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1 Additive Schwarz method for nonsymmetric problems :
application to frictional multicontact problems

P Alart 1, M. Barboteu 2, P Le Tallec 2, M. Vidrascu *

Introduction

In this paper, we present a generalization of a Neumann-Neumann domain decomposition
method for solving nonsymmetric elliptic systems in a scalable way. It uses the theoretical
framework of Schwarz additive decomposition method and introduces a coarse space well
adapted to nonsymmetric cases. The efficiency of this method is evaluated on nonsymmetric
frictional contact problems.

In iterative substructuring, the parallel solution of a complex structural problem is achieved
by splitting the original domain of computation in smaller nonoverlapping simpler subdo-
mains, and by reducing the initial problem to an interface system to be solved by a parallel
two-level preconditioned conjugate gradient method. Many variants of this approach have
been proposed and investigated in the recent literature, all associated to different choices of
preconditioners and of coarse spaces [BPS86], [Smi92], [LTDRV91].

Up to now, the main objectives when developing such preconditioners were to achieve
efficiency and scalability even in presence of complex geometries, strongly heterogeneous
coefficients, general elliptic operators (3D anisotropic elasticity, shells, etc ..) and arbitrary
meshes (unstructured, nonmatching, etc ..). These objectives cannot be reached without an
adequate coarse solver [DW92]. For FETI preconditioners, this coarse solver is introduced
by strongly imposing a kinematic constraint at each iteration (rigid body modes in FETI1
[FR94], rigid and corner modes in FETI2, corner modes only in FETI DP [FLL*01]). In bal-
anced Neumann-Neumann techniques, this solver appears while imposing orthogonality to an
adequate coarse space of singular modes. The recent applications have introduced two new
key dimensions in the development of such a coarse solver, namely its ability to handle non-
symmetric operators, and its industrial feasibility (automatic construction and cost efficiency).
In our case, this new perspective is motivated by multicontact frictional problems.

This evolution requires complete review of the construction process of such coarse solvers,
which is done hereafter in the framework of the Neumann-Neumann Domain Decomposition
Method. The key point is the construction of the local spaces Z; of rigid motions. For sym-
metric problems, the space Z; is the kernel KerS® of the local Schur operators, with the
possible addition of corner modes for fourth order problems. For advection diffusion prob-
lems, the good choice is based on constants. In the general case, the choice of Z; must both
set the arbitrary constants to zero in the solutions of the local Neumann problems (thus ensur-
ing a scale invariance of the related energy norm), and regularize these local problems. For
this purpose, we will introduce dual rigid modes obtained by solving local adjoint regularized
Neumann problems.
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The paper is organized as follows. The basic domain decomposition methodology is first
reviewed (§2), with an application to frictional contact problems illustrating the difficulties
arising in presence of nonsymmetric operators (§3). Such nonsymmetric problems are han-
dled in (§4) by reformulating the two level Neumann-Neumann preconditioner to an additive
Schwarz algorithm, and by defining an appropriate coarse space by duality. In the last section
(85), we test the efficiency of this updated general Neumann-Neumann preconditioner on the
numerical solution of nonsymmetric structural problems with contact and friction.

Balancing method for symmetric systems

The basic idea in nonoverlapping domain decomposition methods is to split the domain €2 of
study into N small nonoverlapping subdomains " (n = 1, N) and interfaces defined by :
o=UN,onu U, with T"=80"n (UJ,Y:1 am) - Q.

p#N
Substructuring techniques consist then in reducing the original global system to an interface

problem by a block Gaussian elimination of the internal degrees of freedom and in iteratively
solving the resulting variational interface problem :

JueV |/ <Su,v>=<fv> YWweV=TrHQ)]|r. 1)
N

The matrices S = ZRiSi(Ri)t and S¢ denote respectively the global Schur comple-
i=1

ment matrix (defined on T') and the local Schur complement matrices (defined on IT'¢ by
St = K' — (BY)Y(K!)'B). Above, (R) is the restriction operator which goes from T’

y i _ K‘l Bl
to I, and K*' = ( (Bi)t K
corresponding to the internal degrees of freedom X, the second one corresponding to the
interface degrees X¢ . The interface problem (1) can be solved by a preconditioned conjugate
gradient method (symmetric cases) or the GMRES method (nonsymmetric cases). Hereafter,
we use the multilevel Neumann-Neumann preconditioner. This iterative technique never re-
quires the explicit calculation of the matrix S. We have just to form the matrix vector products
Sp and M1t by solving independent auxiliary Dirichlet and Neumann problems on the local
subdomains and a global coarse problem defined on a space of singular (rigid body) motions.
Altogether, the product of the preconditioner M~! and of the residual gradient ¥ has the
following form,

