
12th International Conference on Domain Decomposition Methods
Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c©2001 DDM.org

44. FETI-DP: An Efficient, Scalable and Unified
Dual-Primal FETI Method

M. Lesoinne1, K. Pierson2

Introduction

The FETI algorithms are numerically scalable iterative domain decomposition meth-
ods. These methods are well documented for solving equations arising from the Finite
Element discretization of second or fourth order elasticity problems. The one level
FETI method equipped with the Dirichlet preconditioner was shown to be numeri-
cally scalable for second order elasticity problems while the two level FETI method
was designed to be numerically scalable for fourth order elasticity problems (see
[FR94, Far91b, Far91a, FR91, FR92, FM98, Rou95]).

The second level coarse grid is an enriched version of the original one level FETI
method with coarse grid. The coarse problem is enriched by enforcing transverse
displacements to be continuous at the corner points. This coarse problem grows lin-
early with the number of subdomains. Current implementations use a direct solution
method to solve this coarse problem. However, the current implementation gives rise
to a full matrix system. This full matrix can lead to increased storage requirements
especially if working within a distributed memory environment. Also, the factorization
and subsequent forward/backward substitutions of the second level coarse problem be-
comes the dominant factor in solving the global problem as the number of subdomains
becomes large (Ns > 1000).

We introduce an alternative formulation of the two level coarse problem that leads
to a sparse system better suited for a direct method. Then we show extensions to
the alternate formulation that allow optional admissible constraints to be added to
improve convergence. Lastly, we report on the numerical performance, parallel effi-
ciency, memory requirements, and overall CPU time as compared to the classical two
level FETI on some large scale fourth order elasticity problems.

The Dual-Primal FETI Method

Let Ω be partitioned into a set of Ns, non-overlapping subdomains (or substructures)
Ωs. Points where 3 or more subdomains intersect, are labeled as corner points which
will remain primal variables. The mechanical interpretation of this particular method
of mesh splitting can be viewed as making incisions into the mesh but leaving the
corner points attached. This is analogous to the ”tearing” stage of FETI. The ”in-
terconnecting” stage occurs only on the subdomain interfaces which now excludes the
corner points. Typically, in fourth order elasticity problems, the corner points have
6 degrees of freedom (3 translations and 3 rotations). This method of mesh splitting
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Figure 1: Dual-Primal Mesh Partitions

and corner point identification is illustrated in Figure 1: By splitting, us into two
sub-vectors such that:

u =
[

ur

uc

]
=




u1
r
...

uNs
r

uc


 (1)

where us
r is the remaining subdomain solution vector and uc is a global/primal solution

vector over all defined corner degrees of freedom. The solution at the corner points
is continuous by definition when the solution vector is constructed in this manner.
Using this notation, we can split the subdomain stiffness matrix into:

Ks =
[

Ks
rr Ks

rc

KsT

rc Ks
cc

]
(2)

Then the original FETI equilibrium equations can be modified using the following
matrix partitioning where the subscripts c and r denote the corner and the remainder
degrees of freedom.
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Where the corner stiffness matrix, Kcc =
Ns∑
s=1

BsT

c Ks
ccB

s
c is a global stiffness quantity,

Bs
c maps the local corner equation numbering to global corner equation numbering,

fs
r is the external force applied on the r degrees of freedom, BsT

r is a boolean matrix
that extracts the interface of a subdomain, and λ are the Lagrange multipliers. Let
Krr denote the block diagonal subdomain stiffness matrix restricted to the remaining,
r, points, Krc the block column vector of subdomain coupling stiffness matrices, fr

the block column vector of subdomain force vectors, Kcc the global corner stiffness
matrix and using the ”rc” notation, we can rewrite the equilibrium equations in the
more compact form: [

Krr Krc

KT
rc Kcc

] [
ur

uc

]
=

[
fr − BT

r λ
fc

]
(5)

Now we can invert the first equation for ur noting that Krr is a symmetric positive
definite matrix due to the guarantee of enough corner points that remove all sin-
gularities. This is in contrast to all the previous FETI methods where the correct
computation of the the null spaces was required to be accurately computed, leading
to a natural coarse problem. This null space computation was seen as a liability when
working with nonlinear structures where the size of the null space would vary from
one tangent stiffness matrix to the next ([FPL00]). Then substitute the result into
the compatibility equation (Eq. 4). With some algebraic manipulation we can derive
the Dual-Primal FETI interface problem where the unknowns are λ, the Lagrange
multipliers and uc, the global corner degrees of freedom.[

