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18. On the Interface and Two-Level Preconditioners
in Newton-Schwarz Method

Daniel Lee!

Introduction

This paper is concerned with parallel computation in solving the convection-diffusion
equation and the incompressible Navier-Stokes equation via Newton-Schwarz method,
a nonlinear domain decomposition (DD) method. Various preconditioners are inves-
tigated here. An interface problem is tackled as a preconditioner for nonlinear block
Jacobi DD approach, with an optional fine level interface problem solved as further
preconditioner. Also a (global) coarse level preconditioner is considered. Examined
also is the relaxation type preconditioner. Such preconditioned nonlinear DD methods
exhibit impressive improvement over the basic non-preconditioned parallel Newton-
Jacobi method.

A general review on Newton-Schwarz method is [GEMT98]. Our setup has the
advantages of both the overlapped and the nonoverlap DD approach. The subdomain
variables form a (nonoverlap) partition of the whole global system of equations. Solv-
ing the interface problem is regarded as a preconditioner to all subproblems. We note
that the interface variables were excluded from subproblems in [LC98].

We describe in later sections the problem and solution procedure, the test cases
and results, and a brief conclusion.

Solution Procedure and Newton-Schwarz

Following previous work [LC98], boundary-fitted cell-center type finite volumes with
collocated grids were assumed for geometry discretization. Test problems ([Wan89])
are considered in integral form, involving properly defined numerical fluxes. All the
definite integrals are further discretized ([Lee99], [JYL99]) as weighted averages in-
volving the primitive (and the flux) variables at neighboring cells. To double-check
our numerical observation, we solved both the coupled system, consisting of the con-
tinuity and the momentum equations, and also in a decoupled way (PISO, [Iss85]) for
the system consisting of the momentum and the Pressure-Poisson equation. We tested
also the Burgers equation. The discrete global nonlinear system is decomposed into
partition of (nonoverlap) blocks of equations. Basic Parallel Newton-Jacobi (PNJ)
method can be then carried out accordingly.

Interface Preconditioner

We regard an interface preconditioner as solving the interface problem on the interface
B, before each nonlinear block Jacobi iteration. We prepose the following for further
discussion.
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Procedure IPPNJ ( Interface-Preconditioned Parallel Newton-
Jacobi ) :

Do While {‘X”e“’ — X"ld| > global-tolemnce}
Step 1 : Solve the discrete algebraic nonlinear system Fi(x) =0, x € §;
for all subdomain problems in parallel.
Step 2a : Set up the interface problem, with infomation communicated
from each subdomain.
Step 2b : Solve the nonlinear system for the interface problem.
Fp(x) =0, z € B.
Step 2c¢ : Update via communication the interior boundary conditions
for all subproblems with the interface variables just solved.
End Do

The interface problem is relatively small in size, easier to solve by an approximate
matrix-free Newton-GMRes method [BS90], and the solution is supposed to offer more
accurate interior boundary condition at the interface variables in an efficient way. This
is the spirit of IPPNJ. That is, acceleration on (only) the interface variables yields
a preconditioner for subsequent DD iterations. In implementation the interface pre-
conditioner is squeezed into after and before two consecutive block Jacobi iterations.
We mention that, in our setup, an interface-preconditioned Newton-Schwarz method
corresponds actually to a mixing of nonlinear analogue of Schwarz type and Schur-
complement type linear DD methods.

Preconditioned Block Newton-Schwarz Procedure

For general application, we recast the discrete system as ®(u) = rhs, where ® =
(®1, - -, @nd)T, u= (ug, - - und)T, with u; € R% = X, . Here s denotes a
subdomain (and a subproblem), ds denotes the dimension of subproblem (on subdo-
mains). We assume equal size of the subproblems for simplicity. The space X is
therefore where > a solution to the discrete subproblem resides. Consider the subprob-
lems :}Z(@) =rhs; and J(®;,u;) = ‘gi:. We assume regularity of such portion of the
global Jacobian. We describe a more general version of previous procedure in details
with these notation, based on partition of nonoverlap subdomains and some certain
order of the equations and variables.
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Procedure PPNJ ( Preconditioned Parallel Newton-Jacobi ) :

Do while (global convergence achieved or mazximum DD iteration exceeded)

1. Doi=1, --- ng (in parallel)
a. set u; by w and canonical projection
b. set 7‘71;
c. obtain an approrimated solution to 5;(171) = 7‘71;
d. evaluate for local convergence the residual r; = 7"7;; — :}Z({Zi)
e. evaluate for local convergence the difference dif f; = ||u; — u;... ||
End Do

2. Update global u by communicating the u; among relevant processors
3. Check global convergence by evaluating max; dif f; or ||®(u)|| on X'
4. 1If global convergence is satisfied, then break. Otherwise
a. Do an optional accelerator or preconditioner, such as interface
preconditioner or global coarse level preconditioner.
b. Update interface variables by communication, and approximation
schemes in case of a two level preconditioner.
5. Update the DD iteration counter.
End Do