) denotes the subdomain stiffness matrix, the first block

M-F = i {Dz‘ (§)~1 (D)t f'} — Gy,

i=1

where D? is a weighting matrix, defining a local partition of unity on the interface and (S)—1
denotes an regularized inverse of S¢. Moreover, G 7 is linear combination of subdomain rigid
body mations over the interface obtained by projection of the residual onto this set of rigid
body motions. In practice, the projection G - is obtained by solving a global optimization
problem over the interface I" in order to minimize the residual [LT94] :

min g, ||E|2 :==ming, {(SM '=S ) ) M ' -S ') F}. 2)
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This balanced preconditioner is very general and can be efficiently applied to linear or
nonlinear three-dimensional elasticity problems using either matching or nonmatching grids
[TSV94], to nonlinear plate or shell problems [TMV98].

A first “mechanical” nonsymmetric extension

As constructed above, the basic balanced Neumann Neumann preconditioner is not well
adapted to nonsymmetric problems. Indeed the minimization problem (2) is not well de-
fined for nonsymmetric Schur complement matrices. The numerical experiments [BAV01]
also show that the behaviour of the iterative Schur complement solver (GMRES algorithm) is
strongly perturbed when applied to structural problems with friction, i.e. when nonsymmetry
is introduced in the tangent matrices [4]. The first idea is to replace the matrix S by the sym-
metrized matrix S® (S® = S + S?). Another choice is to use a symmetric matrix which has a
mechanical meaning [BAV01] considering the interface reduced matrix S* with a zero friction
coefficient (S* = S ,—¢) to evaluate the norm of the difference between M~ and S—* and so
to formulate the coarse problem. Then the minimization problem takes the following form :

min G, |[E]2 = ming, {(S* (M —S B M-85 Vel @)

This minimum is reached for the function G ~ which cancels its gradient, which defines G ~
as the solution of the following equality :

(G's*G)y=-G's" Y (D' () ' (D)) 7, @)

i=1

which defines the coarse problem specially adapted to the nonsymmetry of the friction [BAVOL1].
As we will see later, the dependence due to nonsymmetry is reduced, but it is nonoptimal. So,
to establish a general nonsymmetric preconditioner, we now introduce a generalisation of this
preconditioner by viewing it as an additive Schwarz method.

Interpretation as additive Schwarz methods and general ex-
tension to nonsymmetric problems
The Neumann-Neumann preconditioner can in fact be viewed as an additive Schwarz tech-

nique [TV97] iteratively solving an interface problem with operator A = S on the interface
space V' using the preconditioner

M—l — A;l + Zli(Ai)fl(Iz’)t‘

Above, the operator Ag = S (resp. A’ = Sf) denotes an approximate restriction of the
o_riginal operator S onto the coarse space Vg = Eé\; D;Z; C V (resp. onto the local spaces
V1), the local spaces V;- C V; = Tr H(Q)|r: are locally defined by duality

Vit ={v; €DiVi, <Sv;vg>=0, VvgeVa}
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and the extension from local to global space is given by I = (I — Pg)D?, with Pg : V —
Vg the orthogonal S projection. This extension operator is in fact the key originality of the
Neumann-Neumann preconditioner. With this notation, the additive Schwarz preconditioner
reduces to the previous preconditioner

M~ =8, +) (I-Pg)Di(8) (D) (I - Pg)". (5)

k3

operating within the orthogonal of the coarse space, that is the image of the projection (I —
Pg).
~ The basic question is now to properly construct the local component Z; of the coarse space
V. The objective is that its or thogonal complement (where the preconditioner lives) be nice.
With a detailed examination, it can be observed that being nice means in fact that:
- the local Neumann solutions w? must be scale invariant in energy norm, which requires to
put all constants to zero in the local Neumann subproblems,
- the local Neumann subproblems must be regularized by adding a few boundary conditions.

