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Mortar Element Method in Case of Jumping
Coefficients
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Introduction

The paper is devoted to designing an interface preconditioner for the mortar element
method. After brief overview of the problem in Introduction, we discuss the mortar
element method with different types of the Lagrange multiplier spaces. Next, we con-
sider the domain decomposition technique for the solution of mortar element systems
and outline the general framework of the solution of saddle-point systems which result
from the mortar element system. In the last two sections, we constuct the interface
preconditioner for the saddle-point Schur complement, which is the goal of the paper,
and we present numerical experiments illustrating the basic properties of the interface
preconditioner.

Designing the interface preconditioner is one of the most difficult problems in
the mortar element method. In this paper we continue development of the Dirichlet-
Dirichlet preconditioner [DA99, KV99]. We extend the method to the case of arbitrary
type of Lagrange multiplier space and large jumps of coefficients. The proposed algo-
rithm possesses natural parallelism. It is illustrated on a set of numerical experiments.

The mortar element method with Lagrange multipli-
ers

We consider a macro-hybrid P1 finite element method with respect to a decomposition
of the computational domain Ω ⊂ R

3 intom nonoverlapping regular shaped polyhedral
subdomains Ωi, 1 ≤ i ≤ m, i.e., Ω̄ = ∪m

i=1Ω̄i, Ωi ∩Ωj = ∅, 1 ≤ i �= j ≤ m. We assume
this decomposition to be geometrically conforming in the sense that if Θ̄ij = Ω̄i∩Ω̄j �=
∅, i �= j, then Θ̄ij is either a common vertex, a common edge, or a common face of Ωi

and Ωj . We refer to S :=
⋃{Θ̄ij : | Θij |�= 0, 1 ≤ i �= j ≤ m} as the skeleton of the

decomposition. We further decompose the skeleton, according to

S =
K⋃

k=1

γ̄k =
K⋃

k=1

δ̄k, (1)

into the so-called mortars γk and non-mortars δk, 1 ≤ k ≤ K, where each mortar is the
entire open face of two adjacent subdomains ΩM(k) and ΩM̄(k), 1 ≤ M(k) �= M̄(k) ≤
m, i.e., γk = ΘM(k),M̄(k). The non-mortars δk denote the corresponding opposite side
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of the mortars γk. Choosing H1/2(δk) as the trace space of H1(ΩM̄(k)) on δk, we
introduce

V :=
m∏

i=1

H1(Ωi), Λ :=
K∏

k=1

H−1/2(δk).

We consider an elliptic problem in the macro-hybrid primal variational formulation
[BF91]: Find (u, λ) ∈ V × Λ such that

a(u, v) + b(λ, v) = l(v), v ∈ V, (2)
b(µ, u) = 0, µ ∈ Λ.

Here, the bilinear forms a(·, ·) : V × V → R, b(·, ·) : Λ × V → R and the functional
l(·) : V → R are given by

a(v,w) :=
m∑

i=1

ai(v,w), ai(v,w) :=
∫

Ωi

[ρ∇v · ∇w + εvw]dx,

b(µ, v) :=
K∑

k=1

bk(µ, v), bk(µ, v) :=< µ, [v]J >δk
, l(v) :=

m∑
i=1

∫
Ωi

fvdx,

where [v]J |δk
:= v|ΩM̄(k)

− v|ΩM(k) , and < ·, · >δk
refers to the dual pairing between

H−1/2(δk) and H1/2(δk), f ∈ L2(Ω). For simplicity we assume that ε(x) = εi ≡
consti > 0, ρ(x) = ρi ≡ consti > 0 in Ωi, i = 1, . . . ,m.

Let Ωh
i be a conformal simplicial triangulation of Ωi, i = 1, . . . ,m. We denote

by V h
i the space of P1 conforming finite elements on Ωi associated with triangulation

Ωh
i . It is obvious that the traces of V h

M̄(k)
and V h

M(k) on δk are, generally speaking,
different.

