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4. Decomposition of Energy Space and Virtual
Control for Parabolic Systems

J.L. Lions 1

Introduction

Methods of choice for attempting the control of distributed systems (i.e. systems mod-
elled by Partial Differential Equations, PDE’s in short) are decomposition meth-
ods.

Given the state equation -i.e. PDE’s containing control (should it be distributed
or on the boundary)- one can decompose (i) the operator, or (ii) the geometrical
domain, or (iii) the spaces describing the domain of the operator.

Method (i), based on splitting up ideas has been used in a paper by A. Bensous-
san, J.L. Lions and R. Temam[BLT94]. At the end of this paper, some remarks were
made concerning domain decomposition. New methods (also based on virtual control)
are given in a note of J.L. Lions and O. Pironneau[LP99a] and in the paper of J.L.
Lions[Lio00].

DDM (Domain Decomposition Methods) are now absolutely essential for theAnal-
ysis of problems (i.e. PDE’s without control). As observed by J.E. Lagnese and G.
Leugering[LL00] while there is an extensive literature on DDM for direct simulation,
the literature is much more scarse concerning DDM and optimal control.

The first contributions were due to B. Despres[Des91], J.D. Benamou and B.
Despres[JD97], J.D. Benamou[Ben97, Ben98], and the paper just quoted by J. Lagnese
and G. Leugering.

Another set of ideas has been introduced by J.L. Lions and O. Pironneau in 3
notes[LP98a, LP98b, LP99b] where one introduces for all problems (i.e. problems
with or without control functions) so called virtual controls with the goal to have
all problems entering in one model.

First numerical results are reported in these notes.

We want here to study the possibility (iii), namely the decomposition of spaces
describing the domain of the operator. In a (slightly) more precise manner, if A is
the main symmetric part of the stationary operator contained in the model, then we
consider the “energy space” D(A1/2) (the domain of A1/2) - a space that we denote
by V . It is this space that we decompose in the present paper.

For stationary problems without control, this technique has been introduced in R.
Glowinski, J.L. Lions and O. Pironneau[GLP99] .

We show here how it can be applied for the control of parabolic systems.

1Collège de France, jacques-louis.lions@college-de-france.fr
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Elliptic regularization of parabolic equations

Let V and H be two real Hilbert spaces, such that

(2.1) V ⊂ H ,V dense in H, V → H continuous.

We shall identify H with its dual, so that

(2.2) V ⊂ H ⊂ V ′

where V ′ denotes the dual of V .
Let a(ϕ, ϕ̂) be a continuous bilinear form on V , such that

(2.3) a(ϕ,ϕ) ≥ α‖ϕ‖2 ∀ ϕ ∈ V , α > 0 ,

where ‖ϕ‖ denotes the norm of ϕ in V .
Let f be given such that

(2.4) f ∈ L2(0, T ;V ′).

We are looking for a function u such that

(2.5)

∣∣∣∣∣∣∣∣∣

u ∈ L2(0, T ;V ),
∂u

∂t
∈ L2(0, T ;V ′),

(
∂u

∂t
, û) + a(u, û) = (f, û) ∀ û ∈ V ,

u|t=0 = 0

(in (2.5) (f, ϕ) denotes the duality between V ′ and V ). It follows from (2.5)1 that
(after possible change on a set of measure 0) the function t → u(t) is continuous from
[0, T ]→ H .
It is known that problem (2.5) admits a unique solution (cf. J.L. Lions[Lio61]

where considerably more general situations are considered), the mapping f → u being
continuous from L2(0, T ;V ′) into the space of functions u satisfying to (2.5)1.

For reasons that will appear later on, we are going to use an elliptic regulariza-
tion (J.L. Lions[Lio63]) of problem (2.5).
We define

(2.6) W = {u| u ∈ L2(0, T ;V ),
∂u

∂t
∈ L2(0, T ;H), u(0) = 0} .

