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14 The Singular Complement Method

F. Assous1, P. Ciarlet, Jr.2, S. Labrunie3, and S. Lohrengel4

Introduction

In this paper, we propose a method, called the Singular Complement Method (latter referred to
as the SCM), which allows to solve PDEs, such as the Laplace problem, Maxwell’s equations,
etc., in a non-smooth and non-convex domain. In order to define the SCM, let us recall first
some basic ingredients of Domain Decomposition Methods (or DDM).

Consider the variational problem (with obvious notations)
find ����� such that

��� �
	������� � ���	���������� (1)

In order to solve it, one can use a DDM, which generally consists in splitting the Hilbert space
� into the sum of � subspaces

�����������! "�$#%#&#'���)(*	 (2)

and then getting the solution � of (1), via some solves of subproblems such as find �,+-���)+
such that

� + � � + 	�� + ��$� + � � + �	���� + ��� + 	/.1032�04��� (3)

This can be achieved iteratively or not. The aim is primarily to reduce the overall amount
of work, necessary to compute a good numerical approximation of the solution. When the
discretization of the problem is achieved by a Finite Element Method (or FEM), one usually
obtains the splitting (2) with the help of a partition of the mesh.

The philosophy of the SCM is different, although the tools are similar: the idea is still to
split the space � , but with respect to regularity.
Indeed, elements of � belong to the scale of Sobolev spaces 576 �98  , or 5:6 �;8 =< , where8?>A@ < is the computational domain, and BC� @ED . Interestingly, for a given space � , the
supremum B
FEG H of all possible values of the exponent B , depends on the convexity of the
domain and on the smoothness of its boundary. Let BEI be the supremum when the domain
is convex, or smooth. When the domain is non-convex and non-smooth, B�FEG HKJLBMI usually
holds.
Then, let �)N7�O��P15Q6SR �98  (or �)NT����P15Q6SR �;8 =< for vector fields) be the space of regular
elements. Assume that �UN is closed in � , and let

���O� N�V �UW (4)
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with �UW the space of singular elements. The sum is direct; in addition, it can be orthogonal.
When the domain is convex or smooth, one has � W � �����

by definition. Then, regular
elements are approximated by a Lagrange FEM, whereas elements of � W are computed in a
manner, which depends on the problem to solve: in other words, the idea behind the SCM is to
enlarge the space of test-functions. Basically, it is designed to achieve the following results:

- Improve the convergence rate (for the Laplace problem),
- Capture numerically the real solution (for Maxwell’s equations).

In what follows, we shall introduce, in Section 1, the SCM for the Laplace problem and
for Maxwell’s equations in a polyhedron. We describe the main theoretical results that are
required to solve electromagnetic problems and, in particular, we emphasize the strong links
between the singular elements for both problems. In Sections 2 and 3, we present the theory,
and the numerical tools, which we have developed, to solve the static, time-harmonic and
time-dependent Maxwell equations in a polygon of @  , or in an axisymmetric domain of @�� .

1 The problems in a polyhedron

Let 8 be a bounded, simply connected, Lipschitz polyhedron, � its connected boundary,� �	�  ��
 � 
� the set of faces, and � the unit outward normal to � .
The �  -scalar product is denoted by ��� 	��  I , the associated norm by � � � I . We shall use the
differential operators ����� , ����� � and the related ’non-standard’ Sobolev spaces and norms

!  �;8 #" � �%$ � � �S� 	��  S	�� � '&("-� + �)�  �98  	 . 032�0+* � 	
� $ ��I," �.-/���S�0�  I �1���  2�  I �1��� � �  I�3 �54  768 � ���9�1	 8 :" � �%$ � !  �98 #";����� $ �<�  �98  � 	
� $ ��I%= >&G ?@" � - � $ �  I �A�B����� $ �  I 3 �'4  68 � �0�C� ��	 8 :" � ��$ � !  �;8 #";����� � $ � !  �98  � 	
� $ ��I%= D/EGF'HI" � - � $ �  I �A�B�0�C� � $ �  I 3 �'4  68 � �0�C� ��	5���9� 	 8 :" � 8 � �0�C� ��	 8  P 8 � ����� 	 8  	
� $ � I%= D/EGF'HJ= >&G ? " � - � $ �  I �1�J����� � $ �  I �1�J���9� $ �  I 3 �54  	 and

K $LK DME0F'HJ= >%G ?@" � - �B�0�C�N� $ �  I �1�J���9� $ �  IN3 �54  �
In addition, the usual Sobolev spaces for vector fields shall be written

8PO �98  , and
8QO � �, .

Then, let us recall that fields of
8 � ����� 	 8  (resp.

8 � �0�C�N� 	 8  ) have a normal trace (resp.
tangential components) on � , which belongs to 5SR �'4  � �, (resp.

8 R �54  � �
 ); this allows to
define the subspaces with the vanishing corresponding trace, and

T " � 8 I � ����� � 	 8  P 8 � ���9� 	 8 �	VUW" � 8 � �0�C� ��	 8 MP 8 I � ���9� 	 8  �
Let us state the WEBER inequality, which stems from the compact embedding results of Weber
[Web80].

Proposition 1 In
T

and U , the semi-norm
K # K DME0F'HJ= >%G ? is a norm, which is equivalent to the

full norm.
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Last, let us mention that one can generalize what we state below, to the case of a Lipschitz
curvilinear polyhedron, by using the work of Costabel et al. [CDN99].

1.1 The Laplace problem

The model problem is, given � � �  �98  , solve
find

� ��5 �I �98  such that

��� � � � in 8 � (5)

The regularity of the solution depends on the geometry of the domain [Gri85, Dau88]. Let us
call minimal regularity of the solution the supremum of the set

� BT� @ " � � � �  �98  	 � solution of (5) belongs to 5 6 �;8  � �
Theorem 1 If 8 is convex, the minimal regularity is B
I ��� .
If 8 is non-convex, the minimal regularity is B
FEG H � *���� �
	 , with

� J�	TJ�.���� depending
on the geometry, i.e. conical angles at reentrant vertices, dihedral angles at reentrant edges.

In the non-convex case, by minimal regularity, we mean that all solutions
�

belong to 5 � 4  D� R�� �98  ,
for any ��� �

, and that some do not belong to 5 � 4  D� �;8  .
If one discretizes (5) with the � � Lagrange FEM, with � as the meshsize, there holds by

standard analysis

Corollary 1 If 8 is convex, the convergence rate in 5 � -norm is in � � �U .
If 8 is non-convex, the convergence rate in 5 � -norm is in � � � �'4  D� R��  , ��� .
Remark 1 Here, it is crucial to impose � �<�  �98  . If � is only in 5(R � �98  , the regularity of�

can be as low as
� �T5 � �;8  , for 8 convex or not: the convergence rate is undetermined,

and there are no methods that allow to improve it.

To improve the convergence rate, one can think of: mesh refinement, the (Dual) Singular
Function Method, multigrid methods [Bre98], the SCM, etc.

