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6. Operator Theoretical Analysis to Domain
Decomposition Methods

Norikazu SAITO1, Hiroshi FUJITA2

Introduction

The purpose of the present paper is to give a brief summary of our recent study on the
domain decomposition method from an operator theoretical point of view. There are
a large number of works devoted to the mathematical analysis of the domain decom-
position methods. Most of these works carry out the convergence analysis without any
assumptions of general nature on the geometry of the decomposition. However, from
the viewpoint of mathematical theory as well as from that of applications in science
and engineering, we are seriously interested in the effect of relationships between the
rate of convergence of iterations and the geometric shape of decomposed domains.
Moreover, the choice of relaxation parameters is of importance. Our method enables
us to get explicit convergence factors under some assumptions on geometric shapes
of decomposed domains. Furthermore, our convergence theorems give information on
the choice of relaxation parameters which guarantees a fast convergence.

The problem considered in this paper is well discussed in the monograph by A.
Quarteroni and A. Valli (Domain Decomposition Methods for Partial Differential
Equations, Oxford, 1999), and the results described here may be said to be par-
ticular cases of theorems presented in their monograph. However, the advantage of
employing our method is already described above.

We shall present a rough sketch of the method of analysis and theorems without
the proofs; for the complete proofs, we refer to [Fuj97], [FKKN96], [FFS98] and [FS97].

Model Problem

In order to fix the idea, let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary
Γ, and consider the Poisson equation:

−�u = f in Ω, u = β on Γ. (1)

We assume that f ∈ L2(Ω) and β ∈ H1/2(Γ). The exact solution of (1) is denoted by
ũ.

We divide the target domain Ω into two disjoint subdomains Ω1 and Ω2 by a
smooth simple curve γ;

Ω = Ω1 ∪ Ω2, Ω1 ∩Ω2 = ∅.
We assume that γ connects transversally two points on Γ. The outer unit normal
vector to the boundary of a domain in consideration is denoted by n. If necessary, by
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ν we indicate the one to γ outgoing from Ω1. Put Γ1 = ∂Ω1\γ and Γ2 = ∂Ω2\γ. The
curve γ is called the artificial boundary.

We consider the following domain decomposition algorithm which is well-known as
the Dirichlet-Neumann (DN) method. Take a function µ(0) defined on γ as the initial
guess to ũ|γ . Then, we successively generate u(k)

1 , u(k)
2 and µ(k+1), for k = 0, 1, 2, · · · ,

by solving 


−�u(k)
1 = f in Ω1,

u
(k)
1 = β on Γ1,

u
(k)
1 = µ(k) on γ,



−�u(k)
2 = f in Ω2,

u
(k)
2 = β on Γ2,

∂u
(k)
2

∂n
= −∂u

(k)
1

∂ν
on γ,

The value of µ(k) is adapted by

µ(k+1) = (1− θ)µ(k) + θu(k)
2 |γ ,

where θ is the relaxation parameter subject to 0 < θ < 1.

Notation. The basic Hilbert space in our consideration is X = L2(γ). The usual
L2(γ) inner product and norm are denoted by (·, ·)X and ‖·‖X , respectively. The space
V = H1/2

00 (γ) is familiar (See, for example, [LM72]), and the norm of V is denoted by
‖ · ‖V . For any ξ ∈ V , a solution in H1(Ω1) of the harmonic problem

�w = 0 in Ω1, w = 0 on Γ1, w = ξ on γ

is called the harmonic extension of ξ into Ω1 and is denoted by w = H1ξ. The harmonic
extension H2ξ of ξ into Ω2 is defined in the similar manner. As a consequence of the
trace theorem (Theorem 1.5.2.3, [Gri85]) and the elliptic estimates, we have

C‖ξ‖V ≤ ‖∇Hiξ‖L2(Ωi) ≤ C′‖ξ‖V (∀ξ ∈ V ) (2)

with domain constants C > 0 and C′ > 0, for i = 1, 2.

Amplification Operator for the Error

It is easy to derive that the error ξ(k) = µ(k) − ũ|γ can be expressed as
ξ(k+1) = (1− θ)ξ(k) − θS−1

2 S1ξ
(k). (3)

Here S1 and S2 stand for the Steklov-Poincaré (SP) operators corresponding to Ω1

and Ω2, respectively. The formal definition of S1 is

S1ξ =
∂(H1ξ)
∂ν

∣∣∣
γ

for ξ ∈ V . S2 is also defined in the similar way. Actually, thought Kato’s represen-
tation theorems concerning unbounded quadratic forms in a Hilbert space ([Kat76]),
we have:
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1. Si is a positive and self-adjoint operator, and S
1/2
i is so too.

2. The domain D(S1/2
i ) of S1/2

i coincides with V .

