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24. FEM-FSM Combined Method for 2D Exterior
Laplace and Helmholtz Problems

T. Ushijima1

Introduction

Consider the Poisson equation −∆u = f in a planar exterior domain of a bounded
domain O. Assume that f = 0 in the outside of a disc with sufficiently large diameter.
The solution u is assumed to be bounded at infinity. Discretizing the problem, we
employ the finite element method (FEM, in short) inside the disc, and the charge
simulation method (CSM, in short) outside the disc. A result of mathematical analysis
for this FEM-CSM combined method is reported in this paper.

CSM is a typical example of the fundamental solution method (FSM, in short),
through which the solution of homogeneous partial differential equation is approxi-
mated as a linear combination of fundamental solutions of differential operator. Hence
the combined method for 2D exterior Laplace problem is extendable to the planar ex-
terior reduced wave equations. Our discretization procedure for the reduced wave
equation is also described in the paper.

Boundary bilinear forms of Steklov type for exterior

Laplace problems and its CSM-approximation form

Let Da be the interior of the disc with radius a having the origin as its center, and
let Γa be the boundary of Da. Let Ωe = (Da ∪ Γa)C , which is said to be the exterior
domain. We use the notation r = r(θ) for the point in the plane corresponding to
the complex number reiθ with r = |r| where |r| is the Euclidean norm of r ∈ R2.
Similarly we use a = a(θ), and �ρ = �ρ(θ), corresponding to aeiθ with a = |a|, and ρeiθ

with ρ = |�ρ|, respectively.
Fix a positive integer N . Set

θ1 =
2π
N

, θj = jθ1 for j ∈ Z.

Fix a positive number ρ so as to satisfy 0 < ρ < a. Let

�ρj = �ρ(θj), aj = a(θj), 0 ≤ j ≤ N − 1.

The points �ρj , and aj , are said to be the source, and the collocation, points, respec-
tively. The arrangement of the set of source points and collocation points introduced as
above is called the equi-distant equally phased arrangement of source points
and collocation points, in this paper.

1The University of Electro-Communications, ushijima@im.uec.ac.jp



224 USHIJIMA

For functions u(a(θ)) and v(a(θ)) of H1/2(Γa), let us introduce the boundary bilin-
ear form of Steklov type for exterior Laplace problem through the following formula:

b(u, v) = 2π
∞∑

n=−∞
|n|fngn,

where fn, and gn, are continuous Fourier coefficients of u(a(θ)), and v(a(θ)), respec-
tively. Namely fn is defined through the following formula:

fn =
1
2π

∫ π

−π

u(a(θ))e−inθdθ.

It is to be noted the following fact:
If u(a(θ)) is the boundary value on Γa of the function u(r) satisfying the following

boundary value problem (E) of (1) with ϕ = u(a(θ)):

(E)




−∆u = 0 in Ωe,
u = ϕ on Γa,

sup
Ωe

|u| < ∞,
(1)

then

b(u, v) = −
∫

Γa

∂u

∂r
vdΓ. (2)

(In (2), dΓ is the curve element of Γa. Namely dΓ = adθ in the polar coordinate
expression.)

A CSM approximate form for b(u, v), which is denoted by b
(N)

(u, v), is represented
through the following formula (3):

b
(N)

(u, v) = −2π
N

N−1∑
j=0

∂u(N)(aj)
∂r

v(N)(aj), (3)

where u(N)(r), and v(N)(r), are CSM-approximate solutions for u(r) satisfying (E) of
(1) with ϕ = u(a(θ)), and ϕ = v(a(θ)), respectively. Namely u(N)(r) is determined
through the following problem (E(N)) of (4) with f(a(θ)) = u(a(θ)):

(E(N))




u(N)(r) =
N−1∑
j=0

qjGj(r) + qN ,

u(N)(aj) = f(aj), 0 ≤ j ≤ N − 1,

N−1∑
j=0

qj = 0,

(4)

where
Gj(r) = E(r − �ρj)− E(r), E(r) = − 1

2π
log r.