The mesh refinement techniques are well-kwown [Wah91]. So are the (Dual) Singular
Function Methods (or (D)SFM), which work in 2d domains, see for instance [Gri85, Gri92].
They are based on the adjunction of test-functions, the (dual) singular functions, to the space
of FE.
The SCM is based on the same idea, as mentioned in the Introduction. Its origin (2d case) can
be traced back to Moussaoui [Mou84]. More precisely, let

� " � � � ��5 �I �;8 #" � � � �  �98  � 	 and
� N " � � P 5  �98 ��

One has the

Theorem 2 In
�

, � � ��� " � � � � � I is a norm, which is equivalent to the graph norm
����� � � �  � �1� � � �  I � �'4  . As a consequence, �"#���� is equivalent to �"#2�& in

� N .
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Proof : Thanks to the POINCARÉ inequality, the graph norm is equivalent to
��K � K  � � � � � �  I � �54  �� � ����� � � IB= D/EGF'HJ= >&G ? , with � ����� � in

T
. Now, one infers from the WEBER inequality that it is

also equivalent to � � � � I .
To prove the other half, let

� � � N . There holds

� � �  � � K � ����� � K  D/EGF'H%= >&G ? �W� � ����� � � ����� � B�  I � K � K   	
where the second equality has been obtained by Costabel et al [Cos91, CDN99], as � ����� �
belongs to

8 � �98  and has vanishing tangential components on � . Finally, one can use the
first part of the Theorem to conclude.

Corollary 2 � � N is closed in �  �;8  .
Starting from this result, one can first define its orthogonal, called � :

�  �;8 �� � � N
�
V ��	 (6)

and then
� W , the inverse image of � . By construction, both

� N and
� W are closed in

�
and

so
� � � N

�
V � W , i.e. (4). Now, following [AC97], it is possible to characterize elements of

� , and, as consequence, elements of
� W .

Theorem 3 An element � of �  �98  belongs to � if and only if

� �K� �
in 8 	��
	 ��1� �

in 5 R �54  I I � � � �	". 0��K0�� �

(Recall that 5 �54  I I � � � Q" � � � ��5 �54  � � �  "�� R �54  � � � �  � � �  � , where � � denotes the

distance to the boundary of � � ; 5 R �'4  I I � � �  is the dual space of 5 �'4  I I � � �  .)
As for the numerical computation of elements of � and

� W , see the next Section for problems
in axisymmetric domains and � 3.2 for problems in 2d. Let us mention that in the 2d case (see
[Mou84]), one gets results similar to those of the DSFM, that is, the recovery of an overall
convergence rate in � � �U in 5 � -norm.

Let us conclude this Subsection by some extensions.
The first one is the homogeneous Neumann problem, for which the same theory can be

developed in � � @ , where
� " � ��� ��5 � �;8 #"�� <

� 	 � � �
on ��	 � � �)�  �;8  � .

Another one is about the scalar wave equation which, given � � �
, reads

find
� ���  ��5 �I �98  such that

�  �
� �  

� � � � � in 8�� � � 	!�#" 	 � � � �� � I � (7)

The theory of Lions and Magenes [LM72] leads to

Theorem 4 Assume that � �P�  � � 	$� 6 5 �I �98 � and
� I*� � . Then, there exists one and only

one solution of the wave equation (7), with regularity

� �&% I � � 	$� 6 �  P'% � � � 	!� 6 5 �I �;8 � �
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Next, from (4) applied to
�

, there comes the continuous decomposition in time of the solution,
that is the

Corollary 3 One can write
� � � �� � N ��� M� � W � �  for all � , with

� � N 	 � W) � % I � � 	!� 6 � N � � W) �
Finally, one could use the same kind of idea for a non-homogeneous boundary condition,
provided that the data is smooth enough on � , or for problems with jumps.

1.2 Mathematical tools for Maxwell’s equations

We consider the electromagnetic fields in vacuum, enclosed by a perfectly conducting mate-
rial. The electric permittivity and magnetic permeability are set to one. The electromagnetic
field is denoted by � � 	��  . The sets of equations are :
The time-dependent Maxwell equations in � � 	��  :���� ���

��� � � �0�C� �	��� ��
 	 ����:� �0�C�N� � � �
in 8�� � � 	!�#" 	����� � � �)	 ���9����� �

in 8�� � � 	$�#" 	� � �:� �
on � � � � 	$�#" 	� � � �� � I 	�� � � E���EI �

(8)

The time-harmonic Maxwell equations on
�

, a complex-valued field:�� � �0�C� �G�0�C� � � � �  � � 
 in 8 	���9� � � �
in 8 	� � �:� �
on ��� (9)

The static Maxwell equations, with � being either the electrostatic or the magnetostatic field:�� � ����� ��� ��� in 8 	���9��� ��� in 8 	� � �:� �
on ��	 or �O#B�:� �

on ��� (10)

Unless otherwise specified, we consider that (10) is the electrostatic problem.

Let us say a few words on the existence and uniqueness of the solution of each problem
(cf. [AC00, BHL99, CZ97], in this order).

Theorem 5 The time-dependent problem.
Assume that 
 � % I � � 	!� 6 8 � ����� 	 8 � P�5 � � � 	!� 6 !  �;8 � and �Q� % � � � 	$� 6 �  �98   . Then,
there exists one and only one solution � � 	��  of (8), with

� � 	�� "� % I � � 	!� 6 T � U1MP'% � � � 	$� 6 8 � ���9� 	 8  � 8 � ����� 	 8 ���
The time-harmonic problem.
Assume that 
 belongs to

8 � ���9� 	 8  , ���9� 
 � �
, and ��� � � ��� �

. Then, there exists one
and only one solution

�
solution of (9) in the ’complexified’

T
.

The static problem.
Assume that � belongs to

8 I � ���9� 	 8  , with ������� � �
, and that � is in �  �98  . Then, there

exists one and only one solution
�

solution of (10) in
T

.
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Here, we considered that the data is �  -regular. Actually, this is equivalent to the assumption
that we made previously for the Laplace problem, i.e. that the Laplacian of the solution is in�  �98  .

As for the regularity of the solution, one finds again that it depends on the geometry of the
domain [ABDG98]: let us consider, for instance, the static field � .

Theorem 6 If 8 is convex, the minimal regularity is B
I ��. .
If 8 is non-convex, the minimal regularity is B FEG H � .���� � 	 .

In the case of Maxwell’s equations, we thus let

T N " � T P 8 � �98  	 and U N " � U3P 8 � �98 ��
The original idea was to take advantage of the 5 � -regularity of the field, when the domain is
convex [ADH D 93], to discretize it by the ��� Lagrange FEM, instead of the ’usual’ edge FEM
[Néd80, Néd86]. As a matter of fact, the former includes two key ingredients, which the latter
lacks:

- For the time-dependent Maxwell equations, the mass matrix can be lumped, with no loss
in precision, thus leading to very inexpensive numerical schemes.

- The numerical electromagnetic field is continuous, so the method can be used in con-
junction with a particle-pushing scheme, to solve the coupled Vlasov-Maxwell system of
equations.

The question to be answered is: what happens when 8 is a non-convex domain? For that,
let us begin with the

Theorem 7
T N (resp. U N ) is closed in

T
(resp. U ).

Therefore, when 8 is non-convex,
T N (resp. U N ) is not dense in

T
(resp. U ).

