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Introduction

High performance computing technology offers the petroleum industry the ability to
solve previously prohibitive large-scale reservoir problems. In July 1999, our group,
in cooperation with the Petroleum Exploration and Development Institute of Daqing
Oil Field, China, ran a million-gridblock-scale reservoir simulation on DAWN 2000,
which is a home-made supercomputer, and a loosely coupled PC cluster seperately.
The parallel computing methods that we used derived from the domain decomposition
methods with no overlap. The next goal of our group is to solve reservoir simulations
with millions of gridblocks on parallel machines. Unfortunately, it seems that the
original computing method is not scalable enough. We believe that the reason is
rather geologic than mathematical. As the simulating area becomes larger and larger,
the geologic faults will be more and more complicated. Therefore, the non-matching
grids on the interfaces of the substructures will be increasing largely, and possessing
entirely different properties. This will inevitably lead to the poor performance of the
original computing methods.

The purpose of this paper is trying to find an effective way to remove as many of
the geologic non-matching grids as possible from the interfaces. The operator split
method, not a very new technique, proposed by Douglas and Dupont[JD71], can solve
this problem. Because, for quite a few reservoir problems, the reservoir Ω can be taken
to be unions of right prisms. Or, mathematically, Ω = ∪Ωi, where Ωi = Ωi

xy × [0, li],
Ωi

xy ⊂ R2. When only upright wells are available, the original reservoir problem
can be divided into an xy-direction, two-dimensional problem and a z-direction, one-
dimensional problem in some of the subdomains. So, the geologic non-matching grids
on the interfaces can be greatly reduced.

For a detailed introduction of operator split method, see [JD71] and [Mar90]. Gen-
eralizations of this method to parabolic problems on nonrectangular regions were
presented by Hayes [Hay81]. Special treatments for convection-diffusion problems,
parabolic and hyperbolic equations were considered by Krishnamachari, Hayes and
Russell[SHR89] (without theoretical analysis), Bramble, Ewing and Li[BEL89], Bialecki
and Fernandes[BF93], and Fernandes and Fairweather [FF91]. Applications of these
methods to problems in fluid flow, physics of semiconductors and elastoplastic dynam-
ics were described by Hayes and Krishnamachari [HK84], Berezin and Yanenko[BY84],
and Migual, Pinsky and Taylor[MPT83].

The main purpose of using operator split method here is to reduce the geologic
non-matching grids on the interfaces, instead of saving the memory costs and the
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storage requirements as before. Based upon this method, we can further formulate
the domain decomposition algorithms. We expect that this combining method can
perform good scalability, and have nearly the same accuracy as the original methods,
which will be proved in this paper.

In this paper, we will make some a priori estimates for the operator split method
for reservoir problems. An optimal H1 convergence rate will be proved. It is necessary
to make a major, and probably unphysical assumption, as was done in [JR83], [Yua92],
[Che94] and [JDEW83], that the sources and sinks are smoothly distributed and the
resulting functions of interest are thus fairly smooth in space. The techniques involved
to prove the error bounds are quite different from the standard ones presented by
Douglas, Wheeler and Ewing, et.al.[JR83] [Yua92][JDEW83].

In this paper, we consider the single-phase, miscible displacement of one com-
pressible fluid with another in a porous medium. A set of model equations is given
as follows. For a more detailed description of the physical problem, see [Pea66]. Find
the concentration c = c(x, t) and p = p(x, t) that satisfy the following equations:

d(c)
∂p

∂t
+� · u = d(c)

∂p

∂t
−� · (a(c)� p) = q, x ∈ Ω, t ∈ J (1)

φ
∂c

∂t
+ b(c)

∂p

∂t
+ u · �c−� · (D(u)� c) = (ĉ− c)q, x ∈ Ω, t ∈ J (2)

where initial conditions and no flow boundary conditions are given by

p(x, 0) = p0(x), x ∈ Ω (3)
c(x, 0) = c0(x), x ∈ Ω (4)

and

u · ν = 0, x ∈ ∂Ω (5)
(D� c− cu) · ν = 0, x ∈ ∂Ω (6)

For simplicity, denote Ω = Ωxy×[0, l], J = (0, T ], and ν is the outward unit normal
vector on ∂Ω, the boundary of Ω. Here a(c), b(c), d(c), φ = φ(x) are specific reservoir
and fluid properties, u is the Darcy velocity of the fluid, D(u) is the diffusion coefficient
matrix which combines the effects of molecular diffusion and mechanical dispersion,
ĉ is the specific concentration at injection wells and the resident concentration at
production wells, and q = q(x, t) is the imposed external flow, positive for injection
and negative for production.

