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5. On Schwarz Methods for Monotone Elliptic PDEs

S. H. LUI1

Introduction

The Schwarz Alternating Method was devised by H. A. Schwarz more than one hun-
dred years ago to solve linear boundary value problems. It has garnered interest
recently because of its potential as an efficient algorithm for parallel computers. See
[Lio88], and [Lio89], the recent reviews [CM94], [LT94], and [XZ98], and the books
[SBG96] and [QV99]. The literature for nonlinear problems is rather sparse. Be-
sides Lions’ works, see also [Bad91], [ZH92], [CD94], [Tai94], [TE98], [TX01], [Pao95],
[Xu96], [DH97], [Lui00], [Lui01], and references therein. The effectiveness of Schwarz
methods for nonlinear problems (especially those in fluid mechanics) has been demon-
strated in many papers. See proceedings of the annual domain decomposition confer-
ences.

This paper is a continuation of previous works by this author attempting to survey
various classes of nonlinear elliptic PDEs for which Schwarz methods are applicable.
We consider elliptic PDEs amenable to analysis by the monotone method (also known
as the method of subsolutions and supersolutions).

The paper [KC67] was among the first to employ the monotone method to solve
boundary value problems. Subsequent works by these two authors as well as by [Sat72],
[Ama76], and many others have made this method into one of the important tools in
nonlinear analysis. See [Pao92] for a very complete reference with many applications
as well as a good bibliography. [Lio89] shows the convergence of a multiplicative
Schwarz method for the Poisson’s equation using the monotone method. Here, we
prove convergence for an additive Schwarz method on finitely many subdomains for
scalar as well as coupled systems of nonlinear elliptic PDEs. Our results on coupled
systems can be applied to the three types of Lotka-Volterra models in population
biology: competition, cooperation and predator-prey.

In the following section, we indicate convergence of two Schwarz methods for a
class of scalar nonlinear elliptic PDEs. This is followed by a treatment of the so-called
quasi-monotone non-increasing case of a coupled system of PDEs on finitely many
subdomains. In the remaining part of this introduction, we set some notations.

Let Ω be a bounded, connected domain in R
N with a smooth boundary. Suppose

Ω is composed of m ≥ 2 subdomains, that is, Ω = Ω1 ∪ · · · ∪ Ωm. The boundary of
each subdomain is also assumed to be smooth. Let X = Cα(Ω) ∩ C2(Ω) for some
0 < α < 1. We shall look for solutions of PDEs lying in this space.
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Scalar Equations

Consider the PDE

−�u = f(x, u) on Ω, u = h on ∂Ω. (1)

A smooth function u ∈ X is a subsolution of the above PDE if

−�u − f(x, u) ≤ 0 on Ω and u ≤ h on ∂Ω.

Similarly, a supersolution is one which satisfies the above with both inequalities re-
versed.

Let us now record the assumptions for the above PDE. Suppose that it has a
subsolution u and a supersolution u which satisfy u ≤ u on Ω. Define the sector of
smooth functions

A ≡ {u ∈ X, u ≤ u ≤ u on Ω}.
Assume f is a smooth (Holder continuous) function defined on Ω × A and h is a
smooth function defined on the boundary. In addition, suppose there exists some
bounded non-negative function c defined on Ω so that

−c(x)(u − v) ≤ f(x, u) − f(x, v), x ∈ Ω, v ≤ u ∈ A.

With these assumptions, it is known (section 3.2 in [Pao92]) that the PDE has a (not
necessarily unique) solution in the sector A.

We begin with a comparison lemma.

Lemma 1 Suppose S is an open set. Let w ∈ H1(S) ∩ C(S) satisfy∫
S

(∇w · ∇φ + cwφ) ≥ 0, ∀ non-negative φ ∈ H1
0 (S) (2)

and w ≥ 0 on ∂S. Then w ≥ 0 on S.