For u, û ∈ W , we define

(2.7) Aγ(u, û) = γ

∫ T

0

(
∂u

∂t
,
∂û

∂t
)dt+

∫ T

0

[(
∂u

∂t
, û) + a(u, û)]dt ,

where γ is given > 0.
The bilinear form u, û → Aγ(u, û) is continuous on W . Moreover

(2.8) Aγ(u, u) = γ

∫ T

0

‖u(t)‖2
Hdt+

1
2
‖u(T )‖2

H +
∫ T

0

a(u) dt ,
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where ‖u‖H = (u, u)1/2 , a(u) = a(u, u).
By virtue of (2.3) it follows that

(2.9) Aγ(u, u) ≥ γ

∫ T

0

‖∂u
∂t
(t)‖2

Hdt+ α

∫ T

0

‖u‖2 dt ,

so that in particular

(2.10)

∣∣∣∣∣∣
Aγ(u, u) ≥ inf(γ, α) ‖ u ‖2

W where

‖ u ‖2
W =

∫ T

0

(‖ u(t) ‖2 + ‖∂u
∂t
(t) ‖2

H)dt .

It then immediately follows (LAX-MILGRAM’s Lemma) that there exists a unique
element uγ solution of

(2.11)
∣∣∣∣ Aγ(uγ , û) =

∫ T

0 (f, û)dt ∀ û ∈ W ,
uγ ∈ W .

Equation (2.11) is called an elliptic regularization of (2.5).
One has the following property (J.L. Lions[Lio63]) :

(2.12)

∣∣∣∣∣∣∣∣∣

as γ → 0, the solution uγ of (2.11) converges toward the solution
u of (2.5) in the sense that
uγ → u in L2(0, T ;V ) weakly,
∂uγ

∂t
→ ∂u

∂t
in L2(0, T ;V ′) weakly .

Before briefly recalling the (simple) proof of (2.12), a few remarks are in order.
Remark 2.1.
Let’s give an interpretation of the above equations in non-variational terms. We

define A ∈ L(V ;V ′) by

(Aϕ,ψ) = a(ϕ,ψ) ∀ ϕ,ψ ∈ V .

Then (2.5) reads

(2.13)
∂u

∂t
+Au = f , u|t=0 = 0 , u ∈ L2(0, T ;V ) ,

and (2.11) is equivalent to

(2.14)

∣∣∣∣∣∣∣∣∣∣

−γ ∂2uγ

∂t2
+
∂uγ

∂t
+Auγ = f ,

uγ |t=0 = 0 ,
∂uγ

∂t
(T ) = 0 ,

uγ ∈ L2(0, T ;V ),
∂uγ

∂t
∈ L2(0, T ;H).

Remark 2.2.
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If A is a second order elliptic operator, then the operator

(2.15) −γ ∂2

∂t2
+

∂

∂t
+A

is indeed an elliptic operator. We are dealing with elliptic regularization. But if
A is, say, a 4th order elliptic operator, then the operator (2.15) is quasi elliptic. We
nevertheless keep the term of elliptic regularization.

Let us now sketch the proof of (2.12). It follows from (2.9) that as γ → 0 ,

uγ(resp.
√
γ
∂uγ

∂t
) remains in a bounded set of L2(0, T ;V ) (resp. L2(0, T ;H)). We can

therefore extract a subsequence still denoted by uγ such that

uγ → w in L2(0, T ;V ) weakly

and
√
γ
∂uγ

∂t
→ ξ in L2(0, T ;H) weakly. But

√
γ
∂uγ

∂t
→ 0 in the space of distribu-

tions in t with values in V , so that ξ = 0.
We rewrite (2.11) as

(2.16) γ

∫ T

0

(
∂uγ

∂t
,
∂û

∂t
)

H
dt−

∫ T

0

(uγ ,
∂û

∂t
)

H
dt+

∫ T

0

a(u, û)dt =
∫ T

0

(f, û)dt

where we have taken û ∈ W such that

(2.17) û(T ) = 0 .

We can pass now to the limit in (2.16). We obtain

−
∫ T

0

(w,
∂û

∂t
)Hdt+

∫ T

0

a(w, û)dt =
∫ T

0

(f, û)dt

∀û ∈ W such that (2.17) is satisfied.
Hence w = u.