In [JR83] the authors presented and analyzed certain numerical approximations for
a two dimensional model. Extensions of these methods to more efficient time-stepping
procedures and methods of characteristics[Yua92] have since been developed.

The paper is organized as follows: In §2, the variational form and the elliptic pro-
jections of the problem are introduced. In §3, the numerical procedures are described.
In §4, some a priori estimates are presented, and in §5, the amount of calculations of
the operator split method are estimated.
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Variations and Projections

To obtain a variational form of (1) and (2), we multiply (1) and (2) by test functions
v, w ∈ H1(Ω), and integrate by parts, respectively. This yields

(φ
∂c

∂t
, w) + (b(c)

∂p

∂t
, w) + (u · �c, w) + (D(u)� c,�w)

= ((ĉ− c)q, w), w ∈ H1(Ω), t ∈ J (7)

(d(c)
∂p

∂t
, v) + (a(c)� p,�v) = (q, v), v ∈ H1(Ω), t ∈ J (8)

Let Mh = Mhc ,Nh = Nhp ⊂ W 1,∞ denote the finite element spaces spanned by
tensor product bases, whereMh = span[ψ(xy)

i (x, y)×ψ(z)
j (z)],Nh = span [ψ̄(xy)

i (x, y)×
ψ̄

(z)
j (z)], and Mh,Nh satisfy

inf
wh∈Mh

‖w − wh‖1,q ≤ K‖w‖l+1,qh
l
c, w ∈W l+1,q, 1 ≤ q ≤ ∞ (9)

and

inf
vh∈Nh

‖v − vh‖1,q ≤ K‖v‖r+1,qh
r
p, v ∈W r+1,q, 1 ≤ q ≤ ∞ (10)

respectively. We assume that all standard inverse relations hold on Mh and Nh.
We project the solution of the differential problem (1) and (2) into the finite

element spaces by means of coercive elliptic forms associated with the differential
system. First, for t ∈ J , let c̃ = c̃h : J → Mh be determined by the relations:

(D(u)� (c− c̃),�w) + (u · �(c− c̃), w) + σ1(c− c̃, w) = 0, w ∈ Mh (11)

where the constant σ1 is chosen to be large enough to insure the coercivity of the
bilinear form over H1(Ω).

Similarly, let p̃ = p̃h : calJ → Nh satisfy

(a(c)� (p− p̃),�v) + σ2(p− p̃, v) = 0, v ∈ Nh (12)

where σ2 is assumed to be coercive over H1(Ω).
Let:

ζn = cn − c̃n, En = c̃n − Cn, ηn = pn − p̃n, πn = p̃n − Pn

If the following restrictions are valid:
(i)q is smoothly distributed, the coefficients are smooth, therefore the solution is

smooth.
(ii)The coefficients a, d and φ are positively bounded below, as well as being

smooth.

0 < a∗ ≤ a(c) ≤ a∗, 0 < d∗ ≤ d(c) ≤ d∗, 0 < φ∗ ≤ φ(x) ≤ φ∗ (13)
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D = (Dij(u))3×3 is a positive definite matrix, and there exist constants D∗, D∗, 0 <
D∗ ≤ D∗, such that for ∀w ∈ R2,

D∗|w|2 ≤ (D(u)w,w) ≤ D∗|w|2 (14)

It follows from [JR83],[Che94] that:

‖ζ‖L2 + hc‖ζ‖H1 + ‖∂ζ
∂t

‖L2 + hc‖∂ζ
∂t

‖H1 ≤ K{‖c‖Hl+1 + ‖∂c
∂t

‖Hl+1}hl+1
c (15)

‖η‖L2 + hp‖η‖H1 + ‖∂η
∂t

‖L2 + hp‖∂η
∂t

‖H1 ≤ K{‖p‖Hr+1 + ‖∂p
∂t

‖Hr+1}hr+1
p (16)

‖c̃‖W 1∞(J ;W 1∞) + ‖p̃‖W 1∞(J ;W 1∞) ≤ K, ‖∂
2η

∂t2
‖H1 ≤ Khr

p (17)

‖∂
3η

∂t3
‖L∞ + ‖ � ∂2η

∂t2
‖L∞ + ‖ � ∂2ζ

∂t2
‖L∞ ≤ K (18)

where K is a positive constant that does not depend on hc and hp.