We denote δh
k = Ωh

M̄(k)
∩ δk and consider three choices of the discrete Lagrange

multiplier space associated with continuous piecewise linear [BM94, Kuz95], piecewise
constant [AT95] and the Dirac functions, respectively:

Λh(δk) :=
{
v =

∑
i∈{N (δh

k )}
βiψi, ψi =

∑
j∈{B(δh

k )}

(ϕi, ϕj)L2(δk)∑
l∈{N (δh

k )}
(ϕl, ϕj)L2(δk)

ϕj + ϕi

}
(3)

Λh(δk) :=
{
v|σ ∈ P0(σ), σ ∈ D(δh

k )
}

(4)

Λh(δk) :=
{
v =

∑
i∈{N (δh

k )}
βiδ(xi)

}
(5)

Here N (δh
k ) is the set of inner nodes of δ

h
k , B(δh

k ) is the set of the nodes of δ
h
k lying on

∂δk, and D(δh
k ) is the mesh dual to δh

k [Fei93]. The element σ of D(δh
k ) with a center

node xi is defined via the baricentric coordinates on elements e of δh
k surrounding

xi, λj(e), j = 1, 2, 3 : σ = {x|λj(x) ≥ max
l �=j

λl, λj(xi) = 1}. Notation δ(x) stands for
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the Dirac function and ϕi stands for the standard Courant basis function, while {A}
denotes the set of indexes for nodes belonging to A.

Setting

V h :=
m∏

i=1

V h
i and Λh :=

K∏
k=1

Λh(δk),

the mortar finite element approximation of (2) requires the computation of (u, λ) ∈
V h × Λh such that

a(u, v) + b(λ, v) = l(v), v ∈ V h, (6)
b(µ, u) = 0, µ ∈ Λh.

We note that in contrast to (3),(4), in case (5) Λh/⊂ Λ and the mortar finite elements
are nonconforming ones. Since the paper is addressing a solution procedure for (6),
we do not discuss approximation properties of (6) here.

In the sequel, we denote by A ∼ B the spectral equivalence between the matrices
A and B or proportionality between values A and B, and by c or C, with or without
subscripts, positive constants.

Domain decomposition solver

General framework

The finite element problem (6) results in the system of linear algebraic equations in
the saddle-point form:

[
A BT

B 0

] [
u
λ

]
=

[
f
0

]
, or


A1 0 BT

1

· ·
· ·

· ·
0 Am BT

m

B1 . . . Bm 0




u1

·
·
·
um

λ

 =


f1

·
·
·
fm

0

 ,
(7)

where the block representations of the matrices A and B are associated with the
definition of the spaces V h and Λh, while the matrix A and the vector f are specified by
the bilinear form a(u, v) and the functional l(v), respectively. Under the assumptions
made, matrices Ai are symmetric positive definite and the whole matrix of system (7)
is nonsingular.

The linear problem (7) may be solved by several iterative techniques (the reader is
referred to [HIK+98, Kuz95] and references therein). The construction of a precondi-
tioner Rλ for the matrix BA−1BT is one of the most important issues. Usually Rλ is
called to be an interface preconditioner, or a Lagrange multiplier preconditioner. One
of possible constructions is the Dirichlet-Dirichlet preconditioner [DA99, KV99]. The
goal of this paper is to develop the parallel version of the Dirichlet-Dirichlet precondi-
tioner which is robust to both the types of Lagrange multipliers spaces and the jump
of coefficients.



234 VASSILEVSKI

Interface preconditioner

Let Γi := ∂Ωi \ ∂Ω, nΓi be the number of nodes of Γh
i := ∂Ωh

i ∩ Γi, MΓi ∈ R
nΓi

×nΓi

be the boundary mass matrix, di be the diameter of Ωi, i = 1, . . . ,m.
We introduce the matrix PΓi = w1,Γiw

T
1,Γi

,where w1,Γi =
1√
|Γi|

eΓi , eΓi = [1 . . . 1]T ∈
R

nΓi . We note that (MΓiw1,Γi , w1,Γi) = 1, and PΓiMΓi are the MΓi-orthogonal pro-
jectors, i = 1, . . . ,m. Let εi ≤ cρi/d

2
i and let Āi be a matrix generated on Ωh

i by the
bilinear form ai(u, v) with ε = ρi/d

2
i . The matrices Ai and Āi have the block forms

Ai =
[

AΓi AΓiIi

AIiΓi AIi

]
and Āi =

[
ĀΓi ĀΓiIi

ĀIiΓi ĀIi

]
,

where AΓi , ĀΓi ∈ R
nΓi

×nΓi .