3. The identity ‖S1/2
i ξ‖X = ‖∇Hiξ‖L2(Ωi) holds for any ξ ∈ V .

4. S−1
2 S1 with its domain D(S1) admits of a bounded extension H into V . In fact,
H is given by

H = S−1/2
2 (S1/2

1 S
−1/2
2 )∗S1/2

1 ,

where ∗ means the adjoint in X .

Therefore, the precise meaning of (3) is understood as:

ξ(k+1) = Aθξ
(k), (k = 0, 1, 2, · · · ), ξ(0) ∈ V,

where Aθ is the amplification operator for the error defined by

Aθ = (1− θ)I − θH, (I is the identity).

To treat Aθ as a self-adjoint operator, we employ the following device. Thus, we
introduce a special inner product in V in terms of the SP operator:

((ξ, η)) = (S1/2
2 ξ, S

1/2
2 η)X , (∀ξ, η ∈ V ). (4)

Then V again forms a Hilbert space with the new inner product (4). Moreover, by
virtue of (2), we deduce that the corresponding norm |||·||| = ((·, ·))1/2 is equivalent to
‖ · ‖V in V . Furthermore, under (4), H and therefore Aθ are self-adjoint in V .

Concerning the spectral radius rσ(Aθ) of Aθ, as a direct consequence of the spectral
mapping theorem (See, for example, [Yos80]), we have

rσ(Aθ) = sup
s∈σ(H)

|1− θ − θs|,

where σ(H) denotes the spectrum of H .

Shape Conditions and Convergence Results

Throughout this section, we assume that γ is a line segment on the x2-axis. In order
to evaluate rσ(Aθ), we introduce shape conditions of subdomains under the notation:

• R denotes reflection with respect to the x2-axis defined by

R : (x1, x2) �→ (−x1, x2).

• Tm, m being a positive constant, denotes the contraction mapping along the
x1-axis defined by

Tm : (x1, x2) �→
(x1

m
,x2

)
.
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Conditions (Im) and (Il). Let 1 ≤ m <∞. We say that Condition (Im) is satisfied
if

RTmΩ2 ⊆ Ω1.

On the other hand, for 1 ≤ l ≤ ∞, we say that Condition (Il) is satisfied if

RTlΩ1 ⊆ Ω2.

In the above definition, we understand that Condition (Il) is not satisfied if l = ∞.
The following lemma is a consequence of Conditions (Im) and (Il).

Lemma 1 Let 1 ≤ m < ∞ and 1 ≤ l ≤ ∞, and suppose that both Conditions (Im)
and (Il) are satisfied. Then we have

1
l
≤ H ≤ m. (5)

That is, 1/l ≤ s ≤ m holds for any s ∈ σ(H).

Therefore, concerning a convergence of the DN method, we obtain the following
theorems:

Theorem 1 Let 1 ≤ m <∞ and 1 ≤ l ≤ ∞, and suppose that both Conditions (Im)
and (Il) are satisfied. For 0 < θ < 1, we define

r̃(θ) =
{
1− (1 + 1

l )θ for 0 < θ ≤ 2
m+l−1+2 ,

(m+ 1)θ − 1 for 2
m+l−1+2 ≤ θ < 1.

Furthermore, assume that 0 < θ <
2

m+ l−1 + 1
. Then 0 < r̃ < 1 and there exists a

positive constant c0 depending only on Ω2 such that

‖ξ(k)‖V ≤ c0r̃(θ)k‖ξ(0)‖V , (k = 1, 2, 3, · · · ).

Theorem 2 Under the same assumptions of Theorem 1, we have

‖u(k)
1 − ũ|Ω1‖H1(Ω1) ≤ c1r̃(θ)k‖u(0)

1 − ũ|Ω1‖H1(Ω1),

‖u(k)
2 − ũ|Ω2‖H1(Ω2) ≤ c2r̃(θ)k‖u(0)

2 − ũ|Ω2‖H1(Ω2),

where c1 and c2 are domain constants.

Theorem 3 Under the same assumptions of Theorem 1, by choosing θ =
2

m+ l−1 + 2
,

we get r̃opt =
m+ l−1

m+ l−1 + 2
as the optimal value of r̃.
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Optimality of (5)

The estimate (5) in Lemma 1 is really optimal in a certain sense. We below explain
this fact with the aid of a simple example. We consider the case where Ω is a rectangle
and γ is a line segment parallel to the lateral sides of the rectangle. Specifically, we
assume that, for 0 < a1 ≤ a2 and b > 0,


Ω1 = {(x1, x2); −a1 < x1 < 0, 0 < x2 < b},
Ω2 = {(x1, x2); 0 < x1 < a2, 0 < x2 < b},
γ = {(0, x2); 0 < x2 < b}.

