
12th International Conference on Domain Decomposition Methods
Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c©2001 DDM.org

47. Shape Optimization for an Acoustic Problem

H. Suito 1, H. Kawarada 2

Introduction

In this paper, an optimal shape design for an interfacial boundary between different
media, through which sound propagates, is discussed. For example, designs for sound-
proof walls along high-speed train routes or highways, walls of concert halls, etc are
included in the same category.

For the above-mentioned problems, an algorithm to search for an optimal shape
was proposed and tested numerically in the three-dimensional problems in [KS99], in
which Fuzzy Optimization Method (FOM)[KS97] was used effectively.

Originally, FOM was invented as a local minimizer search algorithm. In order
to look for a global minimizer, Multi-start Fuzzy Optimization Method (MS-FOM),
which is a hybrid algorithm with FOM and Genetic Algorithms (GAs), has been
developed on the basis of FOM[KOPS98].

An application of MS-FOM to such optimization problems makes it possible not
only to look for a global minimizer but also to clarify the structure of the manifold
of the cost functional defined in the parameter space. This fact depends mainly upon
the functions of MS-FOM, one of which is counting-up of all local minimizers.

Here, the algorithm to search for an optimal shape by use of MSFOM is briefly
stated and numerical results using it are presented. An observation of such results
indicates the rather precise structure of the cost manifold, i.e., the distribution of local
maximizers and minimizers in the parameter space. Such observation may be impos-
sible by an application of other global minimizer searching algorithms, for example,
Genetic Algorithms.

Finally, physical meanings of a set of local maximizers will be discussed from the
view point of resonance phenomena corresponding to the variations of eigenfrequencies
of coupled media based on the shape change of the interfacial boundary. Through
the discussion mentioned above, shape optimization for an acoustic problem arouses
careful treatment to look for a global minimizer.

Shape optimization problem

Configuration

• Γtop and Γbottom are rigid boundaries, i.e., the density of these walls is infinity.
Hence, a sound wave is completely reflected at these boundaries.

• Γin is a vibrating plate which generates a sound wave.
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Figure 1: Geometry

• Ω1 is occupied by water.

• Ω2 is assumed to be made of pine timber, the role of which is to absorb the
sound wave coming through Ω1.

• Γ is the boundary between Ω1 and Ω2. We will try to optimize its shape to
transmit the sound wave into Ω2 as much as possible.

• Ω3 is a so-called Fictitious Domain, i.e., artificial domain to approximate the
boundary condition at infinity. In this domain, Helmholtz eq. with complex
wave number is assumed, which is derived from Navier-Stokes eq. including the
viscosity term. A sound wave transmitted from Ω2 is almost completely damped
in this domain and is not reflected into Ω2.

• Γabsorb, on which the amplitude of an absorbed sound wave in Ω2 is computed.

• Γout, on which no sound waves exist because of the damping effect in the domain
Ω3.

• Ω = Ω1 ∪ Γ ∪ Ω2 ∪ Ω3 = (0, lx)× (0, ly)

• u(i)(x, y) (i = 1, 2, 3) : Complex sound pressure.

• ki (i = 1, 2, 3) : Wave number.

• ω : Angular velocity of the incident wave.

• ρi (i = 1, 2, 3) : Density of medium.

• n : Outward normal vector on the boundaries.

• Γ : Interfacial boundary between Ω1 and Ω2.

• α : An incident angle of plane wave.

where i = 1 means water, i = 2 means pine and i = 3 means the fictitious domain.
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Parameterization of the interfacial boundary

In order to parameterize the shape of the interfacial boundary, a scaling function for
wavelet is introduced as follows;
Let

η0(x) =
{

1 x ∈ [0, 1],
0 else,

(1)

f0(x) = (−0.585x2 + 1.867x)η0(x), (2)
f1(x) = (1.170x2 − 2.734x+ 1.282)η0(x), (3)
f2(x) = (0.585x2 + 0.867x− 0.282)η0(x). (4)

and

φ(x) = f0(x) + f1(x− 1) + f2(x− 2). (5)

We define

φL,m(x) =
√
NL · φ(NLx−m) (m ∈ Z) (6)

where NL = 2L. Then {φL,m} constitutes an orthonormal set, i.e.,

∫
R

φL,mφL,m′dx = δm,m′ . (7)

By using these scaling functions, we parameterize the interfacial boundary by means
of a superposition of φL,m(y), i.e.,

Γ(y) =
∑
m

γm · φL,m(y). (8)

Admissible set for the deformation of the interfacial boundary is defined by

A1 = {γm ∈ R| |γm| ≤ K (m = 1, 2, 3, · · · ,M1)} . (9)

Definition of optimization problem

Define the state equation;



(�+ k2
i )u

(i)(Γ, a) = 0 in Ωi, (i = 1, 2, 3),
u(1)(Γ, a) = u(2)(Γ, a) = a on Γ,
∂u(i)(Γ, a)

∂n
= 0 on Γtop ∪ Γbottom (i = 1, 2, 3),

u(1)(Γ, a) = eik1cosαlxeik1sinαy on Γin,

u(2)(Γ, a) = 0 on Γout,

(10)
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and the cost function;

Jc(Γ, a) = −
∫

Γabsorb

∣∣∣u(2)(Γ, a)
∣∣∣2 dΓ

+
1
ε

∫
Γ

∣∣∣∣ 1ρ1

∂u(1)(Γ, a)
∂n

− 1
ρ2

∂u(2)(Γ, a)
∂n

∣∣∣∣
2

dΓ. (11)

In the definition of the cost function, the constraint caused by the transmission con-
dition is included as a penalty term with a small positive parameter ε.