Lemma 1 [HIK+98, Kuz95] Under the assumptions made(
ĀΓi − ĀΓiIiĀ

−1
Ii
ĀIiΓi

)−1
+

1
εidi

PΓi ∼
(
AΓi −AΓiIiA

−1
Ii
AIiΓi

)−1
. (8)

The spectral equivalence takes place with constants independent of ρi, εi, di.

The above Lemma is used for the construction of a preconditioner to BA−1BT ,
since
BiA

−1
i BT

i = BΓi(AΓi −AΓiIiA
−1
Ii
AIiΓi)−1BT

Γi
, where matrix BΓi is the interface sub-

block of Bi, Bi = (BΓi , O). Using (8) we have

BA−1BT =
m∑

i=1

BiA
−1
i BT

i ∼
m∑

i=1

1
εidi

BΓiPΓiB
T
Γi

+ Ḡ, (9)

Ḡ =
m∑

i=1

BΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii
ĀIiΓi

)−1
BT

Γi
. (10)

Theorem 1 [KV99] Let the symmetric positive definite matrix D be such that the
spectrum of DḠ belongs to the interval [c1, c2], 0 < c1 < c2 and let

Rλ :=
m∑

i=1

1
εidi

BΓiPΓiB
T
Γi

+D−1. (11)

Then

Rλ ∼ BA−1BT . (12)

The spectral equivalence takes place with constants independent of ρi, εi, di, m and
dependent on c1, c2.

MatrixRλ is a modification ofD−1 by a low rank matrixXXT =
m∑

i=1

1
εidi

BΓiPΓiB
T
Γi

with X =
(
. . . , 1√

εidi|Γi|
BΓieΓi , . . .

)
. The solution of a system with matrix Rλ may

be found by evaluations of matrix D:

R−1
λ = D −DX(I−1

m +XTDX)−1XTD,
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where Im ∈ R
m×m is the identity matrix. Thus, in order to construct a good precon-

ditioner for BA−1BT we have to find a preconditioner D to Ḡ such that DḠ ∼ I and
D is easily multiplied by a vector.

In order to motivate our further constructions, we briefly review already developed
ones. Let us suppose for a moment that ρi = 1, i = 1, . . . ,m. In [KV99] and in [DA99]
the following constructions were investigated, respectively:

D̃ =
m∑

i=1

BΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii
ĀIiΓi

)
BT

Γi
, (13)

D̃ = (BBT )−1BĀBT (BBT )−1. (14)

The choice (13) provides an easy parallel implementation, while (14) is not well paral-
lelized, since the global matrix BBT is to be factorized. A parallel iterative inversion
of BBT seems to be too expensive in view of large condition number of BBT (of order
of 100 in cases (3),(4)). On the other hand, the choice (13) yields the small ratio c2/c1
only in the case (5), in contrast to (14) providing satisfactory results in the case (3).
The main reason for that is a mutual annihilation of the jump matrices in the product
D̃Ḡ = (BBT )−1BĀBT (BBT )−1BĀBT .

A natural compromise between (13) and (14) is an approximation of (BBT )−1 by
a block diagonal matrix whose blocks are associated with interfaces. The construction
of this matrix will be considered later.

Another important modification stems from the properties of the Neumann-Neu-
mann preconditioner [DRLT91, MB96]. Preconditioning the interface Schur com-
plement by assembling Neumann problems requires certain weights for the Neumann
problems [KMV93]. By analogy with the Neumann-Neumann preconditioner we weight
the Dirichlet problems in (13) by diagonal matrices wΓi . The entries of wΓi are recip-
rocal to the number of host subdomains Ωi, for any interface node.

We return to construction of block diagonal approximation of (BBT )−1. Let BΓi,j

be the j-face block of matrix BΓi , then

BBT =
m∑

i=1

BΓiB
T
Γi

=
m∑

i=1

 BΓi,1B
T
Γi,1

BΓi,1B
T
Γi,2

· · ·
BΓi,2B

T
Γi,1

BΓi,2B
T
Γi,2

· · ·
...

...
. . .

 = (15)

m∑
i=1

BΓi,1wΓiB
T
Γi,1

BΓi,2wΓiB
T
Γi,2

. . .

+
m∑

i=1

BΓi,1(1− wΓi)BT
Γi,1

BΓi,1B
T
Γi,2

· · ·
BΓi,2B

T
Γi,1

BΓi,2(1− wΓi)BT
Γi,2

· · ·
...

...
. . .

.