Proof : The norm in
T

is
K # K D/EGF'HB= >&G ? . With the help of the formula [Cos91, CDN99]:

� � ����� � 	 � ����� $  I1� � ����� �G� 	5����� � $ =I � � ���9� ��	M���9� $  I 	 � ��	 $ � T N � T N 	 (11)

one gets that the norm in
T N is equivalent to the

8 � -norm, and thus
T N is closed in

T
. As

a consequence,
T N is dense in

T
iff

T N � T
. According to Theorem 6, this is not the case

when 8 is non-convex.
(The proof for U and its regular subspace is identical.)

The immediate consequence is that one can not capture numerically the solution of the
above problems, with the help of the Lagrange FEM only, if the solution is not in the regular
space. In particular, mesh refinement techniques do not work.

As a matter of fact, let us split
T

à la (4),
T � T N

�
V T W , with

T W�� T �N . Is is clear, from
the definition of

T N , that any subspace of
T

generated by the ��� Lagrange FEM is actually a
subspace of

T N . Thus, with self-explanatory notations, (4) leads to

� � � � � �  � �W� � N � � � �  � �A� � W��  ��� � � W��  � �
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Is there a hope of finding an intermediate solution, between the edge FEM, and the � �
Lagrange FEM? The answer is clearly ’no’, if one looks for a piecewise smooth FE (i.e. a FE,
whose restriction to each element of the triangulation is smooth), like the edge or Lagrange
FEMs. Indeed, it has been remarked by Hazard and Lenoir [HL96] that any

8 � �0�C� � 	M�����  -
conforming FEM, with a piecewise smooth FE, is actually

8 � -conforming.

Therefore, it is required that one adds the SCM (or the SFM) to be able to compute an ap-
proximation of the solution5. One discretizes the regular part with the ��� Lagrange FEM,
which means a � � approximation component by component, and taking into account the
boundary condition. Evidently, this method can be applied to all three Maxwell problems:
time-dependent (8), time-harmonic (9) or static (10).
Now, how can one approximate the singular part? One possible idea, that we develop further
in the other Sections, is to relate the singular electric fields to singular elements of the Laplace
operator, i.e. to elements of

� W .
Let us conclude this Subsection by displaying this relationship. For that, we need a result,
obtained by Birman and Solomyak [BS87].

Theorem 8 Let 8 be a bounded Lipschitz domain. Then, for all � in
T

, there exist �EI in
T N

and
� � � such that

�:�A� I � � ����� � 	 K�K � I K9K  � � K9K � � K�K  I 0 � K�K � K9K  IB= D/EGF'HB= >&G ? � (12)

Here,
�

denotes a nonnegative constant, which is independent of � .

In U , they proved the same result, provided that the domain has a piecewise-smooth boundary
[BS87, BS90]. As a consequence, one can prove the

Theorem 9 The following decomposition is direct and continuous

T � T N �

V � ����� � W �
Proof : From (12), it is clear that

T � T N � � ����� � W .
Then, let

$ � T N P � � � � � W : by construction,
$ � 8 � �;8 
P � ����� � , i.e.

$ � � ����� � N .
Also, one infers from (4) applied to

�
that � ����� � can be split (in

T
) into � ����� � N4V� � � � � W . So,

$ � �
, and the sum is direct.

Last, the application

T N � � ����� � W � T
� $ N 	 � ����� � W) �� $ � $ N � � ����� � W

is linear, continuous and bijective. Now, as
T N � � � � � � W and

T
are Banach spaces, the open

mapping Theorem allows to conclude that the inverse of the application is also continuous.

Again, one can prove the same type of result on U . In other words, the singular electric or
magnetic fields are one-to-one with the gradients of the singular elements of the Laplacian.

5Another alternative is to use the edge FEM, possibly with a specifically designed SCM.
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2 Maxwell’s equations in an axisymmetric domain

Let 8 be the domain limited by a surface of revolution � ; � and ��� their intersections with a
meridian half-plane. One has �S" � � � �������	�
� , where �
� is the segment of the axis lying
between the extremities of � � . � is its unit outward normal, and � the unit tangential vector
such that � � 	�  is direct.

Moreover, it is assumed that �
� is a polygonal line with edges � � �  �/
 � 
� . The � � are the
corresponding faces of � ; the off-axis corners of ��� generate circular edges in � , whereas the
extremities are conical vertices of � .

The natural coordinates for this domain are the cylindrical coordinates ��� 	�� 	�  , with the
basis vectors ����� 	 ��� 	 ���  . A meridian half-plane is defined by the equation �*����� � , and ��� 	�� 
are cartesian coordinates in this half-plane.

Definition 10 For any vector field, the meridian and azimuthal components of � are resp. ��� " � � � �
:" ��� �!��� � � �"�#� and � � " �  � � �
:" ��� �!��� .
We are interested in the case where the sources of the electromagnetic fields, and hence the
fields themselves, possess a symmetry of revolution. This fact means that the scalar (resp.
vector) fields are entirely characterized by their “trace” in � , i.e. the datum of their value in
a meridian half-plane (resp. by the trace of their cylindrical components). Obviously, this is
equivalent to the vanishing of all derivatives with respect to � of these fields or components.
In this Section, it is thus assumed that � � # � �

.

Proposition 2 For any axisymmetric vector field � , the following identities hold: �0�C�N�0� � � � � �0�C�N���
 	 ����� �G� � �  � � �0�C� �G�
 	 ����� � � � ���9�#� 	 � � � �  � � � �
 	 � � � � � � � �  . Hence, if � is meridian (  � � �  � �
), �0�C� �G� is azimuthal and � � is meridian;

if � is azimuthal (  � � � �� �
), �0�C�N�0� is meridian, � � is azimuthal and ���9� �:� �

,

A similar property holds for the Jacobian of an axisymmetric vector field: there is a decoupling
of the meridian and azimuthal components.

Finally, as the meridian and azimuthal components of vector fields are mutually orthogo-
nal pointwise, the same is true in the sense of the

!  �98  scalar product: for � � 	 $  � " !  �98  �  ,
there holds � � � 	 $ � =IB= $�� �

. This property is also true for the curl and the vector Laplace
operators, or the Jacobian of a field, provided that they belong to

!  �98  .
2.1 Reduction to two-dimensional problems.

Thanks to Proposition 2, it is possible to decouple each of the Maxwell systems (8, 9, 10) into
a couple of problems set in 8�� � � 	!�#" , involving different components of the fields

�
and � .

Given the expression of differential operators in cylindrical coordinates, these problems read
as follows in � � � � 	!� " .
The time-dependent equations (8), split into a system of unknowns �&% �*	�' �  :�� � � � % � � � R � ����� � ��� ' � �� �)( �*	
� � ' � �+*�,
-�. % �C� �

in � � � � 	!�#" 	� R � ���9� �/�0% � �� � in � � � � 	!�#" 	 % � #1� � �
on �
� � � � 	$�#" 	% � � � �� % � I 	2' � � � ��3' � IS�

(13)
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and a system of unknowns � � � 	�� �  :�� � � � � � � *�,
-.�� �O� ��� � 	
� � � �3� � R � ����� � ��� � � �� �
in � � � � 	$�#" 	� R � ���9� �/� � �1�� �

in � � � � 	$�#" 	�� ��# ��� � 	 � � � �
on � � � � � 	!�#" 	� � � � �� � � I 	�� � � � ���� � I � (14)

The static equations (10), split into a system of unknown 	 � :�� � *1,
-.�		�O� � � in � 	� R � ���9� �/� 	 � �� � in � 		 � #�� � �
on �
�%	 or 	 � # � � �

on �
� �
(15)

and a system of unknown 
 � :
� � R � �0�C�N� �/� 
 � ��� � in � 	
 � � �

on �
� 	 for the electrostatic problem only.
(16)

2.2 Sobolev spaces

We denote by a � the respective subspaces of axisymmetric vector fields in the various Sobolev
spaces, e.g. �!  �98  	 �8 � �98  	 �8 � �0�C�N� 	5���9� 	 8 �	 �T 	 �U�N ; by � # � O = $ the 5 O

-norm, by � # � I%= DME0F'HB= >&G ? = $
the 5 � �0�C� ��	5���9�  -norm.