We now show convergence of a (multiplicative) Schwarz sequence for the PDE (1)
for the two subdomain case. For convenience, we suppress the dependence of f on
x ∈ Ω. Note that each subdomain problem is a linear one. Despite the possibility of
multiple solutions, the Schwarz iteration always converges to a specific solution.

Theorem 1 Let u(0) = u(− 1
2 ) = u on Ω with u = h on ∂Ω. Define the Schwarz

sequence by (n ≥ 0)

−�u(n+ 1
2 ) + cu(n+ 1

2 ) = f(u(n− 1
2 )) + cu(n− 1

2 ) on Ω1, u(n+ 1
2 ) = u(n) on ∂Ω1,

−�u(n+1) + cu(n+1) = f(u(n)) + cu(n) on Ω2, u(n+1) = u(n+ 1
2 ) on ∂Ω2.

Here, u(n+ 1
2 ) is defined as u(n) on Ω \ Ω1 and u(n+1) is defined as u(n+ 1

2 ) on Ω \ Ω2.
Then u(n+ i

2 ) → u in C2(Ωi), i = 1, 2, where u is a solution of (1) in A. If v is any
solution in A, then u ≤ v on Ω.

If u(0) = u(− 1
2 ) = u on Ω with u = h on ∂Ω instead, then the same conclusion

holds except that u ≥ v on Ω.
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Sketch of Proof: We only consider the case u(0) = u with u = h on ∂Ω. The
proof can be divided into four steps. First, we demonstrate that the sequence is
monotone:

u ≤ u(n− 1
2 ) ≤ u(n) ≤ u(n+ 1

2 ) ≤ u on Ω, n ≥ 0. (3)

Since the sequences are bounded above, the following limits are well defined on Ω

lim
n→∞ u(n+ 1

2 ) = u1, lim
n→∞u(n) = u2.

In the second step, we prove that the function ui satisfies the same PDE on Ωi using
an elliptic regularity argument (see p. 102 in [Pao92]). We can also infer that the
convergence to ui is in the sense of C2(Ωi). In the third step, we prove that u1 =
u2 on Ω which follows directly from (3). Define u = u1. Then u is a solution of (1).
Finally, if v is any other solution in A, replace u by v in the above steps to obtain
u ≤ v on Ω. This completes the sketch of the proof.

The above Schwarz iteration is an adaptation of the classical Schwarz iteration
for the Poisson’s equation. The next Schwarz method is called an additive Schwarz
method. It generalizes the additive method for linear PDEs first introduced in [DW87].
It is sometimes preferable to the (multiplicative) Schwarz method above because the
subdomain PDEs are independent and hence can be solved in parallel. We consider
the general m-subdomain case.

Theorem 2 Let u(0) = u
(0)
i = u on Ω, i = 1, · · · , m with u = h on ∂Ω. Define the

additive Schwarz sequence by (n ≥ 1)

−�u
(n)
i + cu

(n)
i = f(u(n−1)

i ) + cu
(n−1)
i on Ωi, u

(n)
i = u(n−1) on ∂Ωi, i = 1, · · · , m.

Here, u
(n)
i is defined as u(n−1) on Ω \ Ωi and

u(n)(x) = max
1≤i≤m

u
(n)
i (x), x ∈ Ω.

Then u
(n)
i → u in C2(Ωi), i = 1, · · · , m where u is a solution of (1) in A. If v is any

solution in A, then u ≤ v on Ω.
If u(0) = u

(0)
i = u on Ω with u = h on ∂Ω instead, then the same conclusion holds

except that u ≥ v on Ω.

Sketch of Proof: The details of this proof are quite similar to those of the last
proof. Assume u(0) = u. The following monotone properties hold:

u ≤ u
(n)
i ≤ u

(n+1)
i ≤ u on Ωi, u ≤ u(n) ≤ u(n+1) ≤ u on Ω, (4)

u(n) ≤ u
(n+1)
i on Ω, i = 1, · · · , m. (5)

The inequalities in (4) can be shown in a straightforward manner by induction
using the maximum principle. To show the second set of inequalities in (4), take a
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fixed n and x ∈ Ω. Then there is some integer i in between 1 and m inclusive so that
u(n)(x) = u

(n)
i (x) ≤ u

(n+1)
i (x) ≤ u(n+1)(x).

