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19. A Mortar Finite Element Method for Plate
Problems

L. Marcinkowski 1

Introduction

In the paper we discuss two versions of mortar finite element methods applied to
clamped plate problems. The problems are approximated by the nonconforming Mor-
ley and Adini element methods in each subregion into which the original region of the
discussed problems have been partitioned. On the interfaces between subdomains and
at crosspoints of subregions some continuity conditions are imposed.

The main results of the paper are the proof of the solvability of the discrete prob-
lems and their error bounds.

The mortar method is a domain decomposition method that allow us to use
discretizations of different type with independent discretizations parameters in non-
overlapping subdomains, see e.g. [BMP94], [BM97], [BB99] for a general presentation
of the mortar method in the two and three dimensions for elliptic boundary value
problems of second order.

In the paper mortar element methods for the locally nonconforming discretizations
of the clamped plate problems are discussed. In [Lac98] there are formulated results
for mortar method with nonconforming discrete Kirchoff triangle elements (DKT) for
a similar problem while in [Bel97] the mortar method for the biharmonic problem is
analyzed in the case of local spectral discretizations. The paper is based on the results
which are obtained in the PhD thesis of the author, see [Mar99b], cf. also [Mar99a].

This paper is concerned with the mortar method where locally in the subdomains
the nonconforming Adini and Morley plate finite elements are used. We restrict our-
selves to the geometrically conforming version of the mortar method, i.e. the local
substructures form a coarse triangulation. We first introduce independent local dis-
cretizations for the two discussed elements in each subdomain. The 2-D triangulations
of two neighboring subregions do not necessarily match on their common interface,
cf. Figure 1. The mortar technique for nonconforming plate elements which is dis-
cussed here requires the continuity of the solution at the vertices of subdomains and
that the solution on two neighboring subdomains satisfies two mortar conditions of
the L2 type on their common interface. The form of these conditions depends on the
local discretization methods and in some cases these conditions combine interpolants
defined locally on interfaces. It follows from the fact that the respective traces of local
functions also depend on the values of respective degrees of freedom at interior nodal
points. We give error bounds for the both mortar methods. The results obtained in
this paper can be generalized to analogous mortar discretizations of simply supported
plate problems.
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Figure 1: Nonmatching meshes.

Discrete problems

Clamped plate problem

Let Ω be a polygonal domain in R
2. The differential problem is to find u∗ ∈ H2

0 (Ω)
such that

a(u∗, v) =
∫

Ω

fv dx ∀v ∈ H2
0 (Ω), (1)

where u∗ is the displacement, f ∈ L2(Ω) is the body force,

a(u, v) =
∫

Ω

[�u�v + (1− ν) (2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1)] dx.

Here

H2
0 (Ω) = {v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω},

∂n is the normal unit derivative outward to ∂Ω, and uxixj := DiDju for i, j = 1, 2.
The Poisson ratio ν satisfies 0 < ν < 1/2. It is well known that this problem has a
unique solution, see e.g. [Cia91].

Let Ω be a union of non-overlapping polygonal subdomains that are arbitrary for
the Morley element and are rectangles for the Adini element, i.e. Ω =

⋃N
k=1 Ωk, Ωk ∩

Ωl = ∅, k 	= l. We assume that the intersection of boundaries of two different
subdomains ∂Ωk ∩∂Ωl, k 	= l, is either the empty set, a vertex or a common edge. We
assume the shape regularity of that decomposition, cf. [BS94].
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Figure 2: Adini element.

We triangulate each subdomain Ωk into nonoverlapping rectangles for the Adini
element and into triangles for the Morley one. The rectangles (or triangles) of this
triangulation are denoted by τi and called elements. We assume that the arising
fine triangulation Th(Ωk) is quasiuniform with parameter hk = max( diam τ) for
τ ∈ Th(Ωk), cf. [BS94]. The triangulations for different Ωk are independent and can
be nonmatching across interfaces, i.e. on common edges of two subdomains, in general,
cf. Figure 1.

Adini element

In this subsection, we introduce a mortar method that locally uses the Adini element,
cf. Chapter 7, Section 49, p.298 in [Cia91]. The local finite element space XA

h (Ωk) of
the Adini element is defined by

XA
h (Ωk) = {v ∈ L2(Ωk) : v|τ ∈ P3(τ) ⊕ span{x3

1x2, x1x
3
2} for τ ∈ Th(Ωk),

v, vx1 , vx2 continuous at the vertices of τ and

v(a) = vx1(a) = vx2(a) = 0 for a vertex a ∈ ∂Ωk ∩ ∂Ω}

where τ ∈ Th(Ωk) is a rectangular element, cf. Figure 2.
We also introduce the global space XA

h (Ω) =
∏

k X
A
h (Ωk). For each interface

Γkl = ∂Ωk ∩ ∂Ωl, we choose one side as a master denoted by γm,k ⊂ ∂Ωk and the
second one as a slave δm,l ⊂ ∂Ωl if hk ≤ hl, see Figure 1. This assumption is necessary
for the proof of some technical results and is due to the fact that any local finite element
function is not sufficiently regular.

