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17. New Interface Conditions for Non-overlapping
Domain Decomposition Iterative Procedures

Ohin Kwon1 Dongwoo Sheen2

Introduction

A Seidel-type interface condition is considered for non-overlapping domain decompo-
sition iterative methods. With a suitable pseudo-energy defined on interfaces, the
convergence speed of the iterative scheme is shown to be as twice fast as that of the
Jacobi scheme. Our analysis is entirely independent of the governing model problems
of a specific type of partial differential equations, but depends only on the scheme of
updating interface data. By this, our analysis covers Seidel-type schemes for a general
class of problems, such as elliptic, Helmholtz, Maxwell, and elasticity problems, etc.
In order to avoid the sequential nature of Seidel schemes and to implement them on
parallel computers, red-black Gauss-Seidel schemes are also considered with equivalent
efficiency to Seidel schemes.

Concerning domain decomposition iterative methods, P.-L. Lions [Lio88, Lio90]
investigated the convergence properties by taking a suitable pseudo-energy with which
he was able to show iterative solutions converge. This idea has been applied to a
more difficult Helmholtz problem by Després [Des91, BD97]. An improved variant
of Lions’s method is proposed by Q. Deng and its convergence is analyzed in the
Sobolev H1 norm [Den97]. Exploiting the structure of mixed finite element, Douglas
et al. obtained a more precise convergence rate by a spectral radius estimation of
the iterative solution operator [DPRW93]. More efficient iterative schemes, such as
Seidel-type and under-relaxation type domain decomposition iterative methods for
elliptic, Helmholtz and electromagnetic problems have been considered in [CGJ98,
CDJP97, DM97, Fen97, Gha97], and Seidel-type approaches based on nonconforming
finite elements [DSSY99] were used in [HKS99, Kwo99, KS99] with estimations of
spectral radii obtained. In this paper we show that the Seidel-schemes are exactly
twice faster than the corresponding Jacobi-schemes.
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Domain decomposition iterative procedure

A model problem

Let Ω be a domain in RN , N = 2, 3, with the boundary Γ = ∂Ω. Let us first consider
the following model problem:

−∇ · (A∇u) + Bu = f in Ω, ν ·A∇u+ αu = g on Γ, (1)

where ν is the unit outward normal vector to ∂Ω. The coefficients A = A(x),B =
B(x) = BR + iBI , and α = α(x) = αR + iαI are assumed to satisfy

0 < A0|ξ|2 ≤ Ajk(x)ξk ξ̄j ≤ A1|ξ|2 < ∞,

|B(x)| < B1 < ∞, |α(x)| < B2 <∞.

Notice that (1) covers the case of Helmholtz equation and (1) may be regarded as
a general form of first-order absorbing boundary condition.

Non-overlapping domain decomposition iterative procedure

Let {Ωj : j = 1, · · · , J} be a non-overlapping decomposition of Ω such that

Ω̄ = ∪J
j=1Ω̄j , Ωj ∩ Ωk = ∅, j �= k,

and set

Γj = ∂Ω ∩ ∂Ωj , Γjk = Γkj = ∂Ωj ∩ ∂Ωk.

Denote by vj := v|Ωj the restriction of a function v to Ωj for all j, and set

Vj = H1(Ωj) ∀j; V = {v∣∣ v|Ωj ∈ Vj , ∀j};
Λ = {w ∣∣ w|Γjk

= TrΓjk
(wj) ∈ H−1/2(Γjk) ∀k ∀j},

where Hs(Ω),Hs(Ωj), s ∈ R, are the usual complex-valued Sobolev spaces and TrΓjk

is the trace operator to Γjk.
Then the domain decomposition iterative procedure for solving (1) is as follows.
1. Initialization Step. An initial approximation u0 ∈ V .
2. Iterative Step. For n = 1, 2, · · · , solve iteratively the subdomain problems

for un
j , j = 1, · · · , J :