FEM-FSM COMBINED METHOD 225

Problem (E(N)) of (4) is to find N + 1 unknowns qj , 0 ≤ j ≤ N, and it is uniquely
solvable for any fixed ρ ∈ (0, a). See [KO88], [Ush98a], and [Ush98b].

Let us use the parameter γ as

γ =
ρ

a
,

and let

N(γ) =
log 2

− log γ
.

Modifying the treatment in [KO88] appropriately, we have the following Theorem:

Theorem 1 Fix a positive number b, 0 < b < a. Let u(r) be harmonic in a domain
containing the exterior domain of the disc with radius b having the origin as its center.
And let u(N)(r) be the solution of the problem (E(N)) of (4) with the data f(a(θ)) =
u(a(θ)). Let N ≥ N(γ). Then there exist constants B > 0 and β ∈ (0, 1), independent
of u (with the property above) and N , such that the following two estimates are valid:

max
r∈Ωe

∣∣∣u(r)− u(N)(r)
∣∣∣ ≤ B · βN ·max

|r|=b
|u(r)| ,

max
r∈Ωe

∣∣∣grad u(r)− grad u(N)(r)
∣∣∣
R2

≤ B · βN ·max
|r|=b

|u(r)| .

FEM-CSM combined method for exterior Laplace prob-
lems

Fix a simply connected bounded domain O in the plane. Assume that the boundary C
of O is sufficiently smooth. The exterior domain of C is denoted by Ω. Fix a function
f ∈ L2(Ω) with the property that the support of f , supp(f), is bounded. Choose a so
large that the open disc Da may contain the union O ∪ supp(f) in its interior. The
following Poisson equation (E) of (5) is employed as a model problem.

(E)




−∆u = f in Ω,
u = 0 on C,

sup
|r|>a

|u| < ∞.
(5)

The intersection of the domain Ω and the disc Da is said to be the interior domain,
denoted by Ωi: Ωi = Ω ∩ Da. Consider the Dirichlet inner product a(u, v) for u, v ∈
H1(Ωi):

a(u, v) =
∫

Ωi

grad u grad v dΩ.

Since the trace γav on Γa is an element of H1/2(Γa) for any v ∈ H1(Ωi), the boundary
bilinear form of Steklov type b(u, v) is well defined for u, v ∈ H1(Ωi). Therefore we
can define a continuous symmetric bilinear form:

t(u, v) = a(u, v) + b(u, v)
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for u, v ∈ H1(Ωi). Let F (v) be a continuous linear functional on H1(Ωi) defined
through the following formula:

F (v) =
∫

Ωi

fv dΩ.

A function space V is defined as follows:

V =
{
v ∈ H1(Ωi) : v = 0 on C}

.

Using these notations, the following weak formulation problem (Π) of (6) is defined.

(Π)
{

t(u, v) = F (v), v ∈ V,
u ∈ V.

(6)

Admitting the equivalence between the equation (E) of (5) and the problem (Π)
of (6), we consider the problem (Π) of (6) and its approximate ones hereafter.

Fix a positive number ρ so as to satisfy 0 < ρ < a. For a fixed positive integer N ,
set the points �ρj,aj , 0 ≤ j ≤ N − 1, as the equi-distant equally phased arrangement
of source points and collocation points.

A family of finite dimensional subspaces of V :

{VN : N = N0, N0 + 1, . . . }

is supposed to have the following properties:

(VN − 1) VN ⊂ C(Ωi).

(VN − 2)
{

For any v ∈ VN , v(a(θ)) is an equi−distant piecewise linear
continuous 2π−periodic function with respect to θ.

(VN − 3) min
v∈VN

a(v − vN ) ≤ C

N
||v||H2(Ωi), v ∈ V ∩ H2(Ωi).

In the property (VN − 3), C is a constant independent of N and v, and

a(v) = a(v, v)1/2, v ∈ V.