As pointed out earlier, elements of these spaces are characterized by their trace in � . We
refer to [BDM99] for their full description. For now, we only need the

Definition 11 For B � @ , let �  6 � �  be the space of square-integrable functions in � with
respect to the measure � 6�� � � � , and 5 O

6
� �  , for � � @ , the related scale of Sobolev spaces,

with the canonical norms
K9K # K�K O = 6 = � .

2.3 Closedness results.

The aim of this Subsection is to prove the analogue of Theorem 7. Because of the technical-
ities induced by the geometry [ACL00], it is necessary to distinguish between the inductive
proof for the electric field and the constructive proof for the magnetic field.

We shall now sketch these proofs; details are found in [ACL00].

Lemma 1 The following inequalities are equivalent:

� � � 	 � �T� T N 	 K�K � K�K �/= $ 0 � � K�K � K�K IB= D/EGF5HJ= >%G ?�= $�	 (17)� �  	�� � � � N 	 K9K � K9K  J= $ 0 �  K�K � � K�K IB= $ � (18)

Proof : For �7� � ����� � , (17) implies (18) by POINCARÉ’s and WEBER’s inequalities. Con-
versely, (17) stems from (18) and Theorem 8.

Theorem 12 (17) is satisfied in 8 if and only if all the conical angles at the vertices are
different from a prescribed value � ��� R�� .�*

���
. This case excluded,

T N is closed within
T

.



168 ASSOUS, CIARLET, LABRUNIE, LOHRENGEL

Proof : (17) is equivalent to (18). The necessary and sufficient condition for (18) to hold has
been established by Dauge [Dau88].

In the following, when considering the electric case, we suppose that all conical angles are
different from � ��� R .

Theorem 13 In �U N , the following estimate holds:
� �Q	�� �T� �U N 	 � � �:�  IB= $ 03� - �J�0�C� � �:�  IB= $ �1�J�����#�:�  IB= $ 3 � (19)

Hence, by POINCARÉ and WEBER’s inequalities, the � # � �/= $ and � # � IB= D/EGF5H�= >&G ? = $ norms are

equivalent on this space, and �U�N is closed within �U .

The equivalent of (11) in 8 reads (cf. [CD99]): for any � ��	 $  ��� 8  �98 ��  ,
� � � 	 � $ =IB= $:� � ����� �G� 	5����� � $  I%= $K� � ���9�#� 	5����� $ =IB= $ ��� � ��	 $ ,� � � ��	 $ �	 (20)

where � � # 	%#  and � � # 	&#  are bilinear forms defined on the boundary. The term � � � 	 $  vanishes
when � � 	 $  � " U P 8  �98  �  . It is proven in [ACL00] that this space is dense within U"N . So
one can extend � by 0 to U N .

All other terms in (20) are meaningful for � � 	 $ ���� 8 � �;8 ��  : for an axisymmetric

domain 8 , the bilinear form � � � 	 $  is � � �
�
� � � � � � � �
	,��	  � � . Hence (20) is valid for

� � 	 $  � " U�N �  , with � 	 �4� 	 � �
on the boundary.

The inequality (19) is now equivalent, thanks to (20), to
� �KJO.S	 ��� � � 	5� "0��@� � �:�  IB= $ � (21)

Since
� � � and

� � � are
!  -orthogonal, and � � � 	5�  depends only on � � , it is sufficient to

check (21)—or (19)—for �T� � �� ���T� �8 � �98 :"2� � � ��� .

Lemma 2 The space 5 �R � � �  is continuously imbedded into �  R � � �  , i.e.
� � �'	��U����5 �R � � � �	

K�K � K9K9K  I%= R � = � 03� �
K�K � �����*� K�K  IB= R �/= � �

This 2d Hardy inequality is obtained by localization and Fubini Theorem.

Proposition 3 The inequality (19) is satisfied for all �T� �U N .

Proof : Let �T� � �� and � � � � � . From the expressions of �0�C�N�0��	������ � and
� � in cylindri-

cal coordinates, it follows: �B�0�C�N�0�:�  IB= $ � �J���9� �:�  IB= $ � ��� � � ����� � �  I%= R ��= � and � � �#�  I%= $ �
������� � � � � � � �  I%= ��= � �A� � � �  I%= R ��= ��� . The latter norm is equivalent to � � ����� � �  IB= R �/= � � ��� �  IB= R � = � .

Thus (19) stems from the above Lemma; it also proves that any azimuthal vector field in �8 � �0�C� ��	5���9� 	 8 
is in �8 � �98  .
2.4 A characterization of singular fields

This Subsection describes the relationship between the singular electric and magnetic fields
and scalar singularities of Laplace-like operators.



THE SINGULAR COMPLEMENT METHOD 169

Electric case. Let �T be the natural space of electric fields, and �T N its regular subspace. We
derive from Theorem 12 the direct and continuous decomposition

�T � �T N �

V � ����� �� WM� (22)

As the elements of �� W are characterized by their Laplacian, we will study �� � � �� W . For
this purpose, we shall adapt the method of [ACS98, ACRS99] and the references therein, with
a specific treatment for the conical vertices. To that end, on any face � � , let �5 � � �  be the

axisymmetric subspace of 5 �'4  I I � �C�  .
Lemma 3 The application � �� , which is the trace on � � of the normal derivative, is continu-
ous and surjective from �� N onto �5 � � �  , and there exists a continuous lifting operator from�5 � � �  to �� N .

This result allows to prove an integration by parts formula, between elements of �� N and
elements of the space

� � � 	 8  " � � ��� �  �98 :" � � �<�  �98  � .
Lemma 4 Let ��� � � � 	 8  and ��� �� N . There holds

� $ � � � � � � � �� � 8 � �
�/
 � 
������ ����
	�� �M	��

�� �� ���� � ��� �

The first characterization of �� follows from the above Lemmas.

Theorem 14 Let ��� ��  �98  : � belongs to �� if and only if

� �K� �
in 8 	 �
	 � � � �

in �5 � � � ��;	".10 �K0 � �

In a meridian half-plane, the second characterization of elements of �� is then

Corollary 4 Let ��� �  � �/�  : � belongs to �� if and only if

� D �<" � �  �
� �  �

.
�
� �
� � �

�  �
� �  �

�
in � 	

� 	 � � � � 	�. 0 � 0�� 	
��� %�� � ����� �  	 for any neighborhood � � of � � �

The study of the Laplace-like operator � D is performed in [ACL01]. It extends Grisvard’s
work [Gri92] to the axisymmetric case:

Theorem 15 The space �� , and consequently �T W , is of finite dimension, equal to ��� �3��� ,
with ��� the number of reentrant edges, et ��� the number of vertices with conical angle larger
than � � � R .

