp(Wi)

(
pl •D−1

m DkDm−i pj

)
ξi,j

+ pl •Gk for all l ∈ supp(Vk).

Here • means the inner product in Rm−1.

Remark 7 This is a generalization of the corresponding one in [KK99].
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Numerical experiments

Using the numerical algorithm of Theorem 3, we consider the Dirichlet problem:{
− ∆u = 0 in Ω ,

u = U on ∂Ω .

Here
U(x, y)=sinh(πx/2) sin(πy/2) and Ω = {(x, y) | (x−1/2)2

(1/4)2 + (y−1/2)2

(1/8)2 < 1} that is
the same geometry as one in [GPP94].
Then we get the following table of the choice of different mesh interval dh as

for the maximum error (MaxEr) and the average error (AvEr) where MaxEr =
max{|U(ih, jh)−Ui,j| ; P (i, j) ∈ Ω0

h} and AvEr =
∑m−1

i,j=1{ |U(ih, jh)−Ui,j|; P (i, j) ∈
Ω0

h}/Nh ( Nh : the total number of the mesh points in Ω0
h).

dh = 1/n MaxEr AvEr
n = 16 9.430569× 10−3 3.588982× 10−3

n = 32 5.492716× 10−3 1.065969× 10−3

n = 64 5.258107× 10−3 6.026563× 10−4

n = 128 2.969270× 10−3 3.058067× 10−4

Concluding remarks

We have presented the numerical algorithm of the direct method of lines coupled with
the fictitious domain. This method which use the regular mesh is very simple and
easy to perform the calculation, and yet the above maximum errors are same as one
in the standard framework of the finite difference method in nonrectangular domain
([Joh67]). Therefore this argument shows that the finite difference method under the
regular mesh is able to be applied to the case of general domains with the help of the
fictitious domain.
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