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43. Domain decomposition methods for welding
problems

C.-H. Lai1, C.S. Ierotheou2, C.J. Palansuriya3, and K.A. Pericleous4

Introduction

The welding of metals and alloys is a widely used industrial process. Many types of
analysis have been carried out on such problems [MUB67]. The numerical thermal
analysis of welding is required to take into account such features as temperature de-
pendent material properties, phase change, non-uniform distribution of energy from
heat source etc. In this paper, a 2-D non-linear electric arc-welding problem is con-
sidered. It is assumed that the moving arc generates an unknown quantity of energy
which makes the problem an inverse problem with an unknown source. Robust algo-
rithms to solve such problems efficiently, and in certain circumstances in real-time,
are of great technological and industrial interest.

There are other types of inverse problems which involve inverse determination of
heat conductivity or material properties [CDJ63][TE98], inverse problems in material
cutting [ILPP98], and retrieval of parameters containing discontinuities [IK90]. As in
the metal cutting problem, the temperature of a very hot surface is required and it
relies on the use of thermocouples. Here, the solution scheme requires temperature
measurements lied in the neighbourhood of the weld line in order to retrieve the
unknown heat source. The size of this neighbourhood is not considered in this paper,
but rather a domain decomposition concept is presented and an examination of the
accuracy of the retrieved source are presented.

This paper is organised as follows. The inverse problem is formulated and a method
for the source retrieval is presented in the second section. The source retrieval method
is based on an extension of the 1-D source retrieval method as proposed in [ILP+99]
for metal cutting problems. A parallel algorithm based on the concept of coupling
heterogeneous numerical models in different subdomains is given in the third section.
Accuracy of the numerical simulation is compared with results that are generated by
a known heat source [ASW85][DM93] and with temperature measurements that are
obtained by using experimental thermocouples as shown in [ASW85].

The inverse welding problem

Three assumptions are needed in this problem. These assumptions are (1) the ma-
terial properties are homogeneous across the domain of interest, (2) application of a
welding tool along a weld path is equivalent to the application of a heat source along
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the path and (3) the rate of change of temperature on either side of the weld is di-
rectly proportional to the strength of the heat source [ILP+99]. The welding problem
considered in this paper is the welding of two thin metal plates using the technology
of arc-welding. For simplicity, the electric arc is moving along the weld path, y = yw
with a speed of Uw. A straight weld line is depicted in 1 as a dotted line. Without
loss of generality, the welding line can be a straight line or a general path. If the
welding path was a straight line and that the welding tool travelled along y = yw = 0,
then due to the symmetry of the problem only the upper half of the domain needs to
be considered. This simplifies the model description and programming effort. Since
the thickness of the plate, d, is small compared to the other dimensions, only 2-D
heat conduction needs to be considered. Hence, using the first two assumptions, the
mathematical model which governs the heat conduction of the plate can be written as
the following 2-D nonlinear, unsteady, parabolic, heat conduction equation,

ce
∂T

∂t
=

∂

∂x
(k(T )

∂T

∂x
) +

∂

∂y
(k(T )

∂T

∂y
) − 2heffA(T − Ta) + δ(y − yw)Qw (1)

subject to the initial condition T (x, y, 0) = Ti(x, y) and boundary conditions defined
by the functionals B0[T (0, y, t), 0, y, t] = 0, B1[T (l, y, t), l, y, t] = 0,
C0[T (x,−h, t), x,−h, t] = 0 and C1[T (x, h, t), x, h, t] = 0. Here T (x, y, t) is the tem-
perature distribution, k(T ) is the conductivity of the metal plates, t is the time, heff

is the effective heat transfer, A is the surface area, Ta is the ambient temperature,
ce = ρc − L∂fl

∂T is the effective specific heat, ρ is the density, c is the specific heat
capacity, L is the latent heat, ∂fl

∂T is the variation of liquid fraction, δ(y − yw) is the
Dirac Delta function, Qw = Qw(x, t) is the heat transfer rate generated from the mov-
ing arc. Ti, B0, B1, C0 and C1 are known functions. The source term, Qw, in (1) is
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Figure 1: A simple welded work-piece.