Magnetic case. The natural space of axisymmetric magnetic fields is

�� � �%$ � �U " ���9� $ � ��� 	 with norm
K9K ����� � $LK9K I%= $�� (23)
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Then, if �� N � �� P �8 � �98  is the space of regular fields, we infer from Theorem 13 that �� N
is closed in �� . Let �� W be its orthogonal, i.e.

�� � �� N
�
V �� W � (24)

We had remarked in the proof of Proposition 3 that an azimuthal field is always regular; hence,
the singular fields are meridian. Moreover, elements of �� are determined via their curl. So,
given ��W�� �� W , define

� �A�0�C� � ��W : ��W is meridian, therefore
�

is azimuthal.

Now, let �� N be the space �0�C� � R � �� N of potentials of elements of �� N . The orthogonal-
ity, in the sense of (23), of � W and elements of �� N becomes

� � 	 ���  I%= $Q� � 	 � � � �� N
as � � � �0�C� �G�0�C� �-� � ����� ����� . As

�
is azimuthal, it is enough to consider only elements

of �� � N7� � � � �� N " � � ��� � . So, we are left with a scalar problem, similar to the electric
case, and we obtain the two characterizations of �0�C� � �� W .

Theorem 16 Let
� � �!  �98  	 � � � � ; � � � � � � belongs to ����� � �� W iff

� � � �
in 8 	 � � 	 �� � �

in �5 � �	�  � 	". 0��K0 � �
Corollary 5 Let � � � � � � : ���)�  R � �/�  is characterized as a solution of

� R �<" � �  �
� �  

� .� � �� � �
�  �
� �  �

�
in � 	

� 	 � � � � 	�. 0��K0�� 	
� � � � % � � � ��� �  	 for any neighborhood � � of �
�&�

Again, the study of the operator � R (cf. [ACL01]) gives the equivalent of Grisvard’s re-
sult [Gri92] in this case:

Theorem 17 The space defined by Corollary 5, and consequently �� W , is of finite dimension,
equal to � � , the number of reentrant edges.

Now, it is more convenient for numerical computations to use the variable � � � � . It
satisfies:

�A� �  � � � �	 � � � " � �  �
� �  �

�  �
� �  �

.
�
� �
� �

� �
�  �

�
in � 	 �L� �

on �
� (25)

2.5 Existence and uniqueness results.

If the data and initial conditions are axisymmetric, so are the solutions of (8) and (10), and,
under the hypotheses of Theorem 5� � % I � � 	!� 6 �T �	 �$�&% I � � 	!� 6 ��  �
Then it follows from (22) and (24) that the electromagnetic field can be decomposed into
regular and singular parts continuously with respect to time:� ���  � � N ��� M� � W � � �	 � � N 	 � W)"�&% I � � 	!� 6 �T N � �T W� 	

� � � �� � N � � M� ��W ���  	 � � N 	���WU"� % I � � 	!� 6 �� N � �� WU��
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Moreover, as the projections  � and  � are smooth, each of the systems (13–16) admits
a unique solution in the relevant space; that of (13) and (14) depend continuously on time.
As a consequence, the decomposition (4) can be refined by using three subspaces: meridian
regular, meridian singular, azimuthal. (Recall that azimuthal implies regular.) Each of the
problems (3) then admits a unique and continuous solution.

2.6 Principle of the numerical method.

The SCM follows from the above decomposition. As the singular parts span a finite-dimensional
space, it is sufficient to find an approximation of a basis. The problems (3) amount to a classi-
cal FE formulation, for the regular parts, and a low-dimensional linear system, for the singular
parts.

Computation of bases of
�

and �� . We look for a basis of the spaces �� and
� " �� � satisfying � ���  � , whose dimensions are given by Theorems 15 and 17. We have at hand

an approximate knowledge of these bases [ACL01].
- There is one basis function � R� � �

or � D� � �� associated to each relevant geometric
singularity � � as follows. In a neighborhood � � of � � , there holds ���� K ��� � � W� �
	��� , where
the principal part � W� is just in �  � � � �  , and the remainder 	 �� is of 5 � -style regularity in � � .
In � �� � ��� � � , � �� is of 5 � -style regularity.

- In � � , define local polar coordinates � � � 	 � �  centered at � � .
- If � � is a reentrant edge of opening � � � � � B � , .�����J B � J . , one has � W� �

� R�6 ��  ��� � B � � �  , for the electric and magnetic cases.
- (For the electric case only.) If � � is a conical vertex of opening � ��� � , .�����J � � J � R ,

one finds � W� � � R � R 	��� � 	�� � *��  � �  , where � 	 denotes the Legendre function and � � � � � 	&. ����"
is given by � 	�� � *��  � � ��� � ��� �

.

In the whole of � the function 	 �� � � �� � � W� satisfies

��� D 	 D� � � D � W� 	 resp. � � � 	 R� � � � � W� in � 	 	 ����� � � � � W� �� � on �
	 (26)

but, unlike in the cartesian geometry, it is not possible to compute it variationally: if � � is
an edge, neither � W� nor 	 �� is of 5 � -style regularity near the axis, and the problem (26) is
ill-posed. This hindrance can be overcome:

- either by multiplying � W� by the ’not-too-noisy’ cut-off function � �/� �� � � ��� � �  , i.e.
defining �	 � � � � � � � W� which is regular in the whole of � ;

- or by domain decomposition, computing 	 � in � � and � � in � �� , and enforcing standard
transmission conditions between � � and � �� (à la � 3.2.2).

Computation of bases of �� W and � � � � �� W . Our task is now to compute � � � �0�C�N� � ��� �  R � � R� ,

which is in �� W since ����� � � � � � R� ��� , and
� � � � � � � � ��� D �R � � D� . First, one solves vari-

ationally:

��� � � � � � R� in � 	 � � � �
on � 	

��� D�� � � � D� in � 	 � � � �
on ���&�
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One has:
� � � � N� � �

�/
 + 
�(�� � +� � W+ , � � � � N� � �
��
 + 
U(�� D (�� � +� � W+ , where:

- the
� N� and � N� are of 5  -style regularity,

-
� W+ � � W+ � � 6��+  ��� � B
+ � +; near a reentrant edge,

- � W+ � � 	 �+ � 	 � � *��  � +  near a vertex of conical angle larger than � � � R .

The singularity coefficients � +� 	 � +� can be extracted by quadrature formulas [BDM99] or spec-
tral methods. In � I � � ��� � + , � � and � � are regular. The corresponding decompositions of� � and

� � are:

� � � �0�C� � � N� � �
�/
 + 
�(�� �

+� �0�C� � � W+ 	 � � � � � � � � N� � �
��
 + 
U(�� D (�� �

+� � ����� � W+ �

�0�C� � � N� and � ����� � N� are of 5 � -style regularity and can be computed variationally, while
�0�C� � � W+ and � ����� �EW+ are analytically known. In � I , the whole of � and

�
can be computed

variationally.