Remark 2.3.
We could also use a different elliptic regularization, namely

(2.18)
∫ T

0

(γ, (
∂u

∂t
,
∂û

∂t
)

V ′dt+
∫ T

0

[(
∂u

∂t
, û) + a(v, û)]dt

defined on the space of functions u such that u ∈ L2(0, T ;V ) and
∂u

∂t
∈ L2(0, T ;V ′)

(instead of L2(0, T ;H)). In a sense (2.18) is more natural but (2.7) avoids the use of
V ′.

Remark 2.4.
One has also (cf. J.L. Lions[Lio63])

(2.19)
∂uγ

∂t
→ ∂u

∂t
in L2(0, T ;V ′) weakly .
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A Control problem and its elliptic regularization

We introduce now the space of controls v

(3.1)
∣∣∣∣ v ∈ L2(0, T ;U),
U = real Hilbert space .

If B is an operator such that

(3.2) B ∈ L(U ;V ′),

the state equation is given by

(3.3)

∣∣∣∣∣∣∣∣∣

(
∂y

∂t
, ŷ) + a(y, ŷ) = (Bv, ŷ) ∀ ŷ ∈ V ,

y ∈ L2(0, T ;V ),
∂y

∂t
∈ L2(0, T ;V ′),

y|t=0 = 0 .

The cost function is given by

(3.4) J(v) =
1
2

∫ T

0

‖v‖2
Udt+

β

2
‖y(T ; v)− yT ‖2

H

where β is given > 0 and where yT is a given element of H .
The problem of control is now to find

(3.5) inf
v∈L2(0,T ;U)

J(v)

This problem admits a unique solution vopt, i.e. there exists a unique vopt such
that

(3.6) J(vopt) = inf
v∈L2(0,T ;U)

J(v) .

We consider now the “elliptic regularization” of problem (3.3) (3.6).
With the notations of previous section , we define the state yγ ∈ W by

(3.7) Aγ(yγ , ŷ) =
∫ T

0

(Bv, ŷ)dt ∀ŷ ∈ W .

This problem admits a unique solution yγ = yγ(v), and we can introduce

(3.8) Jγ(v) =
1
2

∫ T

0

‖v‖2
Udt+

β

2
‖yγ(T ; v)− yT ‖2

H

Of course, there exists a unique element vγ in L2(0, T ;U) such that

(3.9) Jγ(vγ) = inf .Jγ(v), v ∈ L2(0, T ;U) .
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Let us briefly sketch the (easy) proof of

(3.10)
∣∣∣∣ as γ → 0 , Jγ(vγ)→ J(vopt), vγ → vopt in
L2(0, T ;U) weakly and yγ(vγ)→ y(vopt) in L

2(0, T ;V ) weakly .

For v fixed in L2(0, T ;U), one knows that yγ(v)→ y(v) in L2(0, T ;V ) weakly, and
(cf. J.L. Lions[Lio63]) yγ(T ; v) → y(T ; v) in H strongly. Therefore Jγ(v) → J(v) so
that

(3.11) lim . sup .Jγ(vγ) ≤ inf J(v) , v ∈ L2(0, T ;U).

It follows from (3.11) that vγ remains in a bounded subset of L2(0, T ;U . By
extracting a subsequence, we can assume that

(3.12) vγ → w in L2(0, T ;U) faible

and one verifies that yγ(T ; vγ)→ y(T ;w) in H weakly.
Therefore

(3.13) lim inf .Jγ(vγ) ≥ J(w).

Comparing (3.11) (3.13) and using (3.12) gives (3.10).

Remark 3.1.
Everything which has been said above readily extends to similar problems with

constraints on v :

(3.14)
∣∣∣∣ v ∈ L2(0, T ;Uad)
Uad closed convex subset of U .

Remark 3.2.
One can write, for all the problems considered, the necessary and sufficient condi-

tions (the so called “Optimality System”) for v to be optimal. Cf. J.L. Lions[Lio68].

Orientation.
We want now to “decompose” problem (3.5) based on
(i) a decomposition of the energy space V ;
(ii) the elliptic-regularized problem (3.9).

Decomposition of the energy space

We assume that

(4.1) V = V1 + V2

where

(4.2) Vi = closed subspace of V ,
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(4.3) V1 ∩ V2 = {0} or not.