Frr Frc

FT
rc −K∗

cc

] [
λ
uc

]
=

[
dr

−f∗
c

]
(6)

where Frr =
Ns∑
s=1

Bs
rK

s−1

rr BsT

r , Frc =
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rKs−1

rr Ks
rcB

s
c , dr =
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Bs
rK

s−1

rr fs
r , and

f∗
c =

Ns∑
s=1

(BsT

c fs
c −BsT

c KsT

rc Ks−1

rr fs
r ). The corner degrees of freedom, uc, are condensed

out to form the following symmetric positive definite Dual-Primal FETI interface
problem which we solve using a preconditioned conjugate gradient method. For a
detailed derivation of this equation, please see [CFR00].[

Frr + FrcK
∗−1

cc FT
rc

]
λ = dr − FrcK

∗−1

cc f∗
c (7)

It can be seen that the new FETI operator has a coarse grid problem for which the
stiffness matrix can be written as follows

K∗
cc =

Ns∑
s=1

[
BsT

c Ks
ccB

s
c − (Ks

rcB
s
c )T Ks−1

rr (Ks
rcB

s
c)

]
(8)

This new coarse problem has some highly beneficial properties over the existing two-
level FETI coarse problem (see [FM98]). First, this new coarse problem is sparse
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Figure 2: Model problem for numerical scalability studies

symmetric positive definite. Secondly, only one forward/backward substitution has to
be performed per FETI iteration in comparison with two per iteration of the original
FETI algorithms. We also note that the coarse problem is easily formed in parallel
with subdomain operations. As with the original FETI coarse problem, it couples all
of the subdomains and propagates the error at each FETI iteration.

Numerical Scalability

Now we would like to test the numerical scalability of the Dual-Primal FETI method
for fourth order elasticity problems. The chosen tests show the numerical scalability
with respect to the number of subdomains, size of the subdomains, and the size of the
elements. The model problem for these tests is a 1 × 1 square mesh discretized into 3
node shell elements. Let h denote the size of an individual element and H denote the
size of one subdomain. The first numerical test keeps the number of subdomains at
64, while varying the size of h and the effect on the number of iterations to converge
to 1.0E − 6 is observed.

H h Ndof FETI-2 FETI-DP
1/8 1/40 5,166 23 itr. 17 itr.
1/8 1/80 19,926 30 itr. 22 itr.
1/8 1/160 78,246 36 itr. 28 itr.
1/8 1/320 310,086 44 itr. 34 itr.
1/8 1/640 1,234,566 51 itr. 41 itr.

One can see that the number of iterations remains roughly constant for both the two
level FETI method and for the Dual-Primal method as the size of the problem is
increased from 5, 166 dof to over 1 million dof.

The second numerical test fixes the size of the problem and varies the number
of subdomains used to solve the problem. Again the number of iterations remains
approximately constant over a large range of Ns for both the two level FETI method
and the Dual-Primal FETI method..



A DUAL-PRIMAL FETI METHOD 425

            

Figure 3: Finite element model of a diffraction grating

H h Ns FETI-2 FETI-DP
1/8 1/640 64 51 itr. 17 itr.
1/10 1/640 100 47 itr. 22 itr.
1/16 1/640 256 47 itr. 28 itr.
1/20 1/640 400 47 itr. 34 itr.
1/40 1/640 1,600 40 itr. 41 itr.
1/64 1/640 4,096 36 itr. 28 itr.

The last numerical test holds the size of the subdomains constant while increasing the
size of the overall problem. In this test, the condition number of the two level FETI
method should remain roughly the same (see [FM98]). We see that both methods
exhibit this trend for a large range of Ns.

H h Ns FETI-2 FETI-DP
1/2 1/20 4 12 itr. 12 itr.
1/4 1/40 16 24 itr. 19 itr.
1/8 1/80 64 30 itr. 22 itr.
1/16 1/160 256 32 itr. 24 itr.
1/32 1/320 1,024 34 itr. 25 itr.
1/64 1/640 4,096 36 itr. 28 itr.

The Augmented Dual-Primal FETI Method

After testing FETI-DP on a range of fourth order problems, we decided to test a
second order elasticity problem. The motivation was to see if we could improve the
existing one level FETI technology. As the reader can see, the following results were
not encouraging for this diffraction grating problem with 120,987 degrees of freedom.