Finally, it is possible to orthogonalize the decomposition (22) by subtracting to
� � its

orthogonal projection on �T N . This is no difficulty.
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Figure 1: Computed magnetic field: The SCM and Finite Volume techniques.

2.7 Numerical Results

As an illustration of the SCM in the axisymmetric case, one can compute the electromagnetic
field generated by a current. A top hat domain 8 ( � L-shaped) is considered, and a perfectly
conducting boundary condition is imposed. The initial conditions are set to zero. The electro-
magnetic wave is generated by a current 
 �	� 	 �  � � � ��� , � � � . �  ��� ��
��  , with a frequency

 ����� � � 	 ��� . ��� Hertz. The support of this current is a little disc centered at the middle
of the domain. Because it is impossible to provide an analytical solution, we compare our
results to the computations made by another code, based on Finite Volume (FV) techniques
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à la Delaunay [Her93]. The space and time discretizations of the SCM are detailed later on,
in Section 3.2.3. Figure 1 shows the isovalues of the magnetic field ( ' � component after
1000 time steps), which have been computed by the two methods. The results obtained by
both methods are comparable, which shows the feasability of the SCM. Moreover, the SCM
provides a numerical solution which is less noisy.

3 Maxwell’s equations in a polygon

In what follows, it is assumed that both the data and the initial conditions do not depend on
the transverse variable � . Then the original problem can be identified with a problem posed
in a section of an infinite cylinder, which is a 2d polygon � , with boundary � , a set of edges� ���  �/
 � 
 � , and a unit outward normal � . The notations are those of Section 1, except that
the Sobolev spaces are based on the scalar curl; also the 2d calligraphic spaces (

T
, U ) and

unknowns (
�

, etc.) are written in boldface, i.e.
�

, � , % � � � � 	 �  ' & , etc.

3.1 The time-harmonic Maxwell equations

This Section summarizes the results obtained in [BHL99] and [HL00], and we refer to these
papers for any detail.

We are looking for a numerical approximation of the solution % to
� �0�C�N� *1,
-. % � �  % � ( in � 	% #1� � �

on � � (27)

For sake of simplicity regarding existence and uniqueness questions, we suppose that � is a
complex number with nonzero imaginary part (which means that we are concerned with the
electromagnetic problem in a homogeneous and dissipative medium) or, in order to include
stationnary problems, that ��� �

. The vector field ( is a datum that represents the impressed
current density. We assume that

����� ( � �
in � 	

which amounts to saying that the electric charge density vanishes in the whole domain. The
singular field method is based on the fact that the solution of (27) can be found by solving
an equivalent regularized problem similar to the vector Helmholtz equation. Formally, the
regularized problem is given by �� � ��� % � �  % � ( in � 	% #���� � ��� � 	���9� % � � ��� � � (28)

Indeed, a solution of (27) is clearly divergence free and, thus, satisfies (28). Conversely, let %
be a solution of (28). Its divergence � �A���9� % satisfies

� ��� � � �  � � �
in � 	� � � ��� � 	

which yields � � �
(provided � is assumed regular enough).
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The Section is organized as follows: in a first part ( � 3.1.1) we make precise the functional
setting and give the corresponding variational formulation. In particular, we address the ques-
tion of equivalence between the classical and the regularized formulations of the problem. We
show that the latter can be set in two ’neighboring’ functional spaces whenever the domain �
has at least one reentrant corner. Of course, only one of them leads to the equivalence with the
classical formulation. The key of the method lies in the fact that the ’right’ functional space
can be written as the direct sum of a space of regular fields completed by a (finite-dimensional)
space of singular fields. We give two possible decompositions which lead to the singular field
method (SFM) and its orthogonal variant (OSFM) described in � 3.1.2. In � 3.1.3, the analysis
of the convergence of these methods is addressed. It turns out that both numerical schemes
have the same rate of convergence but the numerical applications presented in � 3.1.4 clearly
show that OSFM yields far better results: we shall try to explain why.

3.1.1 Classical and regularized formulations

The variational interpretation of the classical problem (27) leads us naturally to seek % in the
space

8 I � *�,
-�.' . If we assume the datum ( to belong to
!  �/�  , the weak form of (27) is given

by

� I � *�,
-. 
� ������� % � 8 I � *1,
-.%��
	��
�������� *1,
-. % 	�*�,
-�. % �  I � �  ��% 	 % �  I � � ( 	 % �  I � % � � 8 I � *1,
-.  �

The sesquilinear form � *1,
-. % 	�*�,
-�. % �  I � �  �&% 	 % �  I being coercive on
8 I � *1,
-.% (due

to condition ��� � �  �� �
), we infer the existence and uniqueness of the solution of

� I � *1,
-. 
from Lax-Milgram’s theorem.

Let us now consider the regularized problem (28). Its variational formulation involves
the functional space

�
and thus amounts simply to adding � ���9� % 	M���9� % � =I in

� I � *�,
-�.  . We
therefore consider the problem

� I � *�,
-. 	5����� 
� ������� % � � ��	��������������% 	 % � �� � ( 	 % �  I�� % � � � 	

where ���&% 	 % � #" � � *1,
-. % 	�*�,
-�. % �  I � � ����� % 	5���9� % �  I � �  ��% 	 % �  I .
For the same reason as above,

� I � *1,�-�.S	5���9�  has a unique solution which coincides with
that of

� I � *1,
-.  provided ����� ( � �
. Indeed, choosing % � � � � � � � � with � � ��� � �  in� I � *�,
-.  yields that the solution of
� I � *�,
-�.' is divergence-free. It thus belongs to

�
and

satisfies the variational equation of
� I � *1,
-. 	M���9�  , in other words it does coincide with the

solution of
� I � *1,�-�.S	5���9�  .

We thus deduce that
�

is the appropriate functional frame for the regularized problem.
But the situation becomes more involved if we consider the following problem given on the
subspace of

�
of regular fields:

� I � � ����� 
� ������� % � � N ��	��������������% 	 % � �� � ( 	 % �  I � % � � � N �

As mentioned in Section 1,
� N is a closed subspace of

�
and hence, the form ��� # 	&#  is

still coercive on
� N . Whenever � has at least one reentrant corner,

� N is strictly contained
in

�
, and the respective solutions to

� I � *�,
-. 	5�����  and
� I � � �����  are in general different.

In particular, an 5 � -conforming FE discretization can only provide an approximation of the
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non-physical problem
� I � � �����  .

In order to perform a method based on nodal (Lagrange) FE, which is able to capture the
singular behavior (and thus solves problem

� I � *1,�-�. 	M���9�  ), we decompose
�

into a regular
and a singular part,

� � � N�V � WM�
Of course,

� W is not uniquely determined. Hereafter, we will give two possible choices,
leading to two different methods.

