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42. An Artificial Boundary Condition for the
Numerical Computation of Scattering Waves

D. Koyama1

Introduction

We consider the controllability method, which is proposed by Bristeau-Glowinski-
Périaux [BGP98], for computing numerical solutions of the exterior problem for the
Helmholtz equation. In the controllability method, we need to introduce an artificial
boundary in order to reduce the computational domain to a bounded domain, and
need to solve, in the bounded computational domain, the wave equation and an ellip-
tic problem iteratively. We first introduce a new artificial boundary condition (ABC)
for the wave equation, which is suitable for the controllability method. Our ABC is
constructed by using the Dirichlet-to-Neumann (DtN) operator associated with the
Helmholtz equation. We next discuss uniqueness for semi-discrete solution of the con-
trollability method in the case when the artificial boundary is a circle. Then we need
spectral properties of the DtN operator, which are deduced from some properties of
the Hankel functions. We finally present numerical examples, which show that nu-
merical solutions obtained by using our ABC are more accurate than those obtained
by using another well-known ABC, and that by using our ABC, accurate numerical
solutions are obtained whether the artificial boundary is large or small. These numer-
ical results suggest that by using our ABC and by taking a small artificial boundary,
we can reduce the computational costs.
We consider the exterior problem for the Helmholtz equation:


−∆U − k2U = 0 in Ω,

U = G on γ,

lim
r−→+∞ r

1
2

(
∂U

∂r
− ikU

)
= 0 (outgoing radiation condition).

(1)

Here k is a positive constant and Ω is an unbounded domain of R2 with boundary
γ. We assume that O = R2 \ Ω is a bounded open set. Further G is a function
on γ and r = |x| for x ∈ R

2. When computing numerical solutions of (1) by using
the controllability method, we choose the artificial boundary as follows: Γa = {x ∈
R2 | |x| = a}, where a is a positive number such that O ⊂ {x ∈ R2 | |x| < a}. Then
the bounded computational domain becomes as follows: Ωa = {x ∈ Ω | |x| < a}. In
the controllability method, we solve, in the bounded domain Ωa, the wave equation
with an ABC. We propose a new ABC for the wave equation as follows:

∂u

∂n
+
∂u

∂t
= −Su− iku on Γa, (2)

where n is the unit normal vector on Γa being toward infinity and S is the Dirichlet-
to-Neumann (DtN) operator for the Helmholtz equation with the outgoing radiation
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condition. Bristeau et al. use the following ABC mainly:

∂u

∂n
+
∂u

∂t
= 0 on Γa, (3)

and do not mention our ABC (2).
Further we discuss the uniqueness for the solution of the semi-discrete problem of

the following problem: find u = {u0, u1} ∈ Eg such that


utt −∆u = 0 in Ωa × (0, T ),
u = g on γ × (0, T ),

∂u

∂n
+
∂u

∂t
= −Su− iku on Γa × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ωa,
u(x, T ) = u0(x), ut(x, T ) = u1(x) in Ωa,

(4)

where T = 2π/k, g(x, t) = G(x)e−ikt, Eg = Vg × L2(Ωa), and

Vg =
{
v ∈ H1(Ωa) | v = g(0) on γ

}
.

Bardos-Rauch [BR94] discuss uniqueness for the solution of the problem (4) in
the case when the ABC is replaced by the ABC (3). However, their analysis is not
sufficient to prove the uniqueness for the solution of (4), which is yet to be proved.

The DtN operator for the Helmholtz equation

The DtN operator S can be analytically represented as follows (see Grote-Keller
[GK95]):

SU(a, θ) =
∞∑

n=−∞
−kH

(1)′
n (ka)

H
(1)
n (ka)

Un(a)Yn(θ), (5)

where r, θ are the polar coordinates, H(1)
n are the cylindrical Hankel functions of the

first kind of order n, Yn are the spherical harmonics defined by Yn(θ) = einθ/
√
2π,

and Un(a) =
∫ 2π

0 U(a, θ)Yn(θ) dθ.

Uniqueness for the semi-discrete solution

We discretize the problem (4) by finite element method, and show that the ob-
tained semi-discrete problem has a unique solution under hypotheses described be-
low. For this purpose, we choose a finite dimensional subspace Wh of H1(Ωa),
and define Vh = {vh ∈ Wh | vh = 0 on γ}. Let φ1, φ2, . . . , φN be a base of
Vh, and φ1, φ2, . . . , φN , φN+1, . . . , φN ′ a base of Wh. Then we may assume that
φ1, φ2, . . . , φN ′ are real-valued functions. The semi-discrete problem of the problem
(4) can be written as follows: find {ξ0, η0} ∈ CN × CN such that


B
d2ξ

dt2
(t) + C

dξ

dt
(t) + (A+ S + ikC) ξ(t) = e−iktf in (0, T ),

ξ(0) = ξ0, ξt(0) = η0,
ξ(T ) = ξ0, ξt(T ) = η0,

(6)
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where B, C, A, and S are matrices defined as follows:

B = ((φl, φj))1≤j, l≤N , (u, v) =
∫

Ωa

uv dx,

C = (〈φl, φj〉)1≤j, l≤N , 〈u, v〉 =
∫

Γa

uv dγ,

A = (a(φl, φj))1≤j, l≤N , a(u, v) =
∫

Ωa

∇u · ∇v dx,

S = (s(φl, φj))1≤j, l≤N , s(u, v) =
∫

Γa

Suv dγ,

and f is a vector defined as follows:

f = (fj)1≤j≤N ,

fj =
N ′∑

l=N+1

[
k2(φl, φj)− a(φl, φj)− s(φl, φj)

]
Gl.

Here the non-homogeneous Dirichlet dataG is approximated by the following function:
Gh =

∑N ′

j=N+1Gjφj |γ , where Gj ∈ C (j = N + 1, . . . , N ′).
Now we define a square matrix A of order 2N as follows:

A =
[

O I
−B−1(A+ S + ikC) −B−1C

]
,

where I is the unit matrix of order N . To show that the problem (6) has a unique
solution, we use the following proposition:

Proposition 1 The problem (6) has a unique solution if and only if

ikl /∈ σ(A) for all l ∈ Z, (7)

where σ(A) is the set of all eigenvalues of the matrix A.

We show that the problem (6) has a unique solution under two hypotheses de-
scribed below.

Hypothesis 1 For a positive λ and uh ∈ Vh, if we have

a(uh, vh) = λ(uh, vh) for all vh ∈ Vh,

and if we have uh = 0 on Γa, then we have uh = 0 in Ωa.
Hypothesis 1 can be interpreted as follows. The discrete problems of the two eigenvalue
problems: 


−∆u = λu in Ωa,

u = 0 on γ,
∂u

∂n
= 0 on Γa
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and 


−∆u = λu in Ωa,
u = 0 on γ,
u = 0 on Γa

have no same eigenpair.
Hypothesis 2 For the wave number k, we take the radius a of the artificial bound-

ary such that

Im

{
H

(1)′

0 (ka)

H
(1)
0 (ka)

}
< 2.

To explain Hypothesis 2, we here state the following lemma:

Lemma 1 Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
is a decreasing function on (0, ∞), and further

Im

{
H

(1)′
0 (x)

H
(1)
0 (x)

}
−→ 1 (x −→ +∞),

Im

{
H

(1)′

0 (x)

H
(1)
0 (x)

}
−→ +∞ (x −→ +0).

By Lemma 1, there exists only one α > 0 such that

Im

{
H

(1)′
0 (α)

H
(1)
0 (α)

}
= 2.

If the radius a of the artificial boundary is taken to satisfy a > α/k, then Hypothesis
2 is satisfied. Here we note that α ≈ 0.088426.

Theorem 1 The problem (6) has a unique solution under Hypotheses 1 and 2.

To prove Theorem 1, we use the following two lemmas:

Lemma 2 For all x > 0 and for all ν ∈ R, we have

Re

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
< 0.

Lemma 3 For all x > 0 and for all ν, ν′ ∈ R satisfying |ν| > |ν′|, we have

0 < Im

{
H

(1)′
ν (x)

H
(1)
ν (x)

}
< Im

{
H

(1)′

ν′ (x)

H
(1)
ν′ (x)

}
.
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Proof of Theorem 1: Because of Proposition 1, our task is now to show that (7)
holds. The proof is by contradiction. Assume that ikl ∈ σ(A) (l ∈ Z). Then there is
ξ (�= o) ∈ C

N such that

A
[

ξ
η

]
= ikl

[
ξ
η

]
.

Then we have

−(kl)2Bξ + iklCξ + (A+ S + ikC)ξ = o. (8)

Now we write ξ = [ξ1, ξ2, . . . , ξN ]T and set uh =
∑N

j=1 ξjφj . Then (8) is written as
follows: for all vh ∈ Vh,

−(kl)2(uh, vh) + ikl〈uh, vh〉+ a(uh, vh) + s(uh, vh) + ik〈uh, vh〉 = 0. (9)

Here if we take vh = uh in (9), then we obtain

−(kl)2(uh, uh) + ikl〈uh, uh〉+ a(uh, uh) + s(uh, uh) + ik〈uh, uh〉 = 0.

The real part of this identity is:

a(uh, uh)− (kl)2(uh, uh)− k

a

∞∑
n=−∞

Re

{
H

(1)′
n (ka)

H
(1)
n (ka)

}∣∣∣∣
〈
uh,

einθ

√
2π

〉∣∣∣∣
2

= 0, (10)

and the imaginary part is:

k

a

∞∑
n=−∞

[
l + 1− Im

{
H

(1)′
n (ka)

H
(1)
n (ka)

}] ∣∣∣∣
〈
uh,

einθ

√
2π

〉∣∣∣∣
2

= 0. (11)

We here consider three different cases.
Case 1: When l ≤ −1. By Lemma 3,

l + 1− Im
{
H

(1)′
n (ka)

H
(1)
n (ka)

}
< 0 for all n ∈ Z,

and hence, by (11), 〈
uh,

einθ

√
2π

〉
= 0 for all n ∈ Z.

This implies

uh = 0 on Γa. (12)

From this identity and (9), we get

a(uh, vh) = (kl)2(uh, vh) for all vh ∈ Vh. (13)
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From (12), (13), and Hypothesis 1, we have uh = 0 on Ωa, i.e., ξ = o. This contradicts
the assumption that ξ �= o. Therefore we can see ikl /∈ σ(A).

Case 2: When l = 0. By (10), we obtain

a(uh, uh)− k

a

∞∑
n=−∞

Re

{
H

(1)′
n (ka)

H
(1)
n (ka)

} ∣∣∣∣
〈
uh,

einθ

√
2π

〉∣∣∣∣
2

= 0.

From this identity and Lemma 2, it follows that uh = 0 in Ωa. Therefore 0 /∈ σ(A).
Case 3: When l ≥ 1. By Lemma 3 and Hypothesis 2, we have

l + 1− Im
{
H

(1)′
n (ka)

H
(1)
n (ka)

}
> 2− Im

{
H

(1)′
0 (ka)

H
(1)
0 (ka)

}
> 0 for all n ∈ Z.

By the same argument as Case 1, we can conclude that ikl /∈ σ(A).

Numerical examples

Scattering by a disk

We compare the accuracy of numerical solutions obtained by using our ABC (2) and
the ABC (3) via numerical experiments. We consider a test problem, where the
obstacle O = {x ∈ R2 | |x| < 1}, the wave number k = 1, and the Dirichlet data
G is chosen as the exact solution U becomes as follows: U(r, θ) = H(1)

1 (r) cos θ. We
locate the artificial boundary Γa at r = 2. We use the conforming finite element
method using piecewise linear elements. The triangulation has 2176 vertices and 4096
triangles. The length h of each side of every triangle satisfies λ/129 < h < λ/54, where
λ is the wave length, i.e., λ = 2π/k. To solve the wave equation numerically, we use
explicit second order finite difference centered scheme with the step size ∆t = T/200,
where T = 2π/k. When we use our ABC, we have to truncate the infinite series of
(5) at a finite value N . We denote the truncated DtN operator by SN . In this test
problem, we choose N = 1, and then we note that u = U(r, θ)e−ikt satisfies

∂u

∂n
+
∂u

∂t
= −S1u− iku on Γa.

We show contour lines of the real part of the exact solution and the numerical solution
obtained by the ABC (3) in Figure 1, where solid lines display the numerical solution,
and dotted lines the exact solution. We can see that the numerical solution is very
different from the exact solution. We show the exact solution and the numerical
solution obtained by our ABC in Figure 2, where the numerical solution is exactly
coincident with the exact solution. From these figures we can see that numerical
solutions obtained by our ABC are more accurate than those obtained by the ABC
(3).

Scattering by a Π-shaped open resonator

We compute scattering of an incident plane wave exp[ik(x1 cosα + x2 sinα)] by an
obstacle, where α is an incident angle. The wave number k = 8π and then the wave
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Figure 1: Contour lines of the real part of the exact solution and of the real part of
the numerical solution obtained by using the ABC (3).

Figure 2: Contour lines of the real part of the exact solution and of the real part of
the numerical solution obtained by using our ABC (2).
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length λ = 0.25. The obstacle is a Π-shaped open resonator. The size of its interior
rectangle is 4λ× λ, and the thickness of the wall is λ/5. The incident angle α = 30◦.
First we choose the radius of the artificial boundary a = 3λ. Then the DtN operator
is truncated at N = 135, and the triangulation has 42648 vertices and 83808 triangles.
The length h of each side of every triangle satisfies λ/51 < h < λ/20. We numerically
solve the wave equation by the explicit second order finite difference centered scheme
with the step size ∆t = T/100. Next we choose the radius of the artificial boundary
a = 4λ. Then the DtN operator is truncated at N = 150, and the triangulation has
77808 vertices and 153888 triangles. The conditions of the mesh size h and the time
step size ∆t are the same as above. In Figure 3, we display the contour lines of the
real part of the numerical solutions in the cases when a = 3λ and when a = 4λ.
Figure 3 shows good coincidence of those numerical solutions, and suggests that if we
use our ABC, we can get accurate numerical solutions without enlarging radius of the
artificial boundary.

Figure 3: Contour lines of the real part of the numerical solutions in the cases when
a = 3λ and when a = 4λ.
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