Other Preconditioners

The solution procedure in solving the interface problem and all subproblems are iden-
tical by default. However, the interface problem can be solved optionally with a
fine-level interface preconditioner. This is affordable if the two level setup for the in-
terface problem remains relatively cheaper than the other subproblem both in storage
and computation. It is therefore a natural iterative refinement procedure based on
the consideration of load balance. A global coarse level preconditioner is also a good
choice, hopefully produces global information update as motivated by the linear DD
theory. Relaxation type strategy, in simple or hybrid form, can be used to accelerate
the convergence on the interface variables, as to provide an interface preconditioner
to the global problem. Furthermore, one can even over-relax the setup of the interface
problems resulting in an accelerated interface preconditioner [LY00].

Numerical Results and Discussions

All cases were tested on a PC cluster at NCHC. The global region consists of nine
subdomains in cases 1-5, and eight in case 6. Reynolds number is 1 in case 1, and 10
in cases 2-6. More about test is given in Table 1. The cpu time spent is shown in
Table 2. Only partial results in accuracy and convergence are shown ( Figures 1-12
), due to limitation of space. Four-subdomain cases are also tested, showing behavior
similar to what we described below.

Case 1 : Four DD methods are tested : Parallel Newton-Jacobi (PNJ), Interface-
Preconditioned Parallel Newton-Jacobi (IPPNJ), Coarse-level-
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Preconditioned Parallel Newton-Jacobi (CPPNJ), and Fine-level Interface-
Preconditioned Parallel Newton-Jacobi (FIPPNJ). Convergence up to nine digits is
enforced. The maximum DD-iterations is set to 100 to examine the stability. Although
in practice this may be much smaller.

Shown in Figures 1-2 are the accuracy and convergence in relative sense. All yield
very stable discrete dynamics. CPPNJ the fastest while PNJ the slowest. IPPNJ
and FIPPNJ converges at about the same rate. About accuracy, CPPNJ is the worst
and IPPNJ achieves the same accuracy both in absolute and relative sense, and takes
about half iterations as PNJ. This is similar to what bewteen classical Gauss-Seidel
and Jacobi iterations. We point out that the precision achieved with the two-level
preconditioners depend certainly on local interpolation or approximation, and are
confined therefore by the spatial grid resolution. It is witnessed that FIPPNJ saturated
at some earlier stage, and was forced therefore to iterate 100 iterations. This hurt in
the cpu-time contest (Table 2). Although, the convergence history does justify the
stableness in computation. The FIPPNJ result seems not as appealing as that of
IPPNJ. Therefore FIPPNJ is excluded in other test cases below.

Case 2 : PNJ is validated and applied to both the decoupled and the coupled
approach, i.e., with or without PISO. Then we will test later in case 4 our proposed
preconditioners within these two different approaches. Our algorithms and implemen-
tation is justified ( Figure 3 and 4 ). The accuracy when without PISO is only slightly
inferior to that with PISO. The time spent in computation of third order derivatives
in Pressure-Poisson equation for the PISO formulation seems a disadvantage.

Case 3 : IPPNJ is applied with or without PISO. The findings, Figures 5 and 6,
are similar to case 2.

Case 4 : The coupled system without PISO is solved with PNJ, IPPNJ and CPPNJ
methods. CPPNJ is the most accurate and IPPNJ also outperforms PNJ (Figure 7).
The convergence in the relatively severe maximum norm ( Figure 8 ), although not as
smooth as with the normalized two-norm (not shown), does indicate the relative spirits
in these methods. Very heavy communications are seen on the coarse preconditioner,
in the pre- and post- data processing in solving the global coarse problem. Therefore
we exempted CPPNJ from subsequent cases.

Case 5 : Here we solve with PISO and compare PNJ and IPPNJ. The latter
converges faster and is more accurate ( Figures 9-10 ).

Case 6 : Relaxation type preconditioners are examined with various relaxation
parameters. The kind of monotonicity of the effectiveness in accuracy ( Figure 12
) and convergence ( Figure 11 ) is obviously seen. More thoughts along this line,
including combination of different strategy and even working on over-relaxed interface
problem, is investigated in [LY00].

Conclusion

Several preconditioners are designed for the interface problem in a Newton-Schwarz ap-
proach. With these the basic parallel block Jacobi precodure either converges faster or
is more accurate. We found that IPPNJ converges faster while achieving same or bet-
ter accuracy and costs less computation time, and that CPPNJ and FIPPNJ achieve
moderate precision and converge faster in terms of the number of DD iterations, but
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both with apparently heavier communication overhead. The choice certainly depends
on, among others, the spatial resolution and the required precision in computed re-
sults. We believe future technology improvement in system architecture will resolve
the communication inefficiency to a large extent.
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Table 1: Parameters of test runs with supremum norm; range of x, y and z in cases 1

and 6 is (0.0, 1.0); range of x and y in cases 2-5 is (1.0, 2.0).

| case | eq. | DD.it | bt [ ht_CFL | nx, ny, nz | PISO | method ||
1 2D Burgers 100 le-3 | 9.00e-06 60, 60 0 various
2 2D NS 20 le-3 | 5.62e-06 | 240, 240 0,1 PNJ
3 2D NS 20 le-3 | 5.62e-06 | 240, 240 0,1 | IPPNJ
4 2D NS 20 le-3 | 5.62e-06 | 240, 240 0 various
5 2D NS 20 le-3 | 5.62e-06 | 240, 240 1 various
6 3D Burgers 50 le-2 | 4.16e-03 | 10, 10, 10 PNJ
Table 2: Cpu time in cases 1-6.
case iter total total other total
sub. solver | sub. solver | overhead | cpu time
1 PNJ 81 4.05e+02 4.52e+02 | 9.00e+00 | 8.66e+02
IPPNJ 38 2.43e+02 2.07e+02 | 3.00e+00 | 4.53e+02
CPPNJ 11 1.01e+02 6.96e+01 | 2.40e+00 | 1.81e+02
FIPPNJ 100 | 1.88e+03 4.34e+02 | 6.00e+00 | 2.32e+03
2 PISO 0 20 2.90e+-03 3.28¢+03 | 8.00e+01 | 6.26e+03
PISO 1 20 3.42e+4-03 1.34e4+04 | 8.00e+01 | 1.69e+04
3 PISO 0 20 2.50e+-03 2.78e+03 | 8.00e+01 | 5.36e+03
PISO 1 20 4.56e+03 2.38¢+04 | 1.50e+02 | 2.84e+04
4 PNJ 20 2.86e+-03 3.22e+03 | 9.00e+01 | 6.15e+03
IPPNJ 20 2.44e+03 2.74e+03 | 9.00e+01 | 5.25e+03
CPPNJ 20 1.23e+4-04 3.48e+03 | 1.20e+02 | 1.59e+04
5 PNJ 20 3.34e+03 1.34e4+04 | 1.10e402 | 1.69e+04
IPPNJ 20 1.52e+4-04 1.44e4+04 | 1.00e402 | 2.97e+404
6 | without SOR || 10 6.07e+00 2.28e+01 | 8.73e+00 | 3.76e+01
over with 1.1 9 4.86e+00 2.00e+01 | 8.24e+00 | 3.31e+01
over with 1.2 10 5.52e+00 2.25e4+01 | 8.48e+00 | 3.65e+01
over with 1.3 || 12 5.32e4-00 2.68e4+01 | 9.19e+00 | 4.12e+01
over with 1.4 || 19 9.39e+-00 4.31e+01 | 1.21e+01 | 6.46e+401
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Figure 1: Relative accuracy in solving
Burgers’ eq. in case 1.
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Figure 2: Relative convergence in solving
Burgers’ eq. in case 1.
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Error in P without Preconditioner with or without PISO
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Figure 3: Accuracy in p with or without
PISO in case 2.
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PISO in case 2.
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Error in P with interface Preconditioner with or without PISO
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Figure 5: Accuracy in p with or without
PISO in case 3.
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Figure 6: Accuracy in v with or without
PISO in case 3.
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Figure 7: Accuracy in u with or without
preconditioner in case 4.
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Figure 8: Convergence in u with or with-
out preconditioner in case 4.
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Figure 9: Accuracy in u with or without
preconditioner in case 5.
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out preconditioner in case 5.
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Convergence in W with or without Relaxation
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Figure 11: Convergence in w in solving 3D

NS eq. with or without relaxation in case

6.
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Appendix

Analytic descriptions of the equations and solutions for our test are given here for easy
reference. Dirichlet type boundary data are adopted for the test runs in this paper.
We refer to [Wan89)] for more explanation on the equations.

(1) 2D Burgers’ equation:

1
g + u(ug +uy) — ﬁ(um +uyy) = 0, (1)

and one solution is :
1

Re(2z+2y—2t) °
4

1+e

(2) 2D Navier-Stokes equation:
Continuity equation:

Upy +vy = 0, (3)
X-momentum equation:
1
Re
Y-momentum equation:
1
v+ uvg vy = =Py + o= (Ver + V), (5)
Re
and one solution is :
u = —cos(x)* sin(y) * e e (6)
v = sin(x)xcos(y) x e}_it, (7)
1 —at
p = 10.0—- Z(cos(?x) + cos(2y)) * eR_t). (8)
(3) 3D Burgers’ equation:
1
U + (g + uy +uz) — ﬁ(um +Uuyy +uz) = 0, (9)
and one solution is :
1
u = (10)

Re(2e+2y+2z—3t) *
4

1+e