Notice that the above existence and equivalence results keep true in the stationnary case
corresponding to � � �

. In order to simplify the presentation, we will consider this case only,
and we thus set from now on

����% 	 % � :" � � *1,�-�. % 	*1,
-. % � =I"� � ���9� % 	5����� % � =I �
Let us set some notations. Without loss of generality, assume that � has exactly one

reentrant corner of measure � � � � B , .�����JOB4JA. , at the vertex
�

. We use the local polar
coordinates ��� 	��S , and we fix a regular cut-off function � � � �/�  such that ��� . near

�
and

��� �
near the other vertices. The function

� ��� 	��S�� � 6  ��� � B � 
belongs to 5 � � �  � 5  � �  as B JC. and is called singular function at

�
. We finally introduce

the subspace of 5 �I �/�  given by
� � ���� � � ��� � �

Owing to Theorem 8 (see also [BHL99]), we have the direct decomposition:

Theorem 18
� � � N

�

V � ����� � � (29)

An orthogonal decomposition can be deduced from (29) solving an auxiliary inhomoge-
neous variational problem, which is similar to

� I � � � � �  :
Theorem 19

� � � N
�
V ���� � � � � � � � �'M� � � (30)

where � is the solution of the problem
find ��� 8 � � �  such that

�U� � 	 % � �� � 	 � % ��� � N 	 �3#1� � � � ����� � #�� on �
� (31)

Remark 2 Decomposition (30) is orthogonal in the sense that

��� � ����� � �'M� � 	 % � N �� � � % � N � � N �
Notice, however, that the above relation fails whenever � �� �

. Nevertheless, in this case, the
remaining terms are of lower order and involve only the �  -scalar product of the sesquilinear
form.
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3.1.2 Description of the method

We give the algorithms of both SFM and OSFM which are based respectively on the decom-
positions (29) and (30). To this end, let � � �  I�� � � � R , be a family of regular triangulations of
the domain � . We consider the ��� Lagrange FEM:

� � " � � % � � 8 � �/� :" % � 	 &�� �  ��� ���E� � � � � � � �
Let

��	�
G�
be the set of nodal points of the triangulation and� � " � � % � � � � " ��% � #1�! � 	�
 �� � 	 � 	�
 �	� �

the discretization space of
� N . Let � � �A���� � � and ��� 
  
�� �/=������'= � � be the basis functions.

Note that the discrete boundary condition ��% � # �! � 	�
  � �
is ambiguous if

	�

is a vertex

of the polygon; in this case it should be understood as % � � 	�
 �� �
(i.e. both components of% � � 	�
  vanish.)

The singular field method (SFM) Owing to (29), the discretization space is given by
� � � � � V � ����� � �

The matrix form of the discrete problem then reads as follows:��� �

� & � O�� ���� N� O � � � �!" O � 	 (32)

where
-
�

and
�!

respectively denote the stiffness matrix and the right-hand side corresponding to
the FE space

� � ,� 
$# � �U��� # 	 � 
 �	 �!	 � ��. 	&�%�&� 	 � � and
! # � � ( 	 � #  I 	 � � .S	&�&�%� 	$� � .

-
� O and

" O denote the matrix and the right-hand side of order . corresponding to the
singular field,� O � �U� � ����� � �
�'�	 � ����� � �
�'� and

" O � � ( 	 � ����� � �
�'�=I .
-

�
is a matrix of order � � � . coupling the basis functions of FE-type to the singular

field,
� 
 � � �U� � ����� � �
�'�	 � 
  	 . 0 ��0 � � .

In order to preserve the advantages of the sparse matrix �&%(' in the resolution of (32), the
SFM consists in solving separately the two linear systems� ��*) � �! 	 � � � � 	
and taking into account that (32) may be written as� �� N � ��+ �� ) � � O �-, 	 � O � O � " O � � & �� N � (33)

The left equality clearly implies that
�� N � �� ) � � O � . Substituting this identity into the right

one thus yields the singular coefficient � O . Thus,

% � �
�
�/
/. 
/� � � � ) 
 � � O � 
  � 
 � � O � � � � � ���' �

Notice the similarity of (33) with (3).
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The orthogonal singular field method (OSFM) This time, the discretization space is given
by

�� � � � � V ���� � � � ����� � �'M� � � � 	
where � � denotes the FE-approximation of problem (31).

In consequence, the matrix form of the discrete problem is the following:� � �
� �� O � ���� �N� � O � � � �!�" O � 	

where
�

and
�!

take the same significance as before, and
�� O and

�" O are respectively given by
�� O � ��� � � 	 � �  � � � �" O � � ( 	 � ����� � �'M� � �  I 	

taking into account that � ����� � �' is curl- and divergence-free.
The algorithm of the OSFM is then straightforward.

Remark 3 Both methods can be extended to the case of � � reentrant corners:
�� O is a vector

of @ (�� , and
�

and
�

(for the SFM) are matrices of order � � � � � . See also � 3.2.3, in which
algorithms are given in this case.

3.1.3 Error analysis

We state in this Section the main convergence results. All proofs may be found in [HL00].

Theorem 20 Let % be the solution of
� I � *�,
-. 	5���9�  and % � its approximation by the SFM.

Assume that the regular part of % belongs to
8 O D � �/�  with � in � � 	&. � . Then, we have

� % � % � ��I%= ���	��
5= >%G ?�� � � � O 
for the error in the energy norm, and

� % � % � � I � � � ��  	 � 
 J�� �
� B � . 	
in the �  -norm. Moreover, the error of the OSFM is of the same order as the one of the SFM.

3.1.4 Numerical results

In this Section, we present numerical tests of both methods in the case where the exact solu-
tions are known. The domain is formed by three quarters of a circle with center � and radius
� , the only reentrant corner being of measure ���A* � ��� ( B � ��� * ). We consider two families
of solutions, for � ��� :

�
<
�/� 	��S�� � ����� � � �/�  � <S6  � � � � B"�S� and

8
<
��� 	��S��A�0�C� � � � ���  � < 6 *��  � � B"�S� 	

�
< and

8
< have the same regularity depending on � :

�
< �

8QO �/�  , � � J�� B . In particular,�
< is of class

8 � for � � . , whereas
� � has a non-zero component in any complementary

space of
� N .
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Figure 2: FE-approximation of
� � .

Figure 3: The SFM for
8
< , ��� � 	 ��� � .

Both methods have been tested on four unstructured grids. The mesh parameter � varies
from � � � R � to � ��� R � , the latter corresponding to roughly � ��� � � ��� degrees of freedom.
Notice that no particular mesh refinement has been done near the corner. The cut-off function
� is a piecewise polynomial function of class % � . The coefficients of the terms

�
,
�!

and
�

are calculated using a 7-point-quadrature formula (exact for polynomials up to order 5).
The coefficients

� O and
" O are calculated analytically. The implementation of the boundary

condition is realized via a rotation which maps the canonical basis on a local basis of the
normal and tangential vectors; in the latter basis the vector boundary condition is decoupled
and standard techniques apply. The linear systems occuring in the algorithms are solved by a
direct method based on Cholesky factorization. All tests have been realized with the FE-code
MELINA6.

It may be clearly seen on Figure 2 that the standard FEM fails for a singular solution field

6developed by O. Debayser (ENSTA, Paris, France) and D. Martin (IRMAR, University of Rennes 1, France) at
SMP, ENSTA, see [Mar97].
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(here, we represent the � -component of the FE-approximation of
� � ). Indeed, the condition% � # � 	 �K� �

forces the FE-approximation to vanish at � whereas the exact solution tends to� at the corner. Hence, we are not faced with an accuracy problem (which could be handled
alternatively by a local mesh refinement), but with the choice of the appropriated functional
frame: the FE-aproximation converges to the solution of

� I � � �����  which is globally differ-
ent from the physical solution.