The Dirichlet datum a is defined on Γ by

a =
∑
m

am cos(
πm

ly
y). (12)

Admissible set for a is represented by

A2 = {amm′ ∈ C (m,m′ = 0, 1, 2, · · · ,M2)||amm′ | ≤ L} . (13)

Therefore, our minimization problem is;

[Pr]: Minimize Jc(Γ, a) for (Γ, a) ∈ A = A1 ×A2.

Numerical solution of Helmholtz equation

In order to compute the sound field in the domain bounded by a complicated interfacial
boundary, the coordinate transformation is used as follows;

1. Generate mesh system in the deformed domain, which is the transformation
from physical domain to computational one;

x = x(ξ, η), y = y(ξ, η). (14)

2. Transform differential operators by use of (14).

3. Transform Helmholtz eq. by use of (14).

Transformed Helmholtz equation is discretized by use of finite difference method.
Discretized Helmholtz eq. constitutes a large-scale system of equations. In order to
solve this system of equations, GPBi-CG method[Zha97] is adopted.

Hybridized algorithm by FOM and GAs

In this section, Multi-start Fuzzy Optimization Method, which is a hybridized algo-
rithm by Fuzzy Optimization Method (FOM) and Genetic Algorithms (GAs), is briefly
summarized. Let us define operators F , M and R as follows.

• F : Algorithm due to Fuzzy Optimization Method. This procedure is a down-hill
process on the cost manifold. (Refer to [KS97] for the detailed implementations.)
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• M : Mountain crossing algorithm. This procedure is a up-hill process on the
cost manifold. (Refer to [KOPS98] for the detailed implementations.)

• R : Rearrangement algorithm by GAs. In this procedure, starting points for the
next down-hill process are rearranged by use of GAs.

Solution algorithm of (Pr)

The algorithm of Multi-start FOM is stated in the following way;

Step 1 Give an initial population W 0 (the set of searchers).

Step 2 Compute Un := FWn (the set of local minimizers obtained).

Step 3 Compute V n :=MUn (the set of quasi-local maximizers obtained).

Step 4 Compute Wn := RV n (the set of rearranged searchers).

Step 5 Increase generation number n := n+1 and repeat steps from 2 to 4 until the
generation number n is beyond the preset one.

It should be noted that the operation R is applied in order to obtain a good viewing
point, which is taken by the surviving searchers through the fitness selection rule. It is
observed through our numerical experiments that the viewpoints for restarting initial
points are rather effective.

Results and discussions

Local minima, local maxima and a global minimum

As mentioned in the previous section, MS-FOM makes it possible to discover a set of
local minimizers. In fact, MS-FOM found at least four local minimizers A, B, C and D.
However, MS-FOM does not guarantee non-existence of local minimizers apart from
them. The values of the cost function of these local minimizers are 0.01039, 0.02800,
0.01758 and 0.02042, respectively. The local minimum A is the smallest among them
and is concluded to be the global minimum. Figures from 2 to 5 show the sound fields
corresponding to these local minimizers, respectively. Obviously, they correspond to
the different shapes of the interfacial boundary.

Figure 2: Real part of sound pressure corresponding to local minimizer A
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Figure 3: Real part of sound pressure corresponding to local minimizer B

Figure 4: Real part of sound pressure corresponding to local minimizer C

Figure 5: Real part of sound pressure corresponding to local minimizer D
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Perspective of the cost manifold

In order to characterize the cost manifold, we draw some one-dimensional cross-
sections of the cost manifold. Each one-dimensional cross section is a straight line
in the 18-dimensional parameter space connecting two local minimizers. Concretely,
figure 6 shows the values of the cost function on a straight line connecting local min-
imizers A and B, where A is the global minimizer. In this figure, 0 and 1 on the
horizontal axis correspond to the local minimizers A and B, respectively. Figure 7
and 8 show the values of the cost function on straight lines connecting B and C, and
B and D, respectively. We can see from these figures that the cost manifold has a lot
of local minimizers and maximizers. Furthermore, we conjecture from these figures
that the cost manifold originally forms convex envelopes and expect that the global
minimizer concluded in our computations seems to be a reliable global minimizer.
Then, what physical meanings do local maximizers have?
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Figure 6: A cross section of the cost manifold connecting local minimizers A and B
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Figure 7: A cross section of the cost manifold connecting local minimizers B and C

A reason of the existence of several local maximizers shown in figures 6, 7 and 8
may be that each local maximizer corresponds to the resonance frequencies of sound
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Figure 8: A cross section of the cost manifold connecting local minimizers B and D

propagation in coupled media. The eigenfrequencies of coupled media are sensitive
to the interfacial boundary between them. We checked similar phenomena in such
a case with a simpler geometry through numerical experiments, in which numerical
eigenfrequencies coincided with theoretical ones. In order to provide evidence for
such a conjecture, computations of eigenfrequencies to the domain with the related
interfacial boundary remain.

Finally, it should be emphasized that MS-FOM has not found out all local minimiz-
ers but some of them, however, it counted up the local minimizers very efficiently and
it was able to find out the reliable global minimizer. This fact shows the usefulness of
our search strategy such as repeating up-down procedures and rearrangement of start-
ing points mentioned in the previous section, which makes it possible to investigate
the perspective of the cost manifold.

Conclusions

The shape design of the interfacial boundary in order to minimize the amplitude of
a reflected wave was discussed by use of an algorithm based on MS-FOM. Since the
optimization problem with respect to sound propagation includes resonance structure,
the cost manifold has very complicated shapes. The numerical results show that
the algorithm works well for such problems by avoiding the influence of resonance
phenomena.
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