We introduce additional auxiliary spaces on each slave (nonmortar) δm,l ⊂ ∂Ωl.
Let the first one denoted by Mhl

1,3(δm,l) be the space of C1 smooth functions that are
piecewise cubic except for two elements that touch the ends of δm,l, where are piecewise
linear, and let the second one Mhl

0,1(δm,l) be the space of continuous piecewise linear
functions which are constant on the two elements which touch the ends of δm,l.
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We say that uk ∈ XA
h (Ωk) and ul ∈ XA

h (Ωl) for ∂Ωl∩∂Ωk = Γkl satisfy the mortar
conditions if

∫
δm

(uk − ul)ψ ds = 0 ∀ψ ∈ Mhl
1,3(δm,l), (2)

∫
δm

(Ihk
∂nuk − Ihl

∂nul)ψ ds = 0 ∀ψ ∈ Mhl
0,1(δm,l), (3)

where Ihl
, Ihk

are the standard piecewise linear interpolants onto the hl and hk meshes
of δm,l and γm,k, respectively. Note that Ihi∂nui, for i = k, l, equals the normal
derivative of piecewise bilinear interpolant defined over Ωi by the values of ∂nui at
the vertices of rectangular elements of Th(Ωi).

We now define the discrete space V A
h as the subspace ofXA

h (Ω) formed by functions
which satisfy the mortar conditions (2) and (3) on all slave sides and are continuous
at all crosspoints.

The discretization of (1) using V A
h is of the form:

Find uA
h ∈ V A

h such that

ah(uA
h , v) =

∫
Ω

fv dx ∀v ∈ V A
h , (4)

where ah(u, v) =
∑N

k=1 ah,k(u, v) and

ah,k(u, v) =
∑

τ∈Th(Ωk)

∫
τ

�u�v + (1− ν)(2ux1x2vx1x2 − ux1x1vx2x2 − ux2x2vx1x1) dx.

(5)

The form ah(·, ·) is positive definite over V A
h what follows from the fact that ah(u, u) =

0 implies that u is linear in all rectangles of Th(Ωk), then from the continuity of
u, ux1, ux2 at all vertices of the elements of Th(Ωk) follows that u is linear in Ωk and
from the mortar condition follows that u is linear in Ω. Then the boundary conditions
yield u = 0.

Moreover, it has been proven in [Mar99b] that this form is uniformly elliptic on
V A

h what is stated in the following:

Theorem 1 There exists a constant C independent of hk and the number of subdo-
mains such that for u ∈ V A

h

C ‖u‖2
H2

h(Ω) ≤ ah(u, u),

where ‖u‖H2
h(Ω) = (

∑N
k=1

∑
τ∈Th(Ωk) ‖u‖2

H2(τ))
1/2 is the so-called broken H2-norm.

Hence

Proposition 1 The problem (4) has a unique solution.
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Figure 3: Morley element.

Morley element

In this subsection, we introduce a mortar method that locally uses the Morley element,
e.g. cf. [LL75].

The local finite element space XM
h (Ωk) is defined by, see Figure 3,

XM
h (Ωk) = {v ∈ L2(Ωk) : v|τ ∈ P2(τ), v continuous at vertices of

τ ∈ Th(Ωk) and ∂nv continuous at midpoints of edges of τ and

v(p) = ∂nv(m) = 0 for a vertex p ∈ ∂Ω and a midpoint m ∈ ∂Ω}.

We also introduce a global space XM
h (Ω) =

∏N
k=1 X

M
h (Ωk) as in the previous

subsection.
We now select an open disjoint side Γkl of ∂Ωk, Γkl = ∂Ωk ∩ ∂Ωl, denote it by

γm,k and name as master (mortar) if hk ≤ hl, cf. Figure 1. This assumption like for
the Adini element is necessary for the proof of some technical results and is due to
the fact that any local finite element function is not sufficiently regular. The side of
Γkl ⊂ ∂Ωl is called slave (nonmortar) and is denoted by δm,l. As hk ≤ hl and the
both triangulations are quasiuniform, we can assume that the two end elements of the
hl-triangulation of the slave δm,l, i.e. the ones that touch the ends of δm,l, are longer
than the respective elements of the hk-triangulation of the master γm,k.

We introduce additionally two auxiliary spaces on each slave (nonmortar) δm,l. Let
the first one denoted by Mhl−1,0(δm,l), be the space of functions which are piecewise
constant on the hl triangulation of δm,l.