Figure 4: the SFM/OSFM for
8 � .

Figure 3 shows the discrete �  -error of the SFM,

� % � % � � � " �
��
.
� �

�
����� K % � 	 
  � % � � 	 
  K  	�
 �54  	
in logarithmic scale for the regular fields

8  and
8��

.

The numerical values are in good accordance with the theory of � 3.1.3. Figure 4 com-
pares the SFM- and OSFM-approximations of the singular field

8 � . It turns out that the
OSFM yields the better results. This is probably due to the cut-off function � involved in
the implementation of SFM. Indeed, this numerical instability is known for singular func-
tion methods (see for example [BD82]) and leads to high values of the constant in the error
estimates, and thus to poor accuracy.

3.2 The time-dependent Maxwell equations

We are looking now for a numerical approximation of the 2d time-dependent Maxwell equa-
tions, (8) being rewritten as two decoupled sets of second order in time equations. In this
paper, we focus on the first one (the second one could be written in the same way [ACS98]).
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It can be written as follows:���������� ���������

�  %
� �  �S����� � *�,
-. % � � � (

� � 	
�  ' �
� �  

� � ' � ��*1,�-�. ( in � � � � 	!�#" 	
����� % � � in � � � � 	!�#" 	
% #�� � � 	 � ' �

�!�
� ( #���� �

on � � � � 	!�#" 	
% � � �� % I 	 ' � � � ��3' � I 	
� %
� �
� �  � �0�C� � ' � I � ( � # 	 � �	 � ' �

� �
� � �� � *�,
-. % IS�

(The second order in time system of equations is closed with the help of initial conditions on
� � % and � � ' � .)

As mentioned in Section 1, the ' � component, as the solution of a wave equation, always
belongs to 5 � � �  , even in a non-convex domain. As a consequence, we consider below only
the computation of the field % .

Remark 4 For the sake of simplicity, the problem will be written in the absence of charges:���9� % � �
. The space of solutions becomes� � ��$ � � "������ $ � ���

By using the Helmholtz decomposition, it can be proved that the singular space
� W of

�
is a

(strict) subspace of �0�C�N� � W � � ������� W , where
� W is the space introduced in Section 1, and

� W its counterpart for the homogeneous Neumann problem. Hence, the method described
here for

�
can be adapted to

�
.

3.2.1 Description of the method

We first introduce a variational form of the equations, i.e.
find %*� �  � � such that

�  
� �  ��% 	 �  I � � *1,
-. % 	�*�,
-�.��  I � � �� � � ( 	��  I � ��� � 	

with the same initial conditions. As in the 3d case (see Theorem 5), there exists one and only
one solution of this problem. Moreover, we have the following orthogonal decomposition of�

, analogous to the one previously obtained in
T

.

Theorem 21 The space
�

can be split in the orthogonal sum
� � � N �

V � W .

From this splitting, we obtain a continuous (orthogonal) decomposition in time of the electric
field, that is

%*� � �� % N ��� M� % W ��� "�

By using again the relation between the singular solutions of Maxwell’s equations and those of
the Laplace problem, we obtain that the vector space

� W is finite dimensional, of dimension
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� � , the number of reentrant corners, defined by *1,
-. � W�� � ( � introduced at (6)). For� $ � W  �/
 � 
U( � a basis of
� W , we have

%*� � �� % N ��� M�
�

�/
 � 
U(��
� � ���  $ � W 	

where ��� �  ��
 � 
U( � are � � functions at least continuous in time. With this decomposition, the
variational formulation becomes:
find % N � � N such that

�  
� �  �&% N 	�� NE I � � *�,
-�. % N"	�*�,
-.�� NE I � � �� � � ( 	 � N� I

� �
�/
 � 
U( �

� � �� � �  � $ � W 	 � N =IS	�� � N � � N 	 (34)

completed with � � equations, derived by using � $ +W  ��
 + 
U( � as � � test functions. Thanks to
the orthogonality of regular and singular fields, one gets:

�  
� �  �&% N 	

$ +W  I � �
��
 � 
�( �

� � �� � �  � $ � W 	 $ +W  I � � + � �  � *1,
-. $ � W 	�*�,
-. $ +W  I �
� �� � � ( 	

$ +W  I 	%. 0 2�04� � � (35)

In order to compute numerically the solution, we have first to determine a basis of
� W , and

then to solve the time-dependent formulation.

3.2.2 Determination of a basis of
� W

For the sake of simplicity, let us assume that � � is equal to 1. To compute
$ W , a basis of

� W ,
the isomorphism between

� W and � is used. The framework of the algorithm is then:

- Compute a basis of � , i.e. a non vanishing element � W of �  I � �  , such that

� � W � �
in � 	 � � W

� � � �
on ��� 	 . 0�� 0 � �

- Compute
$ W�� � , the solution of

*1,
-. $ WK� �UW in � 	 ���9� $ W � �
in � 	 $ W # � � �

on �
� (36)

Instead of solving (36), it is more practical to make use of another isomorphism, in the same
spirit as in Section 1: to

$ W � � W , there corresponds one and only one scalar potential� W ��5 � �/�  � @ such that

��� � WK� �UW in � 	 � � W
�!� � �

on � �

Now, as
� W is sufficiently smooth (i.e. with regularity 5 � ), one can easily solve this problem

with the help of a variational formulation. The computation of
$ W�� � W then stems from the
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identity
$ WK�A�0�C� � � W .

Computation of ��W (
� W ,

$ W ): first method
A partition of � into � � and � � is introduced, where � � stands for an open angular sector of
radius

�
centered at the reentrant corner, with an angle �Q��� � B , .����*J�B JO. , and where � �

is the open domain such that � � P � � ��� and � � � � � � � . Last, Let � � (resp. � � ) denote the
boundary of � � (resp. � � ), which is split in � ���� � (resp. � ���� � ), with the interface ����� � P0� � .
The computation of � W (for instance) can be divided in three substeps (cf. [ACS98]).

1. The restriction of � W to � � , � �W , can be written using the polar coordinates,

� �W �/� 	��S��
�
<���R � � < � <S6 *��  � � B �S 	 with � R � �� � �

Every � < can be written as an integral of � �W 	 � over � .

2. Let � �
denote the unit outward normal to � � . One then defines the capacitance operator

�1" � �W 	 � �� � � �W
�!� � 	 � , by

� � � �W �� � � � � �W  � � B � R �� 6 D � *��  � B � �	
where � � � � �W �� � B  

� � �
<	� � �


 ���I � �W � � 	�� � 
*��  � � B"� �  � � �� *��  � � B"�S��

3. With the help of the transmission conditions: � �W ��� �W and � 	 � � �W � � 	 � � �W on � , one
gets the missing boundary condition for the exterior problem (on the interface). Let
� � denote the unit outward normal to � � , the exterior problem, written in a variational
form, reads
find � �W ��5 � �/� �  � @ such that

� � � � � �W # � 	 � � � � � �M� � � �W �	 � 	�� � B � R �� 6 D � � � *��  � B"�S�	 � 	�	,��	 ��5 � � � �  � @ �
Clearly, the bilinear form � �M	 	  �� � � � � � ���	 � 	 is symmetric positive. