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45. A blackbox reduced-basis output bound method
for shape optimization

L. Machiels1, Y. Maday2, A. T. Patera3, D. V. Rovas4

Introduction

We present a two-stage off-line/on-line blackbox reduced-basis output bound method
for the prediction of outputs of coercive partial differential equations with affine param-
eter dependence. The computational complexity of the on-line stage of the procedure
scales only with the dimension of the reduced-basis space and the parametric com-
plexity of the partial differential operator. The method is both efficient and certain:
thanks to rigorous a posteriori error bounds, we may retain only the minimal number
of modes necessary to achieve the prescribed accuracy in the output of interest. The
technique is particularly appropriate for applications such as design and optimization,
in which repeated and rapid evaluation of the output is required.

Reduced-basis methods [ASB78, Nag79, NP80] — projection onto low-order ap-
proximation spaces comprising solutions of the problem of interest at selected points
in the parameter/design space — are efficient techniques for the prediction of lin-
ear functional outputs. These methods enjoy an optimality property which ensures
rapid convergence even in high-dimensional parameter spaces; good accuracy is ob-
tained even for very few modes (basis functions), and thus the computational cost is
typically very small.

It is often the case that the parameter enters affinely in the differential operator.
This allows us to separate the computational steps into two stages: (i) the off-line
stage, in which the reduced-basis space is constructed; and (ii) the on-line/real time
stage, in which for each new parameter value the reduced-basis approximation for
the output of interest is calculated. The on-line stage is “blackbox” in the sense that
there is no longer any reference to the original problem formulation: the computational
complexity of this stage scales only with the dimension of the reduced-basis space and
the parametric complexity of the partial differential operator.

Although a priori theory [FR83, Por85] suggests the optimality of the reduced-
basis space approximation, for a particular choice of the reduced-basis space the error
in the output of interest is typically not known, and hence the minimal number of
basis functions required to satisfy the desired error tolerance can not be ascertained.
As a result, either too many or too few basis functions are retained; the former results
in computational inefficiency, the latter in uncertainty and unacceptably inaccurate
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predictions. In this paper we develop blackbox a posteriori methods that address these
shortcomings. We consider here equilibrium solutions of coercive problems within
the context of shape optimization; see also [MPR00] for treatment of noncoercive
equilibrium problems and [MMO+00] for symmetric eigenvalue problems.

Numerical Method

Preliminaries

Let Y be a Hilbert space with an associated inner product (·, ·)Y and an induced norm
‖ · ‖Y . We define our parameter space to be D ⊂ R; a point in that space is denoted
µ. Our problem is then to find u ∈ Y such that

a(u, v;µ) = �(v), ∀v ∈ Y, (1)

and subsequently the output of interest s(u) = �0(u); �(·) and �0(·) are both in Y ′,
the dual space of Y. The bilinear form a is assumed to be continuous; symmetric,
a(w, v;µ) = a(v,w;µ), ∀w, v ∈ Y ; and coercive, a(v, v;µ) ≥ c‖v‖2

Y > 0, ∀v ∈ Y, ∀µ ∈
D, where c is a strictly positive real constant. Associated with the above primal
problem we define the dual problem for ψ ∈ Y : a(v, ψ;µ) = −�0(v), ∀v ∈ Y . The
need for this problem will become clear in the error estimation discussion.

We next introduce a symmetric positive-definite form â(w, v), and define λ1
â(µ) to

be the minimum eigenvalue of a(ϕ, v;µ) = λ(µ)â(ϕ, v), ∀v ∈ Y . A lower bound for
this eigenvalue is required by the output bound procedure: we assume that a g(µ) is
known such that

a(v, v;µ) ≥ g(µ)â(v, v) > 0, ∀v ∈ Y and ∀µ ∈ D. (2)

It is also possible to include approximation of λ1
â(µ) as part of the reduced basis

approximation [MPR00].
Finally, for the blackbox method, we shall assume that, for some finite integer Q,

there exists a decomposition of a(w, v;µ) of the form

a(w, v;µ) =
Q∑

q=1

σq(µ)aq(w, v),∀w, v ∈ Y and ∀µ ∈ D, (3)

where we make no assumptions on the aq other than continuity and bilinearity.