In other words, every ϕ in V admits at least a decomposition

ϕ = ϕ1 + ϕ2

and actually an infinite number of them if V1 ∩ V2 �= {0}.
Remark 4.1.
Everything we are going to say readily extends to the case when

(4.4) V = V1 + · · ·+ Vm ,m > 2 .

Remark 4.2.
Examples (for a stationnary situation without control) are given in R. Glowinski,

J.L. Lions and O. Pironneau[GLP99].

We introduce now the natural decomposition of W (defined in (2.6) attached to
(4.1), namely

(4.5)

∣∣∣∣∣
W =W1 +W2 ,

Wi = {ϕ|ϕ ∈ L2(0, T ;Vi),
∂ϕ

∂t
∈ L2(0, T ;H), ϕ(0) = 0} .

Let si (i = 1, 2) be a continuous bilinear form on V (or on Vi) such that

(4.6)
∣∣∣∣ si is symmetric and si(ϕi, ϕi) ≥ s0i‖ϕi‖2 ∀ ϕi ∈ Vi ,
s0i > 0.

We then define ∀ ϕ, ϕ̂ ∈ Wi,

(4.7) σi(ϕ, ϕ̂) = γ

∫ T

0

(
∂ϕ

∂t
,
∂ϕ̂

∂t
)dt+

∫ T

0

si(ϕ, ϕ̂)dt .

Given the virtual controls λ1, λ2 ∈ W1 ×W2, we define y1, y2 ∈ W1 ×W2 as the
solution of

(4.8)

∣∣∣∣∣∣∣∣
σ1(y1 − λ1, ŷ1) +Aγ(λ1 + λ2, ŷ1) =

∫ T

0

(Bv, ŷ1)dt ∀ ŷ1 ∈ W1 ,

σ2(y2 − λ2, ŷ2) +Aγ(λ1 + λ2, ŷ1) =
∫ T

0

(Bv, ŷ2)dt ∀ ŷ2 ∈ W2 .

Remark 4.3.
It is obvious that, given v and λ1, λ2, the system (4.8) admits a unique solution.

For instance y1 is given by the solution of

σ1(y1, ŷ1) = σ1(λ1, ŷ1)−Aγ(λ1 + λ2, ŷ1) +
∫ T

0

(Bv, ŷ1)dt ∀ ŷ1 ∈ W1 .

Remark 4.4.
The equations (4.8) can be solved in parallel.
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Remark 4.5.
If one can choose λ1, λ2 such that

(4.9) yi = λi

then (4.8) is equivalent to

Aγ(y1 + y2, ŷ1) =
∫ T

0

(Bv, ŷ1)dt

Aγ(y1 + y2, ŷ2) =
∫ T

0

(Bv, ŷ2)dt

so that y1 + y2 = y(= yγ) the solution of (3.7).

We now define the new cost function

(4.10)

∣∣∣∣∣
J (v, λ) = 1

2
∫ T

0 ‖v‖2
U dt+

β

2
‖y1(T ) + y2(T )− yT ‖2

H ,

yi solution of (4.8), λ = {λ1, λ2} .
According to Remark 4.5., we have

(4.11) inf
yi=λi

.J (v, λ) = inf Jγ(v) .

It is therefore natural to introduce a penalty term (in order to take care of
“yi = λi”) as follows :

(4.12)

∣∣∣∣∣∣∣
Jε(v, λ) =

1
2

∫ T

0

‖v‖2
U dt+

β

2
‖y1(T ) + y2(T )− yT ‖2

H+

+
1
2ε
[σ1(y1 − λ1) + σ2(y2 − λ2)] , λ = {λ1, λ2}

and to consider the problem

(4.13) inf .Jε(v, λ),

v ∈ L2(0, T ;U), λ = {λ1, λ2} ∈ W1 ×W2 .

We study now (4.13) and we show it gives an approximation of (3.9), which
is itself an approximation (as γ → 0) of (3.6).

Approximation results

We are going to show
Theorem 5.1. - We assume that (2.3), (4.6), (4.1), (4.2), (4.3) hold true. The

elliptic regularization parameter γ is fixed (arbitrarily small).
(i) For ε > 0 fixed, problem (4.13) admits a unique solution vε, yiε−λiε, i = 1, 2.
(ii) As ε → 0, one has

inf Jε(v, λ)→ inf Jγ(v) = Jγ(vγ)
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vε → vγ in L2(0, T ;U) weakly

(in fact vε = vε,γ).