−∇ · (A∇un
j ) + Bun

j = fj in Ωj , (2)
νj · A∇un

j + αun
j = gj on Γj , (3)

with the interface conditions
νj · A∇un

j + βun
j = −νk ·A∇un−1

k + βun−1
k on Γjk, ∀k, (4)

where νj is the unit outward normal vector to ∂Ωj , and β is a matching parameter
such that β|Γjk

= β|Γkj
∀k ∀j.
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The weak problem for (2) is then to find un ∈ V such that

aj(un
j , ϕ) +

∑
k

〈βun
j , ϕ〉Γjk

= Fj(ϕ) +
∑

k

〈−νk · A∇un−1
k + βun−1

k , ϕ〉Γkj
, ϕ ∈ Vj ,

(5)

where

aj(uj , ϕ) := (A∇uj ,∇ϕ)j +
(
Buj , ϕ

)
j
+ 〈αuj , ϕ〉Γj ,

Fj(ϕ) := (fj , ϕ) + 〈gj , ϕ〉Γj ,

with (·, ·)j and 〈·, ·〉Γjk
being the L2(Ωj) and L2(Γjk) inner products, respectively.

For each n, denote by λn ∈ Λ the oblique normal traces:

λn
jk := νj · A∇un

j , Γjk ∀k.

Then the interface condition (4) can be equivalently written in the form

λn
jk + βun

j = −λn−1
kj + βun−1

k , Γjk ∀k, (6)

and the weak formulation (5) takes the form

aj(un
j , ϕ) +

∑
k

〈βun
j , ϕ〉Γjk

= Fj(ϕ) +
∑

k

〈βun−1
k + βun−1

k , ϕ〉Γjk
, ϕ ∈ Vj . (7)

Each Iterative Step consists of the following two substeps:
Substep 2a. Solve the subdomain problems (7) for un ∈ V ;
Substep 2b. Update λn ∈ Λ by (6).

The updating procedure (6) may be regarded as a Jacobi-type scheme with which
subdomain problems (7) for all j can be easily parallelizable. Can we have a Seidel
type (Gauss-Seidel or red-black Gausss-Seidel type) scheme for the updating procedure
which guarantees faster convergence than the Jacobi-type scheme? The answer is
affirmatively given. It will be clear from Remark 1 that Gauss-Seidel schemes will
be as twice fast as the corresponding Jacobi ones, and from the next section that,
by exploiting the red-black procedure, Gauss-Seidel schemes will guarantee such fast
convergence when implemented in parallel.

Seidel-type Domain Decomposition Iterative Method

Gauss-Seidel iteration procedure

The Seidel-type domain decomposition iterative procedure is obtained by replacing
the interface condition (4) by

νj · A∇un
j + βun

j =
{ −νk ·A∇un−1

k + βun−1
k , j < k,

−νk ·A∇un
k + βun

k , j > k,
on Γjk, ∀k, (8)
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and hence (7) by

aj(un
j ,∇ϕ)j +

∑
k

〈βun
j , ϕ〉Γjk

(9)

= Fj(ϕ) +
{ ∑

k〈−λn−1
kj + βun−1

k , ϕ〉Γjk
, j < k,∑

k〈−λn
kj + βun

k , ϕ〉Γjk
, j > k.

Let ũj = u|Ωj and λ̃jk = −νj ·A∇ũj |Γjk
so that ũj and λ̃jk satisfy the local equations

aj(∇ũj ,∇ϕ)j −
∑

k

〈λ̃jk, ϕ〉Γjk
= Fj(ϕ), ϕ ∈ Vj ,

λ̃jk = −λ̃kj − β(ũj − ũk), Γjk ∀k.
We will show the convergence of (un

j , λ
n
jk) to (ũj, λ̃jk). Set

en
j = un

j − ũj , µn
jk = λn

jk − λ̃jk.