Altogether, one only needs to impose implicitly that a few constants or boundary condi-
tions C?, be equal to zero for the solutions w* of the local Neumann problems. We therefore
need them to satisfy o

(w*,CL) =0,Va,
that is o _ _
(K'w', (K')7'Cy,) = 0,Va,
or equivalently, since w* is solution of a local Neumann problem with matrix K?
(D'S'v, (K")'Ch) = 0,Va, v € Vg .

This is automatically guaranteed if v is orthogonal to the function D¢(K?) -7 C¢, that is if
the local space is generated by the so called dual rigid modes as follows

Z; = vect((KH)~!C).

Detailed algorithm

The adapted strategy which generalizes the approach of both the symmetric and the advection
case, is thus given by the following steps [PAVO00] :

1. Identify the local degrees of freedom (P;q)qa=1,~n; Which cancel all N; rigid modes
of subdomain 4. In practice, this is done by identification of the small pivots in the
factorization of the associated local stiffness matrix, with the possibility of choosing
more degrees of freedom than necessary. For plate and shell problems, we can simply
choose the degrees of freedom which lie on subdomain corners.

2. Introduce a regularization K&, of the local stiffness K* on V; = H(Q?)
<Kpvi, ¥ >=< KWV, v >+ Mivi(Pa)vi(Pg), W, eV,
a,/g

the matrix M being a definite positive arbitrary matrix. For nonsymmetric problems,
the matrices K and K¢, are nonsymmetric.
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3. Compute dual rigid modes (v, )a=1,n; by solving local regularized Neumann prob-
lems set on the space V; of subdomain displacement functions defined on subdomains
iv

< (K&)vs,, v >=v(Pi,), V¥ € Vi, v, € Vi (6)
For advection-diffusion problems or for unsteady problems, we must also introduce the
dual constant mode defined by,
< (K&)tvi, v >=/ Vi, W eV, v eV, 7)
Qi
in order to achieve scale invariance in the Neumann subproblems.

4. Introduce the local rigid space Z; = vect (v"Ga, a=1, Ni>.

The last construction leads to the local rigid spaces already introduced for symmetric cases
[TV97] or for the advection-diffusion case [ATNV00]. The space Z; does not depend on the
choice of the regularized matrix M because all elements v¢ of Z; verify by construction,

< (KHivi v* >=0,¥¥' € V; such that v¢(P;5) = 0, V5.
With this choice, the 2-level Neumann-Neumann preconditioner takes the form defined in (5)

N
M 'S =Pg + ) _(I-Pg)D!(S) (D) (I - Pg)’S. (8)

i=1

Above, the regularized Schur inverse (S%)~1 acting on a given linear form L; defined on
the local interface space V' yields the interface vector (S*)"'L; = T'r(w?)p: obtained by
solution of the local regularized Neumann problem :

<KLw' ¥ >= Li(Tr(¥')r:), VW' eV,w eV, 9)

Our construction ensures that the solutions wi = (§?)~1(D?)*(I — P)F of the local Neu-
mann problems have rigid constants w(P;,) fixed to zero. Indeed, by definition of the dual
rigid modes v, , and by the construction of w* and by the projection P, we have :

Wi (Piy) =< (K&)'ve,, w' >=< 1, (I - Pg)Divl, >=0. (10)

This value of the rigid constant on w* cancels the effect of the regularization. We have in-
deed: < Kéw?, wi >=< Kiw’, w' >, which guarantees in some way the optimality of our
algorithm.

Application to frictional contact problems

Nonsymmetric frictional contact problems

The behaviour of multicontact structures is characterized by a multiplicity of contact inter-
faces between deformable structure bodies. These large nonlinear problems constitute a class
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of problems well suited to the use of the above numerical substructuring techniques. The
modelling of the frictional contact problem is first based on a hybrid formulation presented
in Alart and Curnier [PC91]. Following this augmented Lagrangian approach [PC91], the
equilibrium of a discretized contact bodies system is governed by the system of nonlinear
equations

L t _
{ Ent Fewt + N f(ll, )‘) - Oa (11)

—s (A= F(u, 1)) =0,

where N is a restriction operator from Q to I'. (I is the contact boundary). The notation
u stands for kinematic variables (displacements or rotations) and X for the static variables
(contact forces or torques). Moreover, F(u, A) defines the discretized contact operator, with
r the corresponding penalty coefficient, F;,,; and F,,; denote respectively the internal and the
external discretized forces,