We prove Theorem 5.1. in several steps.
Step 1. - The existence of a solution of (4.13) is straightforward, provided we

notice that we have informations on yi − λi rather that on yi.
Step 2. - Given v, we compute y(v) = yγ(v) and we decompose y(v) in, say,

y(v) = z1 + z2 , zi ∈ L2(0, T ;Vi).
Choosing λi = zi, it follows that yi = zi = λi

so that
inf Jε(v, λ) ≤ Jγ(v) ∀ v, i.e.

(5.1) inf Jε(v, λ) ≤ inf .Jγ(v) v ∈ L2(0, T ;U).

Step 3. - It follows from (5.1) that, as ε → 0,

(5.2) vε remains in a bounded subset of L2(0, T ;U),

(5.3) σi(yiε − λiε) ≤ c
√
ε.

Step 4. - We use (4.8) with yiε, λiε but we do not write for a moment the indices
“ε”. Let η1 + η2 be an arbitrary decomposition of y1 + y2

(5.4) y1 + y2 = η1 + η2, ηi ∈ Wi

(of course ηi = yi if V1 ∩ V2 = {0}).
We choose ŷi = ηi in (4.8) and we add up the results.
We obtain

(5.5) σ1(y1 − λ1, η1) + σ2(y2 − λ2, η2) +A(λ1 + λ2, y2 + y2) =
∫ T

0

(Bv, y1 + y2)dt

We observe that (writing Aγ(ϕ,ϕ) = Aγ(ϕ))

(5.6)

∣∣∣∣∣∣∣
Aγ(λ1 + λ2, y1 + y2) =

1
2
[Aγ(λ1 − y1 + λ2 − y2, y1 + y2) +Aγ(y1 + y2)+

+(Aγ(λ1 + λ2, y1 − λ1 + y2 − λ2) +Aγ(λ1 + λ2)] ≥
≥ c[ ‖y1 + y2‖2

W + ‖λ1 + λ2‖2
W ]− c

√
ε [ ‖y1 + y2‖W + ‖λ1 + λ2‖W ] ,

(where the c’s denote various constants).
We also observe that

(5.7) | σ1(y1 − λ1, η1) + σ2(y2 − λ2, η2) | ≤ c
√
ε (‖η1‖W1 + ‖η2‖W2).

We can choose η1, η2 in such a way that

‖η1‖W 1 + ‖η2‖W2
≤ c‖η1 + η2‖W
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so that (5.7) implies

(5.8) | σ1(y1 − λ1, η1) + σ2(y2 − λ2, η2) | ≤ c
√
ε ‖y1 + y2‖W

.

It follows from (5.5) (5.6) and (5.8) that, as ε→ 0,

(5.9) ‖y1ε + y2ε‖W
+ ‖λ1ε + λ2ε‖W

≤ c .

Step 5. - One verifies that one can then pass to the limit in ε in the equations
(4.8) (where λ1 = λiε, yi = yiε). One extracts a subsequence vε, λiε, yiε such that

vε → w in L2(0, T ;U) weakly ,
y1ε + y2ε → z in W weakly ,
y1ε − λiε → 0 in Wi (like

√
ε),

and one obtains

Aγ(z, ŷ1) =
∫ T

0

(Bw, ŷ1)dt ∀ŷ1 ∈ W1,

Aγ(z, ŷ2) =
∫ T

0

(Bw, ŷ2)dt ∀ŷ2 ∈ W2,

so that z = y(w) = yγ(w).
One can also verify that

y1ε(T ) + y2ε(T )→ z(T ) in H weakly .

Then

Jε(vε, λε) ≥ 1
2

∫ T

0

‖vε‖2
U dt+

β

2
‖y1ε(T ) + y2ε(T )− yT ‖2

H

implies

(5.10) lim inf Jε(vε, λε) ≥ Jγ(w) .

Comparing with (5.1), Theorem 5.1 follows.

Algorithms

We proceed with the computation of the 1st variation of Jε(v, λ), in fact of εJε(v, λ).
We have :
(6.1)∣∣∣∣ δ(εJε(v, λ)) = ε

∫ T

0 (v, δv)U dt+ ε β(y1(T ) + y2(T )− yT , δy1(T ) + δy2(T ))H+
+σ1(y1 − λ1, δy1 − δλ1) + σ2(y2 − λ2, δy2 − δλ2) .

It follows from (4.8) that

(6.2) σ1(δy1 − δλ1, ŷ1) +Aγ(δλ1 + δλ2, ŷ1) =
∫ T

0

(Bδv, ŷ1)dt
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and the analogous equation for σ2(δy2 − δλ2, ŷ2). If we take ŷ1 = y1−λ1 in (6.2), and
the analogous choice with the index “2”, we obtain that
(6.3)∣∣∣∣ σ1(y1 − λ1, δy1 − δλ1) + σ2(y2 − λ2, δy2 − δλ2) =

=
∫ T

0
(Bδv, y1 − λ1 + y2 − λ2)dt−Aγ(δλ1 + δλ2, y1 − λ1 + y2 − λ2) .

Let us introduce the adjoint A∗
γ of Aγ :

A∗
γ(ϕ, ϕ̂) = Aγ(ϕ̂, ϕ)

and let us define p1, p2 ∈ W1 ×W2 by

(6.4)

∣∣∣∣∣∣∣∣

σ1(p1, p̂1) = A∗
γ(y1 − λ1 + y2 − λ2, p̂1)− ε β(y1(T ) + y2(T )− yT , p1(T ))

∀ p̂1 ∈ W1

σ2(p2, p̂2) = A∗
γ(y1 − λ1 + y2 − λ2, p̂2)− ε β(y1(T ) + y2(T )− yT , p2(T ))

∀ p̂2 ∈ W2 .

Then using (6.3) and (6.4) one obtains

(6.5)

∣∣∣∣∣∣
δ(εJε(v, λ)) =

∫ T

0

(εv +B∗(y1 − λ1 + y2 − λ2), δv)U dt−
−σ1(p1, δλ1)− σ2(p2, δλ2) ,

where B∗ is the adjoint of B defined by

(6.6) (B∗ f, v)U = (f,Bv) ∀ f ∈ V ′ , ∀v ∈ U .

The simplest (if not the most efficient) algorithm one can deduce from (6.5) is then
the following. Assuming that vn, λn

1 , λ
n
2 , y

n
1 , y

n
2 have been computed, define

(6.7)

∣∣∣∣∣∣
vn+1 = vn − ρ(εvn +B∗(yn

1 − λn
1 + yn

2 − λn
2 )),

λn+1
1 = λn

1 + ρ pn
1 ,

λn+1
2 = λn

2 + ρ pn
2 ,

where ρ > 0 is chosen small enough.
Compute yn+1

1 , yn+1
2 (in parallel) by (4.8), where one uses vn+1, λn+1

i . Then com-
pute pn+1

1 , pn+1
2 (in parallel by (6.4) and proceed.

Remark 6.1.
More powerful algorithms (conjugate gradients) are given, for similar situations,

without control, in R. Glowinski, J.L. Lions and O. Pironneau[GLP99].

Remark 6.2.
As we already said, everything extends to the situation when

V = V1 + · · ·+ Vm,m > 2.

Remark 6.3.
The “elliptic regularization parameter” γ is fixed (“small”). What happens to the

above algorithms when γ → 0 is an open question.
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Remarks and extensions

Remark 7.1.
In principle all the methods introduced here apply to problems without control.
But one is led to 2-points Boundary Value Problems (BVP) in time, not a wise

thing to do. Of course the situation is different when effective control is present, since
there 2 points BVP are needed anyway (one way or the other).

Remark 7.2.
In case there are constraints on v then, of course, the algorithms in previous section

should be modified accordingly.

Remark 7.3.
All the methods presented here can apply, with suitable modifications, for systems

modelled by
non linear PDE

or
hyperbolic (or Petrowsky type) models

or
Schroedinger models

or coupled models. We shall return to these questions on other occasions.

Remark 7.4.
A systematic presentation of other decomposition methods for the control of dis-

tributed systems is given in the paper of J.L. Lions[Lio00].
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