an unknown, and the inverse problem here is to retrieve this unknown heat source.
In order to deal with this additional unknown, temperature measurements near

the weld line is required (see Figure 2). Thermocouples are attached at y = ys, such
that yw < ys < h. Let the temperature measured by means of the thermocouples
be T (x, ys, t) = T ∗(x, t). The measured temperatures are used as interior boundary
conditions, as described in next Section, along subdomain interfaces and to retrieve
the temperature distribution at the welding points. The heat source retrieval is based
on the third assumption, i.e. in the neighbourhood of the weld,

∂T

∂t
= α(x, t)δ(y − yw)Qw(x, t) (2)
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Figure 2: Thermocouples are located near the weld line.

where α > 1 is a time dependent function that also depends on x. The condition
α > 1 is to ensure an increase in temperature at the weld due to an increase in Qw.
Integrating (2) across the weld at a given value of x gives

∫ y+
w

y−
w

∂T

∂t
dy = α(x, t)Qw(x, t) (3)

where y+w to y−w is the width of the weld along y-axis at a given instance of time under
immediate influence of the electric arc. Integrating (1) across the weld and equating
the result to (3) lead to

1
ce
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Let β(x, t) = ceα(x, t)−1 and define the predicted heat source as Qp = β(x, t)Qw(x, t)
which may be computed as

Qp(x, t) = k(T )
∂T
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|y+
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− k(T )
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|y−

w
+
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− 2heffA(T − Ta)(y+w − y−w ) (5)

Then Qp can be substituted into (1) to replace Qw and the non-linear heat conduction
problem may then be solved as a direct problem with Tp(x, t) being the corresponding
temperature distribution. Hence it is possible to evaluate β(x, t) from the knowledge
of Tp(x, t) and T (x, yw, t) as

β(x, t) =
Tp(x, t)
T (x, yw, t)

=
Qp(x, t)
Qw(x, t)

(6)

where T (x, yw, t) is the temperature at the weld line corresponds to Qw(x, t). Hence
Qw(x, t) may then be determined once β(x, t) is known. Note that it is not necessary
to compute ceα(x, t) − 1.
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The domain decomposition method

Since the only unkown involved in the p.d.e. is the heat source, it makes sense to
eliminate the unknown source term of the p.d.e. [ILPP98] for the governing equations
on both sides of the welding path. The monitored thermocouple data provides an
ideal interior partitioning. For the present study, yw is chosen as zero. Hence the
problem become symmetric and only half of the entire problem needs to be considered.
The original domain is partitioned to two well defined, homogeneous, continuous and
properly connected subdomains denoted by D1 = {(x, y) : 0 < x < l and 0 < y < ys}
and D2 = {(x, y) : 0 < x < l and ys < y < h} and they are depicted as in Figure 3.
The two subproblems can be written as follows:

y=h

ys

ys

yw

D1

D2

x=l0

Figure 3: Visualization of subdomains.

SP1: ce
∂T1
∂t = ∂

∂x (k(T1)∂T1
∂x ) + ∂

∂y (k(T1)∂T1
∂y )− 2heffA(T1 − Ta) inD1

subject to T1(x, y, 0) = Ti(x, y),
B0[T1(0, y, t)0, y, t] = 0, B1[T1(l, y, t), l, y, t] = 0,
T1(x, ys, t) = T ∗(x, t), C1[T1(x, h, t), x, h, t] = 0.

SP2: ce ∂T2
∂t = ∂

∂x (k(T2)∂T2
∂x ) + ∂

∂y (k(T2)∂T2
∂y )− 2heffA(T2 − Ta) inD2

subject to T2(x, y, 0) = Ti(x, y),
B0[T2(0, y, t), 0, y, t] = 0, B1[T1(l, y, t), l, y, t] = 0,

T2(x, ys, t) = T ∗(x, t), ∂T2(x,0,t)
∂y = 0.

and are defined on two different subdomains of different sizes which are subjected
to different set of boundary conditions. They are non-linear in nature and are com-
pletely decoupled from each other. Therefore they may be solved simultaneously or
concurrently by using the Newton’s method. Let F (T ) be defined as

F (T ) = ce
∂T
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(k(T )
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which leads to the corresponding Jacobian J(T ) as follows,
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The linearisation leads to an iterative scheme, to be performed in each of the subdo-
main, T new = T old − J−1(T old)F (T old) where superscript new denotes new iterates
and old denotes old iterates. F (T ) and J(T ) are obtained by a second order fi-
nite volume method which leads to a set of large sparse linear system and it can be
solved by means of a standard domain decomposition software package such as PETSc
[BGMS97]. More processors may be used to achieve a secondary level of parallelism
for the Newton’s iterative scheme, which are separately controlled by different hosts
assigned to each of the subproblems. Therefore the inverse welding problem has two
levels of parallelism. One level being the differential equation level and the other being
the discretised level [ILPP98]. The solution of SP2 retrieves the temperature at the
weld line. The temperature at and around the weld line is, in turn, used to retrieve
the unknown source term as described above.