The Numerical Procedures

In this section, we present the numerical procedures of (1) and (2) by using operator
split methods. The associated matrix problem, however, will not factor, since, in
general, φ and d(c) are not single tensor products. So, on the left-hand side of (7) and
(8), φ and d(c) are replaced with certain type of patch approximations, respectively.
Using the approximate φ̃ and dn, perturbation terms can be added to the matrix

problem, so that it does factor as desired. For C =
mc∑
i=1

µiψi, P =
mp∑
i=1

γiψ̄i and

w =
mc∑
j=1

νjψj , v =
mp∑
j=1

κjψ̄j , define

(φ̃C,w) =
∫

Ω

{
mc∑

i,j=1

µiψiνjψj φ̃ij}dx (19)

(dnP, v) =
∫

Ω

{
mp∑

i,j=1

γiψ̄iκjψ̄jd
n
ij}dx (20)

where

φ̃ij =
√
φ(xi) · φ(xj) , xi ∈ supp(ψi) (21)

dn
ij =

√
d(xi, Cn) · d(xj , Cn) , xi ∈ supp(ψ̄i) (22)

The three-level operator split method is defined by finding {Cn, Pn} ∈ Mh ×Nh

such that

(φ̃∂tC
n, w) + (Un · �Cn, w) + (D(Un)� Cn,�w) + (b(Cn)∂tP

n, w)

+λ1∆t(φ̃� ∂tC
n,�w) + λ2

1(∆t)
2(φ̃

∂2

∂x∂z
∂tC

n,
∂2

∂x∂z
w)
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+λ2
1(∆t)

2(φ̃
∂2

∂y∂z
∂tC

n,
∂2

∂y∂z
w)

= ((Ĉn − Cn)qn, w) + ((φ̃ − φ)∂tC
n−1, w), w ∈ Mh (23)

suppose that Un is given by

Un = −a(Cn)� Pn, for ∀x ∈ Ω (24)

and

(dn∂tP
n, v) + (a(Cn)� Pn,�v) + λ2∆t(dn � ∂tP

n,�v)

+λ2
2(∆t)

2(dn ∂2

∂x∂z
∂tP

n,
∂2

∂x∂z
v) + λ2

2(∆t)
2(dn ∂2

∂y∂z
∂tP

n,
∂2

∂y∂z
v)

= (qn, v) + ((dn − d(Cn))∂tP
n−1, v), v ∈ Nh (25)

where the computing order is C1, P 2, U2, C2, P 3, U3, · · · . For stability, we require that
λ1 >

1
2
D∗/φ∗ and λ2 > a∗/d∗. We assume that the initial time steps are chosen small

enough, so that P 1 = P 0 = p0, and the initial values of C1 are derived through some
kind of iterative methods.

If we notice the fact that the concentration equation is normally convection-
dominated, a scheme combining the operator split procedure with the method of
characteristics can be defined by employing an approximation to the following char-
acteristic vector. For each (x, t), we let τ(x, t) be the unit vector in the indicated
characteristic direction such that

∂

∂τ(x, t)
=

u(x, c,�p)√|u(x, c,�p)|2 + φ2(x)
∂

∂x
+

φ(x)√|u(x, c,�p)|2 + φ2(x)
∂

∂t
(26)

= (|u|2 + φ2)−1/2(u1
∂

∂x
+ u2

∂

∂y
+ u3

∂

∂z
+ φ

∂

∂t
) (27)

Let φc = (|u|2 + φ2)1/2, we then see that (2) is equivalent to

φc
∂c

∂τ(x, t)
+ b(c)

∂p

∂t
−� · (D(u)� c) = (ĉ− c)q (28)

and the variational form (7) becomes

(φc
∂c

∂τ
, w) + (b(c)

∂p

∂t
, w) + (D(u)� c,�w) = ((ĉ− c)q, w), w ∈ H1, t ∈ J (29)

When solving for Cn+1, we define for each x ∈ Ω,

x̄ = x− Un(x)
φ(x)

∆t, C̄n(x) = Cn(x̄) (30)
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It is assumed that no flow occurs across the boundary. If x̄ crosses over the boundary
∂Ω, we can replace it with its mirror image point along the normal direction of ∂Ω.
We represented this point by ¯̄x. Therefore, C̄n is well defined. To approximate (29),
we use a backward difference quotient for ∂c/∂τ along the characteristic. Specifically,
we take

(
∂c

∂τ
)n+1(x) ≈ φ

cn+1(x)− cn(x̄)
∆tφc

(31)

so that

φc
∂cn+1

∂τ
≈ φ

cn+1 − c̄n

∆t
(32)

The numerical scheme based on combining the operator split procedure with the
method of characteristics for the concentration equation can be defined as

(φ̃∂tC
n, w) + (Un · �Cn, w) + (D(Un)� Cn,�w) + (b(Cn)∂tP

n, w)

+λ1∆t(φ̃� ∂tC
n,�w) + λ2

1(∆t)
2(φ̃

∂2

∂x∂z
∂tC

n,
∂2

∂x∂z
w)

+λ2
1(∆t)