From (9) and (10), we have the error equations: for all j,

aj(∇en
j ,∇ϕ)−

∑
k

〈µn
jk, ϕ〉Γjk

= 0, ϕ ∈ Vj , (10)

µn
jk =

{ −µn−1
kj − β(en

j − en−1
k ), j < k,

−µn
kj − β(en

j − en
k), j > k,

on Γjk, ∀k. (11)

The choice v = en
j in (10) gives

aj(∇en
j ,∇en

j )−
∑

k

〈µn
jk, e

n
j 〉Γjk

= 0. (12)

We rewrite (11) as follows:

µn
jk = −µn−1

kj − β(en
j − en−1

k ), j < k,

µn
jk = −µn

kj − β(en
j − en

k ), j > k, (13)

= µn−1
jk + β(en

k − en−1
j )− β(en

j − en
k)

= µn−1
jk − βen

j + 2βen
k − βen−1

j .

This motivates us to define the pseudo-energy for the Seidel-type iterative procedure
by

Rn := R(en, µn) =
∑
j<k

∣∣µn
jk + βen

j

∣∣
0,Γjk

+
∑
j>k

∣∣µn
jk + β(en

j − 2en
k )

∣∣
0,Γjk

. (14)

We observe that by (13), for j > k,

µn
jk + β(en

j − 2en
k) = −µn

kj − βen
k ,

which implies that Rn given by (14) can be equivalently put in the simpler form:

Rn(e, µ) =
∑
j<k

∣∣µn
jk + βen

j

∣∣
0,Γjk

+
∑
j>k

∣∣µn
kj + βen

k

∣∣
0,Γjk

. (15)
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Theorem 1 For a given (u0, λ0) ∈ V ×Λ, if iterative solutions (un, λn) ∈ V ×Λ are
computed by using (9), the pseudo-energy given by (15) satisfies

Rn(e, µ) = Rn−1(e, µ)− 8Re
∑
j,k

〈µn−1
jk , βen−1

j 〉Γjk
.

Proof. Stating from (15), by suitable swapping of the indices j and k, we have

Rn = 2
∑
j<k

∣∣µn
jk + βen

j

∣∣
0,Γjk

= 2
∑
j<k

∣∣∣µn−1
kj − βen−1

k

∣∣∣
0,Γjk

by (13)

= 2
∑
j>k

∣∣∣µn−1
jk − βen−1

j

∣∣∣
0,Γjk

= 2
∑
j>k

∣∣∣−µn−1
kj + β(en−1

k − 2en−1
j )

∣∣∣
0,Γjk

by (13)

= 2
∑
j<k

∣∣∣µn−1
jk − β(en−1

j − 2en−1
k )

∣∣∣
0,Γjk

= 2
∑
j<k

∣∣∣µn−1
jk + βen−1

j − 2(en−1
j − βen−1

k )
∣∣∣
0,Γjk

= Rn−1 − 8Re
∑
j<k

〈
µn−1

jk + βen−1
j , β(en−1

j − en−1
k )

〉
Γjk

+8
∑
j<k

∣∣β(en−1
j − en−1

k )
∣∣
0,Γjk

= Rn−1 − 8Re
∑
j<k

〈
µn−1

jk + βen−1
k , β(en−1

j − en−1
k )

〉
Γjk

= Rn−1 − 8Re
∑
j,k

〈
µn−1

jk , βen−1
j

〉
Γjk

since

Re


∑

j<k

〈−βen−1
k , β(en−1

j − en−1
k )

〉
Γjk

+
∑
j<k

〈
µn−1

jk , βen−1
k

〉
Γjk




= Re
∑
j<k

〈
βen−1

k ,−β(en−1
j − en−1

k ) + µn−1
jk

〉
Γjk

= Re
∑
j>k

〈
βen−1

j , β(en−1
j − en−1

k ) + µn−1
kj

〉
Γjk

= −Re
∑
j>k

〈
βen−1

j , µn−1
jk

〉
Γjk

by (13)