For the simplicity of presentation, we also assume that the both 1-D triangulations
of the interface Γkl, the hk one of its master γm,k and the hl one of its slave δm,l, have
even numbers of the elements. Let consider δm,l and let δm,l,h = {p0, p1, . . . , pNm,l

} be
a set of vertices of the hl triangulation of this slave, (Nm,l is even). Then we introduce
an operator I2hl,2 : C(δm,l) → C(δm,l) defined by the values of u at all points of δm,l,h

as follows:
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• I2hl,2u ∈ P2 on each [pi, pi+2] for even i < Nm,l,

• I2hl,2u(pi) = u(pi) pi ∈ δm,l,h.

The operator I2hk,2 that corresponds to the hk mesh of master γm,k is defined in the
same way.

We next define an auxiliary space M2hl
0,2 (δm,l) as follows

M2hl
0,2 (δm,l) = {v ∈ C(δm,l) : v ∈ P2([pi, pi+2]) for even i 	= 0, Nm,l − 2, (6)

and v ∈ P1([pi, pi+2]) for i = 0, Nm,l − 2}.
We now introduce the two mortar conditions on the interface Γkl = γm,k = δm,l:

∫
δm

(I2hk,2uk − I2hl,2ul)ψ ds = 0 ∀ψ ∈ M2hl
0,2 (δm,l) (7)

and ∫
δm

(∂nuk − ∂nul)φ ds = 0 ∀φ ∈ Mhl−1,0(δm,l). (8)

We next define the discrete space V M
h as the subspace of XM

h (Ω) formed by func-
tions which satisfy the mortar conditions (7) and (8) on all slave sides and are contin-
uous at all crosspoints.

The discretization of (1) using V M
h is of the form:

Find uM
h ∈ V M

h such that

ah(uM
h , v) =

∫
Ω

fv dx ∀v ∈ V M
h , (9)

where ah(u, v) =
∑N

k=1 ah,k(u, v) and ah,k(u, v) are defined as in (5). The form ah(·, ·)
is positive definite over V M

h . It follows from the fact that ah(u, u) = 0 yields that u is
piecewise linear in the triangles of Th(Ωk), then the continuity of u at all vertices and
∂nu at all midpoints of elements of Th(Ωk) yields that u is linear in Ωk and finally
from the mortar conditions follows that u is linear in Ω. The boundary conditions
yield u = 0.

As in the case of Adini mortar method, we have the uniform ellipticity of the form
ah(·, ·) over V M

h , cf. [Mar99a] and [Mar99b], i.e.

Theorem 2 There exists a constant C independent of hk and the number of subdo-
mains such that for u ∈ V M

h

C ‖u‖2
H2

h(Ω) ≤ ah(u, u),

where ‖u‖H2
h(Ω) is the broken H2-norm.

Thus we obtain

Proposition 2 The problem (9) has a unique solution.
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Error estimates

We have the following error estimates for the both elements:

Theorem 3 Assume that u∗, the solution of (1), is in the space H2
0 (Ω) ∩ H4(Ω).

Then for the Adini element

‖u∗ − uA
h ‖2

H2
h(Ω) ≤ CA

N∑
k=1

(
h2

k|u∗|2H3(Ωk) + h4
k|u∗|2H4(Ωk)

)
,

and for the Morley element

‖u∗ − uM
h ‖2

H2
h(Ω) ≤ CM

N∑
k=1

(
h2

k|u∗|2H3(Ωk) + h4
k|u∗|2H4(Ωk)

)
,

where uA
h and u

M
h are the solutions of (4) and (9), respectively, ‖v‖H2

h(Ω) is the broken
H2-norm, and CA, CM are positive constants independent of u∗, any hk, and the
number of subdomains.

Remark on Additive Schwarz Methods

In this section we make a brief remark on the parallel methods of Schwarz type for
solving the discrete problems (4) and (9). The detailed discussion will be published
elsewhere.

In [Mar99b] a parallel algorithm for solving (4) was constructed and analyzed.
This is a iterative substructuring method, i.e. it is applied to the Schur complement
of the discrete problem, i.e. interior variables are first eliminated using some direct
methods. The method is described in terms of an Additive Schwarz Method (ASM), cf.
[SBG96]. We decompose a discrete space into a sum of subspaces which consists of a
coarse space, local one dimensional spaces associated with degrees of freedom of order
one at vertices of subdomains, and certain local spaces associated with interfaces. The
coarse space is not standard and can be named an exotic one.

A Neumann-Neumann method for solving systems of linear equations arising from
conforming mortar discretizations of a plate problem which is constructed and ana-
lyzed in [Mar99b], can be adapted to the nonconforming cases of the Adini and Morley
discretizations considered in this paper. The analysis of the Neumann-Neumann meth-
ods for the Adini case can be done in a similar way to that in [Mar99b] utilizing some
technical results which can also be found in [Mar99b], while the case of the Morley
element requires some new technical results which have been obtained and which will
be published elsewhere.

The described methods are almost optimal, i.e. the number of iterations required to
decrease the energy norm of the error by a conjugate gradient method is proportional
to (1 + log(H

h )), where H = maxi(diam Ωi) and h = infi hi.
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