Ns FETI-1 FETI-DP Augmented FETI-DP
56 81 itr. (281 sec.) 190 itr. (534 sec.) 63 itr. (284 sec.)
128 51 itr. (115 sec.) 115 itr. (273 sec.) 38 itr. (129 sec.)

The initial thought was to investigate how the new Dual-Primal coarse problem could
be extended to improve convergence. This can be accomplished by forcing the residual
to be orthogonal to a chosen set of vectors at each iteration of the FETI algorithm.
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Let Q be a matrix of arbitrarily chosen vectors, r the residual, then we can enforce
the following equation to enhance convergence:

QT r = QT
Ns∑
s=1

Bs
rus

r = QT
r ur = 0 (9)

We insert these equations within the formulation by introducing new Lagrange mul-
tipliers, µ, to enforce the constraints associated with Eq. 9.

 Krr Krc Qr

KT
rc Kcc 0

QT
r 0 0
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uc

µ


 =


 fr − BT

r λ
fc

0


 (10)

The resulting FETI operator has the same form as given in 7. Following the same
procedure used to derive Eq. 6, we arrive at the following expression for the augmented
Dual-Primal FETI coarse grid which is non-singular for a well-posed non-floating
structure but because of the µ Lagrange multiplier, we have negative eigen values.
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Ns∑
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[
BsT

c Ks
ccB

s
c − BsT

c KsT

rc Ks−1

rr Ks
rcB

s
c −BsT

c KsT

rc Ks−1

rr Qs
r

−QsT
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rcB

s
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r Ks−1

rr Qs
r

]
(11)

These Q matrices can be chosen to be the average x,y, or z jump along a subdomain
edge resulting in an edge by edge sparsity pattern for the augmented set of equations..
There has been a clear advantage to writing the equations on a per edge basis as it
has improved convergence dramatically, improved CPU times, and restored numerical
scalability with respect to second order elasticity problems.

For higher order elements, such as 10 node tetrahedron, FETI-DP has shown
to be much more efficient than the one level FETI method. The following results
were obtained from a large-scale structural solid model discretized using 10 node
tetrahedrons of a BMW engine. The entire engine model has over 1 million degrees
of freedom which was decomposed into 823 subdomains and computed on an Origin
2000 machine. It took the one level FETI method 243 iterations to converge while it
took 90 iterations for FETI-DP.

Np FETI-1 Augmented FETI-DP
3 1,476 sec. 604 sec.
6 773 sec. 334 sec.
12 461 sec. 247 sec.
24 207 sec. 140 sec.

Parallel Scalability

We conclude this paper with a large-scale example problem that highlights the advan-
tages of FETI-DP. The following problem is a shell model of a wheel rim composed
of over 313856 elements, 156017 nodes, and containing 936, 102 degrees of freedom.
Three points were fixed along the inner rim, effectively constraining the model. Then
a gravity load was applied to the model which was decomposed into 500 subdomains.
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Figure 4: Finite element model of wheel rim

As one can see, the reduction in CPU time is dramatic for the FETI-DP method. The
PSLDLT parallel sparse solver shows a large improvement over the two level FETI
method for low numbers of processors while the FETI-DP method is faster for Np = 1
all the way to Np = 24. The speed-up numbers for the two level FETI method and
the FETI-DP method are nearly identical for these runs on an Origin 2000.

Np FETI-2 PSLDLT FETI-DP
1 2,995 s (1.0) 1,631 s (1.0) 1,594 s (1.0)
4 789 s (3.8) 502 s (3.2) 370 s (4.3)
8 371 s (8.1) 301 s (5.4) 196 s (8.1)
16 214 s (13.9) 218 s (7.5) 116 s (13.7)
20 179 s (16.7) 200 s (8.2) 99 s (16.1)
24 157 s (19.0) 200 s (8.2) 86 s (18.5)

Conclusion

We have shown a modification to the classical FETI method where the local opera-
tors are symmetric positive definite. This eliminates the necessity for computing the
local null spaces. which also removes the original FETI coarse problem. The new
Dual-Primal FETI method has a global coarse problem associated with the global
corner displacements. This coarse grid was shown to have as good as or better than
convergence for fourth order plates and shells problems with respect to the two level
FETI method. For second order problems, the new Dual-Primal FETI coarse grid
has to be augmented with optional constraints to remain numerically scalable. The
Dual-Primal FETI method is more robust, more efficient and typically faster than the
classical FETI methods for large numbers of subdomains.
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