Such a decomposition of matrix BBT turns out to be numerically reasonable in the
sense that the inverse of the first term in (15) is a suitable substitution for (BBT )−1,
according to numerical evidence.

Taking into account the above observations we present the parallel version of
Dirichlet-Dirichlet preconditioner, in the case ρi = 1, i = 1, . . . ,m:

D =
m∑

i=1

F−1
Γi

BΓiωΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii
ĀIiΓi

)
ωΓiB

T
Γi
F−1

Γi
, (16)
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FΓi = blockdiag{FΓi,j}, FΓi,j = BΓi,j ωΓi B
T
Γi,j +BΓi� ,j� ωΓi� B

T
Γi� ,j� .

Here, Ωi� is the neighbor-subdomain to Ωi with shared faces j and j�. We note the
factorization of FΓi is feasible since FΓi is a sparse matrix.

Now let ρi > 0 be arbitrary. Then

Ḡ =
m∑

i=1

BΓi

(
ĀΓi − ĀΓiIiĀ

−1
Ii
ĀIiΓi

)−1
BT

Γi
≡ (17)

≡
m∑

i=1

1√
ρi
BΓi

(
ρ−1

i ĀΓi − ρ−1
i ĀΓiIiĀ

−1
Ii
ĀIiΓi

)−1
BT

Γi

1√
ρi
,

and the problem of construction D is reduced to the case ρi = 1 by substitutions
BΓi → BΓi/

√
ρi, Āi → Āi/ρi. Thus, the general form of the Dirichlet-Dirichlet

preconditioner is

D =
m∑

i=1

F−1
Γi

1√
ρi
BΓiωΓi

(
ρ−1

i ĀΓi − ρ−1
i ĀΓiIiĀ

−1
Ii
ĀIiΓi

)
ωΓiB

T
Γi

1√
ρi
F−1

Γi
,

FΓi = blockdiag{FΓi,j},

FΓi,j =
1√
ρi
BΓi,j ωΓi B

T
Γi,j

1√
ρi

+
1√
ρi�

BΓi� ,j� ωΓi� B
T
Γi� ,j�

1√
ρi�

,

which may be rewritten as:

D =
m∑

i=1

F−1
Γi

BΓiω
ρ
Γi

(
ĀΓi − ĀΓiIiĀ

−1
Ii
ĀIiΓi

)
ωρ

Γi
BT

Γi
F−1

Γi
, (18)

FΓi,j = BΓi,j ω
ρ
Γi
BT

Γi,j +BΓi� ,j� ωρ
Γi�

BT
Γi� ,j� , ωρ

Γi
= ωΓi/ρi.

It is clear that (18) differs from (16) only in the scaled count matrices wρ
Γi
.

Remark. The presence of Dirichlet boundary conditions for the original problem
reduces the rank of XXT since subdomains with a Dirichlet part of the boundary do
not contribute to XXT [Kuz95].

Numerical experiments

We present the effect of the Dirichlet-Dirichlet preconditioner for the model operator
−∇ · ρ∇ + ε with Neumann boundary conditions. The domain Ω is a union of four
similar tetrahedra Ωi sharing one common edge:

Ω =

{
x |

3∑
i=1

|xi| < 1
2
, x1 > 0

}
, m = 4,

Ω1 = {x ∈ Ω, x2 < 0, x3 < 0} , Ω2 = {x ∈ Ω, x2 < 0, x3 > 0} ,
Ω3 = {x ∈ Ω, x2 > 0, x3 < 0} , Ω4 = {x ∈ Ω, x2 > 0, x3 > 0} .
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We compare the Dirichlet-Dirichlet preconditioner Rλ for BA−1BT in three cases of
Lagrange multiplier spaces, (3), (4), (5). The comparison will be done for different
types of tetrahedral meshes: quasi-uniform, shape-regular, and anisotropic. We dis-
tinguish the above types of meshes by the metric H = diag{H1, H2, H3} in which the
meshes Ωh

i become quasi-uniform, i.e. consist of the given number NT of shape-regular
(in metric H) tetrahedra of the same size (in metric H). In the tables below we show
the estimated condition number of preconditioned Schur complement BA−1BT and
the number of PCG iterations applied to a system with BA−1BT in order to reduce
the Euclidean norm of residual by a factor of 106.