Reduced-Basis Approximation

We choose N/2 points in our parameter space D, and form the sample set
SN = {µ1, . . . , µN/2}. The reduced-basis spaces associated with the primal and
dual problems are then given by W pr

N = span{u(µ1), . . . , u(µN/2)} and W du
N =

span{ψ(µ1), . . . , ψ(µN/2)} respectively; we can now form

WN = span{u(µ1), ψ(µ1), . . . , u(µN/2), ψ(µN/2)} ≡ span{ζ1, . . . , ζN}. (4)

The space WN defined this way has good approximation properties both for the primal
and the dual problems.
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For each new desired µ ∈ D, we now apply a standard Galerkin procedure over
WN to obtain uN (µ) and ψN (µ) according to a(uN(µ), v;µ) = �(v), ∀v ∈ WN , and
a(v, ψN (µ);µ) = −�0(v), ∀v ∈ WN . The output can then be calculated as sN (µ) =
�0(uN (µ)).

Bounds Evaluation

We start by defining the residuals associated with the primal and dual reduced-basis
approximations, Rpr(v;µ) = �(v)− a(uN (µ), v;µ), ∀v ∈ Y , and Rdu(v;µ) = −�0(v)−
a(v, ψN (µ);µ), ∀v ∈ Y , respectively. The Riesz representations êpr(µ) and êdu(µ) of
the primal and dual residuals can then be defined as â(êpr(µ), v) = Rpr(v;µ), ∀v ∈
Y, â(êdu(µ), v) = Rdu(v;µ),∀v ∈ Y .

We then define, as in [MMO+00, MPR00],

s̄N (µ) = sN (µ) − 1
2g(µ)

â(êpr(µ), êdu(µ)),

∆N (µ) =
1

2g(µ)
â1/2(êpr(µ), êpr(µ)) â1/2(êdu(µ), êdu(µ)),

(5)

and compute lower and upper estimators s±N = s̄N ± ∆N .
It can be shown [MMO+00, MPR00] that s+

N (respectively s−N ) will be an upper
(respectively lower) bound for s provided that g(µ) is a lower bound for the eigenvalue
λ1

â(µ) (or equivalently satisfies (2)). Note that in the general case, where an â and
g(µ) which satisfy (2) may not be readily available, the reduced-basis space must be
augmented with eigenmodes corresponding to the minimum eigenvalue of the problem
a(ϕ, v;µ) = λ(µ)â(ϕ, v), ∀v ∈ Y [MPR00].

Also of interest is the quality of the bounds — how well they approximate the
actual error. We measure the quality of the bounds by the effectivity ηN (µ), defined
as the ratio of the bound gap ∆N to |s − sN |. From the bound result we know that
ηN (µ) ≥ 1. We can further prove [MPR00] that ηN (µ) is bounded independent of N ;
in practice, ηN (µ) is typically O(1), as desired.

Blackbox Method

The parametric dependence assumed in (3) permits us to decouple the computation
into two stages: the off-line stage, in which (i) the reduced basis is constructed and,
(ii) the necessary error-estimation preprocessing is performed; and the on-line stage,
in which for each new desired value of µ, µd, we compute sN (µd) and the associated
bounds. The essential “enabler” is the absence of µ dependence in â, which allows us
to precompute (and later assemble) all the “pieces” of êpr(µd), and êdu(µd) by linear
superposition. The details of the blackbox technique follow. For convenience we define
N as the set {1, . . . , N}, and Q as the set {1, . . . , Q}.
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Off-line Stage

1. Calculate u(µi) and ψ(µi), i = 1, . . . , N/2, to form WN as in (4).
2. Compute Aq ∈ R

N×N as Aq
i,j = aq(ζi, ζj),∀i, j ∈ N 2 and ∀q ∈ Q.

3. Solve for ẑ0,pr ∈ Y and ẑ0,du ∈ Y from â(ẑ0,pr, v) = �(v), ∀v ∈ Y , and â(ẑ0,du, v) =
−�0(v), ∀v ∈ Y , respectively. Also, compute ẑq

j ∈ Y from â(ẑq
j , v) = −aq(ζj , v), ∀v ∈

Y , ∀j ∈ N and ∀q ∈ Q.
4. Calculate and store cpr

0 = â(ẑ0,pr, ẑ0,pr); cdu
0 = â(ẑ0,du, ẑ0,du); cpr,du

0 =
â(ẑ0,pr, ẑ0,du); F pr

N,j = �(ζj) and F du
N,j = �0(ζj), ∀j ∈ N ; Λq,pr

j = â(ẑ0,pr, ẑq
j ) and

Λq,du
j = â(ẑ0,du, ẑq

j ), ∀j ∈ N and ∀q ∈ Q; Γpq
ij = â(ẑp

i , ẑ
q
j ), ∀i, j ∈ N 2 and ∀p, q ∈ Q2.

This stage requires (NQ +N + 2) Y -linear system solves; (N2Q2 + 2NQ+ 3) â-inner
products; and 2N evaluations of linear functionals.

On-line Stage

For each new desired design point µd we then compute the reduced-basis prediction
and error bound based on the quantities computed in the off-line stage.
1. Form AN =

∑Q
q=1 σ

q(µd)Aq and solve for uN ≡ uN (µd) ∈ R
N and ψ

N
≡ ψ

N
(µd) ∈

R
N from AN uN = F pr

N and AN ψ
N

= −F du
N , respectively.

2. Evaluate the bound average and bound gap as

s̄N = (F du
N )TuN−

1
2g(µd)

(
N∑

i=1

N∑

j=1

Q∑

p=1

Q∑

q=1

uN,iψN,jσ
p(µd)σq(µd)Γpq

ij +
N∑

j=1

Q∑

q=1

ψN,jσ
q(µd)Λq,pr

j +

N∑

j=1

Q∑

q=1

uN,jσ
q(µd)Λq,du

j + cpr,du
0 ),

and

∆N (µd) =
1

2 g(µd)
×

(
N∑

i=1

N∑

j=1

Q∑

p=1

Q∑

q=1

uN,iuN,jσ
p(µd)σq(µd)Γpq

ij + 2
N∑

j=1

Q∑

q=1

uN,jσ
q(µd)Λq,pr

j + cpr
0 )

1
2×

(
N∑

i=1

N∑

j=1

Q∑

p=1

Q∑

q=1

ψN,iψN,jσ
p(µd)σq(µd)Γpq

ij + 2
N∑

j=1

Q∑

q=1

ψN,jσ
q(µd)Λq,du

j + cdu
0 )

1
2 .

respectively.
For each µd, O(N2Q2 +N3) operations are required to obtain the reduced-basis solu-
tion and the bounds. Since dim(WN ) � dim(Y ), the cost to compute sN (µd), sN (µd),
and ∆N (µd) in the on-line stage will typically be much less than the cost to directly
evaluate u(µd) and s(µd) = �0(u(µd)) from (1).
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Results

Instantiation: Fin Problem

To illustrate our method we consider
the problem of designing the thermal
fin of Figure 1 to cool (say) an elec-
tronic component at the fin base, Γ1.
The ith “radiator” of the fin has ther-
mal conductivity ki (normalized rela-
tive to the conductivity of the central
post); and the fluid surrounding the fin
is characterized by a heat convection
coefficient expressed in nondimensional

k1

k2

k3

k4

k0 = 1

α

β

Bi

Γ1

Figure 1
form by a Biot number, Bi. The fin geometry is described by the radiator length β and
thickness α, both nondimensionalized with respect to the width of the fin base. We
thus obtain P = 7, with a typical point in D ∈ R

7 given by µ = {k1, k2, k3, k4,Bi, α, β}.
For the output of interest we choose the mean temperature of the base, s(u) = �0(u) =∫
Γ1

u, which is directly related to the cooling efficiency of the fin.

On the original domain the bilinear and linear forms are given by
∫
Ω0

∇u · ∇v +
∑4

i=1 ki

∫
Ωi

∇u · ∇v + Bi
∫

∂Ω\Γ1
uv, and �(v) =

∫
Γ1

v; here Ω0 is the fin central post
domain, and Ωi is the ith radiator domain. (Note �(v) = �0(v), and thus the primal
and dual problems coincide; this particular case is denoted compliance, and leads to
considerable simplification of the numerical procedure.) We then map the domain Ω
to a reference fin geometry Ω̂, shown by solid lines in Figure 1. The problem now takes
the desired form (1) with Y = H1(Ω̂) — more exactly, Y is a very fine (and hence
very high-dimensional) finite element approximation of H1(Ω̂) defined over a suitable
triangulation of Ω̂. We can readily verify that the resulting form a is symmetric and
positive-definite.

Taking advantage of the natural domain decomposition afforded by our mapping,
it is then not difficult to cast the problem such that (3) is satisfied with Q = 16; the σq

induced by the variable geometry appear as domain-dependent effective orthotropic
conductivities and Bi numbers. Choosing â(u, v) =

∑Q
q=1 a

q(u, v) =
∫
Ω̂
∇u · ∇v +∫

∂Ω̂\Γ1
uv, g(µ) = minq∈{1,... ,Q} σq(µ) (the σq are all bounded from below by a positive

constant), we are able to verify (2). Thus all our requirements are honored, and the
bound method can be applied.

Accuracy and Effectivity

We first investigate how the dimension of the reduced-basis space affects the accuracy
of the bounds. We choose for the design space D = [0.1, 10]4 × [0.01, 1.] × [0.1, 0.5] ×
[2.0, 3.0], and for µd the value {0.4, 0.6, 0.8, 1.2, 0.1, 0.3, 2.8}. To form the reduced
space we choose randomly N/2 points in D. We plot in Table 1 the bound gap and
effectivity as a function of N .
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N ∆N ηN

10 1.5987 × 10−1 2.9947
20 1.5691 × 10−2 2.8607
30 2.4267 × 10−3 2.7557
40 7.2616 × 10−4 2.6250
50 3.0620 × 10−4 2.6085

Table 1

As we can see from Table 1, even for small N , the accuracy is very good; further-
more, convergence with N is quite rapid. This is particularly noteworthy given the
high-dimensional parameter space; even with N = 50 points we have less than two
points (effectively) in each parameter coordinate. We also note that the effectivity
remains roughly constant with increasing N : the estimators are not only bounds, but
relatively sharp bounds — good predictors for when N is “large enough.” The be-
havior we observe at this particular value of µd is representative of most points in (a
random sample over) D, however there can certainly be points where the effectivity is
larger: more systematic study is required.

Shape Optimization

Target Temperature

We suppose we wish to find the configuration which yields a base (e.g., chip) temper-
ature of s∗ (say 1.8) to within ε = .01 by varying only the height (α) of the radiators.
To start, we choose a relatively large number of basis functions in the design space D
defined above, and perform the off-line stage of the blackbox method. For efficiency
in the on-line stage, we then enlist only a subset of these basis functions [Kae00] —
those which are closer in the design space to the desired evaluation point — and refine
when higher accuracy is required. A binary chop algorithm, summarized below, is im-
plemented to effect the coupled approximation–optimization; we assume monotonicity
for simplicity of exposition.

for i = 1:maxiter
Choose α := (αl + αr)/2
blackbox for α ⇒ s+

N , s−N
d1 := max (|s∗ − s+

N |, |s∗ − s−N |)
d2 := min (|s∗ − s+

N |, |s∗ − s−N |)
if(d2 > ε)

if(s+
N > s∗ and s−N > s∗) αl := α

if(s+
N < s∗ and s−N < s∗) αr := α

else N := N + N+

if(d1 < ε) stop
else
N := N + N+

next
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In the particular test case shown in Table 2, we begin with N = 10 points and
set N+ = 10 as well; we initialize αl = 0.1 and αr = 0.5. During the optimization
process, refinement is effected twice, such that a total of N = 30 basis functions are
invoked (considerably less than the 50 available). The savings are significant, yet we
are still ensured, thanks to the bounds, that our design requirement is met to the
desired tolerance of ε = .01. One can also apply a dynamic adaptation strategy in
which only a minimal number of basis functions are generated (initially) in the off-line
stage: if these prove inadequate, we return to the off-line stage for additional basis
functions and also revision of the necessary matrices and inner products.

i ᾱ s+
N s−N αl αr

1 0.3 1.683 1.753 0.1 0.5
2 0.2 1.716 2.056 0.1 0.3
3 0.2 1.766 1.807 0.1 0.3
4 0.2 1.771 1.778 0.1 0.3
5 0.15 1.817 1.840 0.1 0.2
6 0.175 1.792 1.806 .15 0.2

Table 2
If we choose a tighter tolerance ε, or if we wish to investigate many different set

points s∗, or if we perform the optimization permitting all 7 design parameters to
vary, we would of course greatly increase the number of output predictions required
— and hence greatly increase the efficiency of the reduced-basis blackbox technique
relative to conventional approaches.

Achievable Set

In multicriterion optimization we consider various (competing) outputs of interest,
say volume, V , and root temperature, s. Changing the dimensions of the fin by
selecting different α and β will (say) decrease the volume of the fin, and hence material
requirements - but also (typically) increase the fin base temperature. It is thus of
interest to determine all possible operating points, that is, to generate the map of the
“achievable set.” In general this will be prohibitively expensive unless one has recourse
to a very low-dimensional representation such as the reduced-basis approximation.

We consider this problem for constant conductivities ki = 1., i = 0, . . . , 4, and
Biot number Bi= 0.001. We then select 100,000 points in the two dimensional design
space [α, β] = [0.1, 0.5]×[2.0, 3.0] and evaluate our bounds for s with an error tolerance
of 0.1%. Since in this design we wish to be sure that the actual temperature will be
less than our prediction, we choose to construct our map based on s+

N . We are thus
insured that at each design point the actual temperature will be lower than that on
our curve.

Each evaluation produces a point on the s–V plane, thus generating the achiev-
able set. Obvious optimality conditions require that we remain on the left or lower
boundaries of the achievable set, known as the efficient frontier or trade-off curve in
Pareto analysis. As we can see from Figure 2, we can decrease the volume with no
real increase in temperature up to the point were the left and lower boundaries cross;
after that, the small further possible volume reduction results in a steep rise in base
temperature.
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