To construct a family {VN} with the conditions (VN − 1), (VN − 2) and (VN − 3), we
employ the curved element technique due to [Zlá73] .

For u, v ∈ H1(Ωi) ∩ C(Ωi), we define a bilinear form t
(N)

(u, v) as follows.

t
(N)

(u, v) = a(u, v) + b
(N)

(u, v).

A family of approximate problems (Π
(N)

) of (7) is stated as follows.

(Π
(N)

)

{
t
(N)

(uN , v) = F (v), v ∈ VN ,

uN ∈ VN .
(7)

We can show the following error estimate:
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Theorem 2 Suppose that supp(f) is contained in a disc Db with the radius b(< a)
having the origin as its center. Let the function D(ξ) of ξ ∈ (0, 1) be defined through

D(ξ) =
ξ

(1− ξ)3
.

Let N ≥ N(γ). Then there is a constant C such that

||u − uN ||H1(Ωi) ≤ C

{
BβN +

1 +D( b
a )

N

}
||f ||L2(Ωi),

where the constants B and β ∈ (0, 1) are described in Theorem 1 for the set of param-
eters {a, ρ, b}. In the above, the constant C is independent of the inhomogeneous data
f and N .

Reduced wave problem in the outside of an open disc

Let k be the length of the wave number vector. Consider the following reduced wave
problem (Ef) of (8) in the exterior domain Ωe of the circle Γa with radius a having
the origin as its center.

(Ef)




−∆u − k2u = 0 in Ωe,
u = f on Γa,

lim
r→∞

√
r
{

∂u
∂r − iku

}
= 0.

(8)

In the above, f is a complex valued continuous function on Γa.
The solution u = u(r) of the problem (Ef) of (8) is represented as

u =
∞∑

n=−∞
fn

H
(1)
n (kr)

H
(1)
n (ka)

einθ,

where fn is the continuous Fourier coefficient of the function f(a(θ)), and H
(1)
n (z) is

the n-th Hankel function of the first kind.
The boundary bilinear form b(u, v) of Steklov type corresponding to the problem

(Ef) of (8) is given by the following formula:

b(u, v) = 2π
∞∑

n=−∞
µ|n|fngn,

where

µn = k
Ḣ

(1)
n (ka)

H
(1)
n (ka)

with Ḣ(1)
n (z) =

d

dz
H(1)

n (z) for n = 0, 1, 2, . . . .
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FSM approximate problem for the reduced wave prob-

lem in the outside of an open disc

Fix a positive number ρ so as to satisfy 0 < ρ < a. For a fixed positive integer N , set
the points �ρj,aj , 0 ≤ j ≤ N − 1, as the equi-distant equally phased arrangement of
source points and collocation points.

The FSM approximate problem (E(N)
f ) of (9) for the problem (Ef) of (8) in the case

of equi-distant equally phased arrangement of source points and collocation points is
defined through the following:

(E(N)
f )




u(N)(r) =
∑N−1

j=0 qjGj(r),

u(N)(aj) = f(aj), 0 ≤ j ≤ N − 1.
(9)

We use basis functions Gj(r) in this problem represented as follows, with the use of
the constant multiple of the fundamental solution of Helmholtz equation, H

(1)
0 (kr),

Gj(r) = H
(1)
0 (k|reiθ − ρeiθj |), 0 ≤ j ≤ N − 1.

FSM approximate form for the boundary bilinear

form of Steklov type

Setting
g(θ) = H

(1)
0 (k|aeiθ − ρ|),

we define for l ∈ Z,
gl = g(θl).

The two-sided infinite sequence {gl : l = 0,±1,±2, . . .} has the period N . Further it is
symmetric with respect to N/2. A wave propagation matrix G is defined through

G = (gjk)0≤j,k≤N−1, gjk = gk−j , 0 ≤ j, k ≤ N − 1.

It is to be noted that the matrix G is a complex valued symmetric cyclic square matrix
of order N . The problem (E(N)

f ) of (9) is represented as

(E) Gq = f , with q = (qj)0≤j≤N−1, f = (f(aj))0≤j≤N−1.