Numerical examples

In this Section, a validation problem for comparison purposes is defined. The true
source as given in [ASW85, DM93] is depicted in Figure 9 and the physical data for
(1), as given below, are used to derive validation data for comparison. Geometry of
the two plates is chosen as l = 0.5m, 2h = 0.33m, d = 0.008m, Uw = 0.00333m/s.
The model problem gives the temperature field of the steel plate. The physical data
used in the numerical example are Qw = 1350 W , Ta = 293 K, heff = 60 W/m2K,
ρ = 7850 kg/m3, c = 607 J/kgK , L = 272 kJ/kg, Ts = 1843K and Tl = 1863K.
Here Ts is the solidus temperature and Tl is the liquidus temperature. For the present
purpose, the liquid fraction fl is evaluated as,

fl =




0 if T < Ts

(T−Ts)
(Tl−Ts) if Ts ≤ T ≤ Tl

1 if T > Tl

The nonlinear conductivity of steel is given by,

k(T ) =

{ −27.2
762 T + 64.9448 if T ≤ 1035K
8

881T + 18.6016 if T > 1035K

The initial condition is Ti(x, y) = Ta and the boundary conditions are B0 = B1 =
k ∂T

∂x + heff (T − Ta) = 0 and C1 = k ∂T
∂y + heff (T − Ta) = 0. The source is

applied only at cells which are at a given instant of time under immediate influence
of the electric arc. A mesh size of 50 × 50 is used to obtain the following numerical
results. Figure 4 shows the 2-D temperature distribution at t = 75s. At this time
the arc passes the midsection of the plate (x = 0.25m,y = yw = 0m). Therefore,
the temperature is at its highest value at this section. Thermocouple temperature
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measurements are available for comparison from MPA, Stuttgart [ASW85]. Figures 5
to 7 show the comparison of numerical results with the thermocouple measurements.
Figure 5 compares the numerical results with measured results when the arc passes
the midsection of the plate. Figure 6 shows the comparison at a further 7.5s later,
as expected cooling has begun (since the arc has moved away from the midsection).
Figure 7 shows the temperature history at the midsection, it illustrates the rapid
heating to the melting point when the arc approaches the midsection and the gradual
cooling thereafter when the arc has passed the section. These results show that the
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Figure 4: Temperature distribution at t = 75s.
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Figure 5: Temperature distribution at x=0.25m and t = 75s (Vertical axis - T in Kelvin and
horizontal axis - y coordinates).

derived data matches with the experimental data. Thermocouples are now placed at
ys = 0.0033m as suggested in[ASW85]. The inverse problem given by (1) is solved
by using the mesh configuration of 200 × 200. Figure 8 shows the accuracy of the
retrieved temperature field at x = 0.25m and t = 75s. At this time step, the electric
arc passes over the point x = 0.25m and y = yw = 0m (midsection), and as expected it
generates high temperature values (and gradients) around this point. Figure 9 shows
the accuracy of the retrieved source term at x = 0.25m and y = yw = 0m using the
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Figure 6: Temperature distribution at x=0.25m and t = 82.5s (Vertical axis - T in Kelvin
and horizontal axis - y coordinates).
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Figure 7: Temperature history at x=0.25m and y=0m (Vertical axis - T in Kelvin and
horizontal axis - time in seconds).

proposed method as shown above. The source retrieval is only activated when the
electric arc actually passes over this point.

Conclusion

A domain decomposition method is proposed for an inverse problem in arc-welding.
The method is based on the partitioning of problems at the continuous problem level
where the unknown heat source can be eliminated from the mathematical model and
where the subproblems may be completely decoupled. The retrieved heat source
compares well with the results generated by using a known heat source of a typical
arc-welding and by using experiments.
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Figure 8: Accuracy of the temperature distribution at x=0.25m and t=75s (Vertical
axis - T in Kelvin and horizontal axis - time in seconds).
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Figure 9: Accuracy of the source retrieval (Vertical axis - source strength and horizontal
axis - y coordinates).
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