The inequality (5) can also be shown by induction. This can be done using the
following (nontrivial) inequality
∫

Ωi

(∇u(n) · ∇φ + cu(n)φ) ≤
∫

Ωi

(
f(u(n−1)) + cu(n−1)

)
φ, ∀ non-negative φ ∈ H1

0 (Ωi).

which says that u(n) is a subsolution in some weak sense.
Next, we define on Ω, for i = 1, · · · , m,

lim
n→∞u

(n)
i = ui, lim

n→∞u(n) = u0

and show using elliptic regularity theory that the limit ui satisfies the same PDE on
Ωi, i = 1, · · · , m and that the convergence to ui is in the sense of C2(Ωi). We have
ui ≤ u0 on Ω, i = 1, · · · , m. By (5), we have for any j, u0 ≤ uj ≤ u0 ≤ ui. From
these inequalities, we conclude that ui = uj = u0, 1 ≤ i, j ≤ m. Define u to be this
common function which must be a solution of (1) in A. The proof of u ≤ v for any
solution of (1) in A is the same as before.

Quasi-monotone Non-increasing Coupled Systems

Consider the system

−�u = f(u, v), −�v = g(u, v) on Ω, (6)

u = r, v = s on ∂Ω.

The pairs of smooth functions (u, v) and (u, v) are called subsolution and supersolution
pairs if they satisfy

−�u − f(u, v) ≤ 0 ≤ −�u − f(u, v) on Ω,

−�v − g(u, v) ≤ 0 ≤ −�v − g(u, v) on Ω, and

u ≤ r ≤ u, v ≤ s ≤ v on ∂Ω.

Furthermore, they are said to be ordered if

u ≤ u, v ≤ v on Ω.

Define the sector

A ≡
{[

u
v

]
, u, v ∈ X, u ≤ u ≤ u, v ≤ v ≤ v on Ω

}
.
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Suppose f, g ∈ C1(A). Our system of PDEs is called quasi-monotone non-increasing
if

∂f

∂v
,

∂g

∂u
≤ 0 on A. (7)

Suppose our system of PDEs is quasi-monotone non-increasing. Then it can be
shown (section 8.4 in [Pao92]) that it has a solution (u, v) in A. Without further
assumptions, it may have more than one solution. Despite this, the following additive
Schwarz sequence converges for an appropriately chosen initial guess. Note that the
subdomain problems at each iteration are independent and are decoupled.

Theorem 3 Suppose the system (6) is quasi-monotone non-increasing and let (u, v)
and (u, v) be ordered subsolution and supersolution pairs. Consider any non-negative
functions c, d ∈ Cα(Ω) so that

∂f(u, v)
∂u

≥ −c,
∂g(u, v)

∂v
≥ −d, (u, v) ∈ A. (8)

For i = 1, · · · , m, let

u(0) = u
(0)
i = u and v(0) = v

(0)
i = v on Ω with u = r and v = s on ∂Ω. (9)

Define the Schwarz sequence for i = 1, · · · , m and n ≥ 1

−�u
(n)
i + cu

(n)
i = f(u(n−1)

i , v
(n−1)
i ) + cu

(n−1)
i on Ωi, u

(n)
i = u(n−1) on ∂Ωi

−�v
(n)
i + dv

(n)
i = g(u(n−1)

i , v
(n−1)
i ) + dv

(n−1)
i on Ωi, v

(n)
i = v(n−1) on ∂Ωi.

Here, u
(n)
i and v

(n)
i are defined as u(n−1) and v(n−1), respectively, on Ω \ Ωi while

u(n)(x) = max
1≤i≤m

u
(n)
i (x), v(n)(x) = min

1≤i≤m
v
(n)
i (x) on Ω.