Denote eigenvalues of the matrix G by λj , 0 ≤ j ≤ N − 1. Then we have the
following representation:

λj =
N−1∑
l=0

glω
jl, 0 ≤ j ≤ N − 1, with ω = eiθ1 .

All the eigenvalues of G differ from zero if and only if the matrixG is regular. Therefore
the problem (E(N)

f ) of (9) is uniquely solvable if and only if the following condition
holds good:

λj �= 0, 0 ≤ j ≤ N − 1.
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Assuming the above condition, define an FSM approximate boundary bilinear form

b
(N)

(u, v) of the boundary bilinear form b(u, v) through the same formula (3) as in
the case of exterior Laplace problem, in which u(N)(r), and v(N)(r), are solutions of
the FSM approximate problem (E(N)

f ) of (9) with the boundary data f = u(a(θ)), and
f = v(a(θ)), respectively.

FEM-FSM combined method for the reduced wave

problem in the exterior of a general scattering body

Fix a simply connected bounded domain O in the plane. Assume that the boundary
C of O is sufficiently smooth. The exterior domain of C is denoted by Ω. Let g be
a function representing the plane wave with the wave number vector (l,m). More
precisely, set

g(x, y) = ei(lx+my), l2 +m2 = k2.

Consider the following reduced wave problem (E) of (10).

(E)




−∆u− k2u = 0 in Ω,
u+ g = 0 on C,

lim
r→∞

√
r
{

∂u
∂r − iku

}
= 0.

(10)

As in the case of Poisson equation in the second section, the intersection of the domain
Ω and the disc Da is said to be the interior domain, denoted by Ωi.

For complex valued functions u, v ∈ H1(Ωi), consider the Dirichret inner product
a(u, v):

a(u, v) =
∫

Ωi

grad u grad v dΩ,

where v represents the complex conjugate of v. Further the L2 inner product for
u, v ∈ L2(Ωi) is denoted by m(u, v):

m(u, v) =
∫

Ωi

uv dΩ.

Since the trace γav on Γa is an element of H1/2(Γa) for any v ∈ H1(Ωi), we can see
the boundary bilinear form of Steklov type b(u, v) is well defined for u, v ∈ H1(Ωi)
(See, for example, [Zeb92].). Therefore we can define a continuous bilinear form:

t(u, v) = a(u, v)− k2m(u, v) + b(u, v)

for u, v ∈ H1(Ωi). Hereafter, denoting the function space H1(Ωi) by W , let

V = {v ∈ W : v = 0 on C} .

With these notations, the following weak formulation problem (Π) of (11) is de-
fined.

(Π)




t(u, v) = 0, v ∈ V,
u+ g = 0 on C,
u ∈ W.

(11)
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Admitting the equivalence between the equation (E) of (10) and the problem (Π) of
(11), we consider the problem (Π) of (11) and its approximate ones hereafter.

A family of finite dimensional subspaces of W ,

{WN : N = N0, N0 + 1, . . . } ,

is supposed to have the following properties:

(WN − 1) WN ⊂ C(Ωi).

(WN − 2)
{

For any v ∈ WN , v(a(θ)) is an equi−distant piecewise linear
continuous 2π−periodic function with respect to θ.

Define an approximate space VN of V through

VN = WN ∩ V.

For u, v ∈ H1(Ωi) ∩ C(Ωi), set

t
(N)

(u, v) = a(u, v)− k2m(u, v) + b
(N)

(u, v).

Fix an element gN of WN which coincides with g at the nodal points on the interior
boundary C.

Now we can set the following approximate problem (Π
(N)

) of (12).

(Π
(N)

)




t
(N)

(uN , v) = 0, v ∈ VN ,

uN + gN = 0 on C,

uN ∈ WN .

(12)

Thus we have formulated an FEM-FSM combined method for the reduced wave prob-
lem in the exterior of a general scattering body.
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