Let ξ ∈ V and write

ξ =
∞∑

n=1

cnφn, cn = cn(ξ) = (ξ, φn)X ,

where φn are the eigenfunctions of (7) which will appear in Appendix. In this case,
the harmonic extensions w1 = H1ξ and w2 = H2ξ can be expressed explicitly. In
particular, we have

∂w1

∂x1

∣∣∣
x1=0

=
∞∑

n=1

√
λncn coth(

√
λna1)φn(x2),

where
√
λn = nπ/b and coth s = (es + e−s)(es − e−s)−1. Hence

S1φn =
√
λn coth(

√
λna1)φn,

since cj = (φn, φj)X = δn,j (Kronecker’s delta). This means that ζ
(1)
n =

√
λn coth(

√
λna1)

are the eigenvalues of S1. In the similar way, ζ
(2)
n =

√
λn coth(

√
λna2) are the eigen-

values of S2. φn is the eigenfunction of S1 and S2 corresponding to ζ(1)n and ζ(2)n ,
respectively. The operator H is a compact operator in X , since, from Lemma 2 in
Appendix, the imbedding operator from V into X is compact. Therefore, the spec-
trum of H consists of only the set of the eigenvalues {ζ(1)n /ζ

(2)
n }∞n=1. As a result, by

Rayleigh’s principle,

sup
ξ∈V

((Hξ, ξ))
|||ξ|||2 =

ζ
(1)
1

ζ
(2)
1

=
tanh(πa2/b)
tanh(πa1/b)

≡ τ(a1, a2, b).

In addition, we have

inf
ξ∈V

((Hξ, ξ))
|||ξ|||2 = inf

n≥1

ζ
(1)
n

ζ
(2)
n

= 1,

since ζ(1)n /ζ
(2)
n is a non-increasing sequence in n and is greater than 1. Therefore we

obtain
1 ≤ H ≤ τ(a1, a2, b).

On the other hand, both Conditions (Im) and (Il) are satisfied with l = 1 and m =
a2/a1;

1 ≤ H ≤ a2

a1
. (6)
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We now note that

1 < τ(a1, a2, b) <
a2

a1
, (b > 0) and τ(a1, a2, b)→ a2

a1
, (b→ ∞).

This means that the estimate (6) by Conditions (Im) and (Il) is really optimal when
b is sufficiently large for fixed a1 and a2.

Remarks

1. Numerical results to exemplify our theoretical results are presented in [Fuj97],
[FKKN96], [FFS98] and [FS97].

2. Our method of analysis works for some other domain decomposition algorithms,
for instance, the Neumann-Neumann method proposed in [BGLTV89].

3. The similar problem for the Stokes equations is discussed in [Sai00]. There a
new important role of the inf-sup constant is revealed.

Appendix. An Equivalent Norm to ‖ · ‖V
We assume that γ is a line segment on the x2-axis. Let {λn}∞n=1 be the set of the
eigenvalues of the eigenvalue problem:

− d2

dx2
2

φ = λφ in γ, φ = 0 on ∂γ (7)

and, let φn = φn(x2) be the eigenfunction corresponding to λn which is normalized
as ‖φn‖X = 1. Then each element ξ ∈ X can be expanded by the Fourier series as
follows:

ξ =
∞∑

n=1

cnφn with cn = (ξ, φn)X .

We introduce

U1/4 =
{
ξ =

∞∑
n=1

cnφn ∈ X ;
∞∑

n=1

c2nλ
1/2
n <∞

}

with the norm

‖ξ‖
U

1/4 =
( ∞∑

n=1

c2n +
∞∑

n=1

λ1/2
n c2n

)1/2

for ξ =
∞∑

n=1

cnφn ∈ U1/4. (8)

The space U1/4 forms a Hilbert space equipped with the norm ‖ · ‖U1/4 . Moreover,
U1/4 coincides with the domain D(L1/4) of the fractional power of L, where L means
a minus Laplacian on γ with the zero boundary condition. Then we have, by virtue
of [Fuj67], V = U1/4 with the equivalent norm (8). This implies, in view of the closed
graph theorem, that

C‖ξ‖V ≤ ‖ξ‖U1/4 ≤ C′‖ξ‖V , (∀ξ ∈ V ).
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Namely, we can employ ‖·‖U1/4 as the norm of V . This sometimes gives a better view-
point of our discussion. For instance, the following proposition is an easy consequence
of (8).

Lemma 2 U1/4 = D(L1/4) is compactly imbedded in X, if γ is a line segment.

Proof We set

iNξ =
N∑

n=1

cnφn for ξ =
∞∑

n=1

cnφn ∈ X.

The operator iN is a degenerate operator from U1/4 into X . Let i be the imbedding
operator from U1/4 into X . Then we can calculate as

‖(i− iN )ξ‖2
X =

∞∑
n=N+1

c2n ≤ λ−1/2
N+1

∞∑
n=1

c2nλ
1/2
n ≤ λ−1/2

N+1 ‖ξ‖2
U1/4 .

Thus we have ‖i− iN‖U1/4,X ≤ λ−1/4
N+1 → 0 as N → ∞. Since degenerate operators iN

are compact, i is also compact.
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