= −Re
∑
j>k

〈
µn−1

jk , βen−1
j

〉
Γjk

.
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Remark 1 The reader should observe that the form of pseudo-energy defined in (14)
or (15) and both Theorem 1 and its proof are entirely independent of the sesquilinear
form a(·, ·), and hence Theorem 1 is independent of governing model problem. (Our
result depends only on the interface condition (8).) An implication of this observation
is that Theorem 1 is valid for a wide range of problems, such as Maxwell and elasticity
problems, obviously extending our model problem introduced in the previous section.

Theorem 2 The energy Rn can be expressed as

Rn(e, µ) = R0(e, µ)− 8β
n−1∑
k=1

J∑
j=1

Reaj(ek
j , βe

k
j )j .

Now, take the real part in (12) to obtain

Re
∑

k

〈µn
jk, ej〉Γjk

= Reaj(∇en
j ,∇en

j ).

and choose β = βR + iβI with positive real and nonnegative imaginary parts. Then,
under additional assumptions on BI and αI such that BI ≥ 0 and αI ≥ 0, which are
indeed physically valid, we have

Reaj(en
j , βe

n
j )j = βR

[
(A∇en

j ,∇en
j )j + (BRe

n
j , e

n
j )j + 〈αRe

n
j , e

n
j 〉Γ

]

+βI

[
(BIe

n
j , e

n
j )j + 〈αIe

n
j , e

n
j 〉Γj

]
> 0.

In this case, we can conclude from (2) that en
j tends to zero as n → ∞.

Remark 2 For the Jacobi case with the same form of energy as in (15), it is well-
known after Després [Des91] that the corresponding decay relations to Theorems 1 and
2 have the form

Rn(e, µ) = Rn−1(e, µ)− 4Re
∑
j,k

〈µn−1
jk , βen−1

j 〉Γjk
,

and

Rn(e, µ) = R0(e, µ)− 4β
n−1∑
k=1

J∑
j=1

Reaj(ek
j , βe

k
j )j .

Therefore we conclude that the Seidel scheme is exactly as twice fast as the Jacobi
scheme.

Red-black Gauss-Seidel procedure

Jacobi-type iterative algorithms are easily parallelizable, but Seidel-type are not easily
parallelizable. In order to parallelize the introduced Seidel scheme, we propose a red-
black Seidel scheme with efficiency equivalent to the Seidel-type one. For this, divide
the subdomain indices into the two parts JR and JB, so that

Ω̄ =
[∪j∈JRΩ̄j

] ⋃[∪j∈JB Ω̄j

]
, Ωj ∩j �=k Ωk = ∅,
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and every element Ωj , j ∈ JR, is not adjacent to any element Ωk, k ∈ JB.
With an initialization, the red-black iteration scheme is then the altenations of the

following steps

1. ∀j ∈ JR, solve (7) for un ∈ V with

λn
jk = −λn−1

kj + β
(
un

j (ξjk)− un−1
k (ξjk)

)

2. ∀j ∈ JB, solve (7) for un ∈ V with

λn
jk = −λn

kj + β
(
un

j (ξjk)− un
k (ξjk)

)
.

The pseudo-energy for the red-black Seidel-type iterative procedure takes the sim-
ilar form as (14) or (15) for errors

Rn := R(en, µn) =
∑

j∈JR

∣∣µn
jk + βen

j

∣∣
0,Γjk

+
∑

j∈JB

∣∣µn
jk + β(en

j − 2βen
k )

∣∣
0,Γjk

=
∑

j∈JR

∣∣µn
jk + βen

j

∣∣
0,Γjk

+
∑

k∈JB

∣∣µn
kj + βen

k

∣∣
0,Γjk

The same arguments as the Gauss-Seidel case lead the analogous results as Theo-
rems 1 and 2, and Remark 1.
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