2(φ̃
∂2

∂y∂z
∂tC

n,
∂2

∂y∂z
w) = ((Ĉn − Cn)qn, w)

+((φ̃− φ)∂tC
n−1, w)− (φ

Cn − C̄n

∆t
, w), w ∈ Mh (33)

The matrix problem associated with (23)-(25) , similarly for (33),(24),(25), is given
by

K
n
c (µ

n+1 − µn) = Φn (34)
K

n
p (γ

n+1 − γn) = Ψn (35)

where

Kn
c = (Diagc)1/2Kc(Diagc)1/2 ,Kn

p = (Diagn
p )1/2Kp(Diagn

p )1/2

Diagc =



φ̃(x1)

. . .
φ̃(xmc)


 , Diagn

p =



d(x1, Cn)

. . .
d(xmp , Cn)




Kij
c = ((ψj , ψi) + λ1∆t(�ψj ,�ψi) + λ2

1(∆t)
2[(

∂2ψj

∂x∂z
,
∂2ψi

∂x∂z
) + (

∂2ψj

∂y∂z
,
∂2ψi

∂y∂z
)])

Kij
p = ((ψ̄j , ψ̄i) + λ2∆t(�ψ̄j ,�ψ̄i) + λ2

2(∆t)
2[(

∂2ψ̄j

∂x∂z
,
∂2ψ̄i

∂x∂z
)(
∂2ψ̄j

∂y∂z
,
∂2ψ̄i

∂y∂z
)])

Φn
i = ((Ĉn − Cn)qn, ψi)− (Un · �Cn, ψi)− (D(Un)� Cn,�ψi)

−(b(Cn)∂tP
n, ψi) + ((φ̃ − φ)∂tC

n−1, ψi)
Ψn

i = (qn, ψ̄i)− (a(Cn)� Pn,�ψ̄i) + ((dn − d(Cn))∂tP
n−1, ψ̄i)



OS METHOD APPLIED IN RESERVOIR SIMULATIONS 247

Notice that Mh and Nh are spanned by tensor product bases, so Kc and Kp can
be rewritten in the following manner:

[I ⊗ (Cxy + λ∆tAxy)][(Cz + λ∆tAz)⊗ I] (36)

where Cxy,Axy correspond to a two-dimensional problem in horizontal planes of Ω,
while Cz,Az to a one-dimensional problem along the vertical lines in Ω.

”A Priori” Error Estimates

In order to derive the optimal H1 error estimates for the procedures (23)-(25), and
(33),(24),(25), We need to let ∂t act on the both sides of the error equation of the
pressure equation. Quite a few of the technical treatments were involved. After a
careful calculation, we obtain

Theorem 1 Suppose the restrictions of §2 be satisfied, and there is no flow at the
initial time, i.e. p0 ≡ const. The parameters hp and hc are chosen such that hr

p =

o(hc), hl
c = o(hp), r, l ≥ 2, ∆t = O(h2

c) = O(h2
p). If λ1 >

1
2
D∗/φ∗, λ2 > a∗/d∗, and

the initial values of C0 and C1 satisfy

‖C1 − c1‖2
H1 +∆t‖∂t(C − c)0‖2

L2 ≤ K(h2r
p + h2l

c + (∆t)2)

Then for hc and hp sufficiently small, we have

max
1≤n≤M

{‖Cn − cn‖2
H1 + ‖Un − un‖2

L2}

+∆t
M−1∑
n=1

{‖∂t(C − c)n‖2
L2 + ‖∂t(P − p)n‖2

L2} ≤ K(h2r
p + h2l

c + (∆t)2)

From the estimates, we know that the operator split method can maintain the
optimal H1 accuracy. Therefore, the new parallel computing method, the DDM com-
bining with the operator split method, can have nearly the same numerical accuracy
as the origianal method we used before.

Work Estimates

Suppose there are mp = m(hp),mc = m(hc) unknowns for the pressure equation
and the concentration equation respectively. The factorization of the matrices Kc

and Kp requires O(m
3/2
c +m

3/2
p ) operations, but this is done only once and used at

all successive time steps. The evaluation of (Diagc)−1/2 requires O(mc) operations,
while (Diagn

p )
−1/2 requires O(mp) operations for each time level. The solution, given

the factorization of Kc and Kp, requires O(mc logmc + mp logmp) operations. If
∆t = O(hr

p) = O(hl
c), i.e. ∆t = O(m−r/3

p ) = O(m−l/3
c ), and r, l ≥ 2, then the total

number of operations needed is O(mr/3+1
p logmp + m

l/3+1
c logmc), which is nearly

optimal since the solution is defined by O(mr/3+1
p + m

l/3+1
c ) parameters for a first-

order correct-in-time method.
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