< Fipt(u),v >= / Eo(Vsymu) : VeV and < Foge, Vv >= / f-v,
Q Q

and F(u, \) is the assembly of elementary contributions according to the notion of contact
element [PC91]. For sake of simplicity, the local contact operator is presented for a contact
between a deformable body and a rigid obstacle in a bidimensional modelling. Consequently
the displacement u concerns only the node of the body on I". and A the contact force exerted
by T'. on the obstacle. It is convenient to split it into normal and tangential components
A = A\,n+ A\ and to express F¢(u, A) in this local frame :

Fe(u, ) = U;n—i-ProjC(an—)at, (12)

where o = o0 + 0, 0p = Ay + TUy, 0 = M + 10Uy, 0, = min(o,,0) and C(o,,) the
Coulomb set [uo;, , —uo;, |t) (where p is the Coulomb coefficient and du, is a displacement
increment). If the contact status is sliding, the tangent matrix of this operator is non symmetric
and takes the tensorial form

81\‘7:6(117 )‘) = (Il - Mt) ®mn, OuF* (ll, )‘) = 7‘(1’1 - /J/t) ®n.

For more complex contact elements, this type of local matrix is distributed on all contact
nodes of target contactor areas.

We have chosen to treat both variables u and A simultaneously through Newton’s method.
The system of equations is then split into two parts involving the pair x = (u, ), i.e. a
differentiable elastic part G and a nondifferentiable frictional contact one F

G(x) + F(x) =0. (13)

To overcome the nondifferentiability of the equation (13), Newton’s method may be extended
to the following iterative form [PC91]:

(K™ 4+ A™) Ax™ = — (G(x™) + F(x™)) where Ax™ =x"! _x™ (14)

to be solved at each iteration m by the previously introduced generalized Neumann-Neumann
domain decomposition method. The matrix K™ = 0G(x™) is the usual elastic stiffness ma-
trixand AT € OF (x™) represents the generalized Jacobian of F at x™. The nonsymmetry
of the matrix A7* is due to the friction terms. The contact interface is discretized by contact
finite elements which yields elementary nonsymmetric tangent matrices if the contact status
is “in friction situation”.
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“Multi-contact™ structures

The efficiency of these different multilevel preconditioners will be assessed on two examples
of “multicontact” structures :

- collections of deformable grains with contact interfaces between the grains.

- rolling shutters composed by many slats jointed by a hinge with play and eventually rotative
friction.

Collection of deformable grains

Our motivation here is to study in granular media modelling the behaviour of a collection
of deformable grains submitted to classical solicitations such as shear or compression. This
problem is an interesting and delicate “multicontact” problem : the proportion of contact is
very large. The interactions between the grains are governed by the frictional contact laws
(Signorini unilateral contact law and Coulomb friction law).

At a discrete level, the interactions between grains are modelled by a frictional contact

@ cdlastic node

O "multiplier” node

Bi-facet contact element
One subdomain

Collection of grains

Figure 1: Deformable grains, one subdomain and a bi-facet contact element.

element (Figure 1) which takes into account large slip over the contact interface. This bi-facet
contact element has 5 nodes : 4 elastic nodes which contain the displacement u (u, u,) and
a multiplier node containing the frictional contact forces A. Moreover the contactor node can
slip over two target facets. A generalization to more facets can be carried out easily.

Rolling shutters composed by many hinged dats

The aim of this problem is to simulate the quasi-static behavior of such shutters submitted to
strong winds [ABLM99]. A rolling shutter is a specific case of multi-contact structure. The
rolling shutters for shops, stores and hangars are formed by a succession of slats jointed by
a hinge [ABLM99]. Such a structure is then composed by an assembly of elastic structures
(plates in flexion and torsion) which leads to consider a large number of contact zones. The
edges of the slats are designed in such a way that the slats fit into each other. To facilitate
the rolling of the shutters at the opening, the profile of the slat requires a gap or a play in the
hinge. We must then develop a specific model which takes into account the play (—g, +g) in
the hinge and eventually the friction in the rotations (4/3) of the hinges between the slats. The
contact and friction laws are more complicated than the usual case. For more details on the
modelling, see [ABLM99].
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Figure 2: hinge contact element.