Then u
(n)
i → u0 and v

(n)
i → v0 in C2(Ωi), i = 1, · · · , m, where (u0, v0) is a solution

of (6) in A. If (u, v) is any solution in A, then u0 ≤ u and v ≤ v0.
If u(0) = u

(0)
i = u and v(0) = v

(0)
i = v on Ω with u = r and v = s on ∂Ω replace the

assumption (9), then the above Schwarz sequence satisfies u
(n)
i → u0 and v

(n)
i → v0

in C2(Ωi), i = 1, · · · , m, where (u0, v0) is also a solution of (6) in A. If (u, v) is any
solution in A, then u ≤ u0 and v ≥ v0.

Sketch of Proof: We only consider the case where u(0) = u and v(0) = v. The
proof can be divided into four steps. We first show that the following monotone
properties hold on Ω for i = 1, · · · , m,

u ≤ u
(n)
i ≤ u

(n+1)
i ≤ u, u(n) ≤ u(n+1), u(n) ≤ u

(n+1)
i (10)

and

v ≤ v
(n+1)
i ≤ v

(n)
i ≤ v, v(n+1) ≤ v(n), v

(n+1)
i ≤ v(n). (11)
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Since the sequences are bounded, the following limits on Ω are well defined

lim
n→∞u

(n)
i = ui, lim

n→∞ v
(n)
i = vi i = 1, · · · , m,

and

lim
n→∞u(n) = u0, lim

n→∞ v(n) = v0.

In the second step, we prove, using a similar elliptic regularity argument as before,
that the limit functions satisfy the following PDEs on Ωi:

−�ui = f(ui, vi), −�vi = g(ui, vi), i = 1, · · · , m, (12)

and that convergence to ui and to vi is in the sense of C2(Ωi). Third, we demonstrate
that the functions ui are identical. This follows because from (10) and the definition
of u(n),

u
(n)
i ≤ u(n) ≤ u

(n+1)
j ≤ u(n+1) ≤ u

(n+2)
i , 1 ≤ i, j ≤ m.

Take the limit to obtain ui = uj = u0 on Ω. Similarly, we use (11) to show vi = vj =
v0 on Ω for 1 ≤ i, j ≤ m. From (12), it follows that (u0, v0) is a solution of (6).

Fourth, we prove that any solution (u, v) of (6) in A must satisfy

u0 ≤ u and v ≤ v0 on Ωi. (13)

This follows from the observation that (u, v) and (u, v) form subsolution and superso-
lution pairs. Apply the above result to establish (13).

One example where a quasi-monotone non-increasing system occurs is the Lotka-
Volterra competition model

−�u = u(a1 − b1u − c1v), −�v = v(a2 − b2u − c2v).

Here u, v stand for the population of two species competing for the same food sources
and/or territories and all other variables are positive constants.

Similarly, it can be shown that the additive Schwarz method converges for other
types of coupled systems. For instance, a quasi-monotone non-decreasing system
is one where fv, gu ≥ 0 on A in place of (7). (The definition of subsolution and
supersolution pairs is slightly different though.) One example where a quasi-monotone
non-decreasing system occurs is the Lotka-Volterra cooperating model

−�u = u(a1 − b1u + c1v), −�v = v(a2 + b2u − c2v).

Here u, v stand for the population of two species which have a symbiotic relationship
and all other variables are positive constants.

A third class of coupled systems, known as mixed quasi-monotone is one where
fv,−gu ≤ 0 on A in place of (7). Using essentially the same technique, one can show
that the additive Schwarz method also works for this class of problems as well. One
example where a mixed quasi-monotone system occurs is the Lotka-Volterra predator-
prey model

−�u = u(a1 − b1u − c1v), −�v = v(a2 + b2u − c2v).

Here u stands for the population of a prey while v denotes the population of a predator
and all other variables are positive constants.
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