Coef. Mesh quasi-uniform isotropic anisotropic
ρi NT 800 6000 39000 800 6000 800 6000

Λh(δk) from (3)
ρ1,2,3,4 = 1 cond(#it) 29(19) 45(25) 29(26) 37(17) 44(20) 26(17) 32(22)

ρ1,2 = 1, ρ3,4 = 104 cond(#it) 36(13) 18(11) 17(12) 81(23) 170(24) 59(18) 18(13)
ρ1,3 = 1, ρ2,4 = 104 cond(#it) 52(19) 83(23) 41(21) 91(21) 81(22) 44(17) 69(22)

Λh(δk) from (4)
ρ1,2,3,4 = 1 cond(#it) 29(20) 36(25) 28(24) 34(16) 36(17) 23(16) 29(19)

ρ1,2 = 1, ρ3,4 = 104 cond(#it) 32(13) 19(12) 17(12) 74(20) 170(22) 51(19) 18(12)
ρ1,3 = 1, ρ2,4 = 104 cond(#it) 49(19) 83(24) 35(21) 83(20) 81(22) 35(15) 65(23)

Λh(δk) from (5)
ρ1,2,3,4 = 1 cond(#it) 17(16) 18(20) 20(26) 17(14) 18(18) 16(13) 18(18)

ρ1,2 = 1, ρ3,4 = 104 cond(#it) 20(12) 41(19) 22(20) 20(11) 36(17) 23(12) 20(17)
ρ1,3 = 1, ρ2,4 = 104 cond(#it) 18(13) 19(15) 21(19) 18(10) 19(12) 18(10) 19(13)

Table 1: Condition number of R−1
λ BA−1BT and #PCG iteration, ε = 1.

In Table 1 the quasi-uniform mesh is obtained on the basis of the metric H1 =
H2 = H3 = 1, and the isotropic and anisotropic refinements to the common edge
are defined by H1 = H2 = H3 = 0.5/(

√
y2 + z2 + 0.01) and H1 = 1, H2 = H3 =

0.5/(
√
y2 + z2+0.025), respectively. The meshes are generated in such a way that they

do not match on the interfaces. It implies that the number of tetrahedra in Ωh
i is equal

to NT only approximately. We consider three different distributions of coefficients ρi

in Ω: no jump, two simply connected subdomains with constant coefficient, and the
chess pattern.

In the next example we consider the effects of small value of coefficient εi and
large number of subdomains m. The domain Ω = (0, 1)3 is split into m = 6 (resp.
48 or 384) tetrahedron subdomains Ωi of the same diameter di =

√
3 (resp.

√
3/2 or√

3/4), i = 1, . . . ,m. We consider the Helmholtz operator −∆+ ε with homogeneous
Neumann boundary condition on ∂Ω and restrict the set of possible triangulations
by quasi-uniform ones and take the Lagrange multiplier space (3). The number of
tetrahedra NT in Ωh

i is chosen to be equal to 800. Slightly worse performance in the
cases m = 48, 384 is due to presence of the crosspoints.

In Table 3 we present the parallel properties of the method in terms of the execution
time of PCG iterations measured on different sets of processors. The measurement
was obtained using a DEC TruCluster with Dec alpha processors running at 400 MHz.
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ε \m m = 6 m = 48 m = 384
ε = 1 cond (# it) 26(26) 64(44) 84(45)

ε = 10−2 cond (# it) 35(20) 61(33) 62(28)
ε = 10−4 cond (# it) 29(15) 40(18) 19(7)

Table 2: Condition number of R−1
λ BA−1BT and #PCG iteration, quasi-uniform

meshes, ρ1,2,3,4 = 1, Λh(δk) from (3).

The Fortran code uses MPI library for interprocessor communications.

NT #Processors 2 4 8
800 time of PCG it. 3.0 1.5 0.9
2000 time of PCG it. 7.7 3.8 1.9

Table 3: Execution time of PCG iterations (sec), m = 48, quasi-uniform meshes,
ε = 1, ρ1,2,3,4 = 1.

Conclusions

The paper is addressing the construction of parallel interface preconditioner for the
mortar element method. The new version of the Dirichlet-Dirichlet method is dis-
cussed. It is easy to parallel and it is robust to such ”bad” parameters of an elliptic
boundary value problem as the number of subdomains, the mesh refinement, the jump
of the diffusion coefficient, the small value of perturbation parameter. Numerical ex-
periments exhibited the basic properties of the method.
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