Substructuring strategy

One feature of this nonlinear nonsymmetric domain decomposition strategy consists in putting
the numerical subdomain interfaces away from the physical contact interfaces [BAV01]. Con-
trary to current approaches we therefore suggest to treat the physical contact interfaces as
internal surfaces : the contact interfaces (hinges for shutters and contact area for deformable
grains) must be inside the subdomains and do not constitute decomposition interfaces. Thus,
the decomposition is not forced to respect the geometry of its components; such a subdomain
is shown in Figure 1. This allows a better balance of the size of the subdomains and leads to
an optimal decomposition for parallel efficiency.

Numerical behaviour of Neumann-Neumann preconditioners

In this section, we analyse the convergence behaviour of the interface solver (GMRES) with
the multi-level Neumann-Neumann preconditioners. We test their efficiency as a function of
the friction coefficient and the number of subdomains (scalability properties). As previously
observed, the nonsymmetry is due to our formulation of frictional contact problems. The con-
sidered preconditioners are :
- The standard Neumann-Neumann preconditioner with coarse space (2-level),
- The specific Neumann-Neumann preconditioner which uses a symmetrized matrix S* (with
a friction coefficient equal to zero),
- The new nonsymmetric Neumann-Neumann preconditioner introduced in this paper.

The first result, described in Figure 3, gives the evolution of average number of GMRES

250 - 8

[%2)
% /é\& - |/x/\ Standard 2—-level Neumann—Neumann
"E 200 - A A - |O-O Specific 2-level Neumann—Neumann
i) | Ng\/ i Non symmetric 2—-level Neumann—Neumann
—_- |
@ 150 [ | By :
() A S
x A
= 100 |- 3 |
©) A
50 1 1

00 04 08 12 16 20
friction

Figure 3: Influence of the friction coefficient on the preconditioners.

iterations (per Newton iterations) for different values of the friction coefficient varying from
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0 to 2 for a rolling shutters with 16 slats and 30 subdomains (26 floating subdomains), re-
spectively. We observe the inefficiency of the solver using the standard Neumann-Neumann
preconditioner (curve A) for values of friction coefficient close to = 0,2. This is due to
the large increase of the ratio of slip status and so to the large proportion of nonsymmetry.
The first extension procedure (curve o) improves this dependance but does not cancel it. On
the other hand, the new nonsymmetric preconditioner (curve ¢) makes the interface solver
insensitive to the nonsymetry.

Next, we analyse the scalability properties of the different Neumann-Neumann precon-
ditioners for the problems of rolling shutters and collections of deformable grains. For the
rolling shutters (figure 4), we can verify that for a problem without friction (x = 0, sym-
metric problem), the 2-level Neumann-Neumann preconditioner has a classical behaviour :
independence from subdomain number (curve x). But with friction, the standard procedure

(]

500 A 8

Standard 2-level Neumann—-Neumann (u = 0)
/\—/\ Standard 2-level Neumann—Neumann (i = 0.2)
(O—CO Specific 2—level Neumann—Neumann (p = 0.2)
y Non symmetric 2—level Neumann—Neumann (p = 0.2)
] 1-level Neumann—-Neumann (p = 0.2)

300 |

G.M.Res. iterations

100

0 L L
10 20 30 40 50 60 70
Number of subdomains

Figure 4: Numerical scalability of the preconditioners (rolling shutters).

leads to a high increase of the number of iterations (curve A) with the number of subdomains.
The results are even worse than without coarse solver (curve ). The first extension strategy
(curve o) improves the convergence but is not optimal. On the other hand, the 2-level nonsym-
metric Neumann-Neumann preconditioner (curve <) leads to a full recovery of the numerical
scalability properties obtained with a symmetric problem.

We finally present for the collection of deformable grains the influence of the number of
sub-domains (Figure 5) on the number of iterations. The good behaviour of the nonsym-
metric preconditioner is confirmed when the number of floating subdomains increases. This
nonsymmetric procedure is more efficient than the standard and specific balancing method
specially in presence of shear. Indeed, the friction (and then the nonsymmetry) plays a more
important role in shear than in compression (Figure 5). Thus the strategy developed in this
paper extends to large scale nonsymmetric (frictional contact) problems.
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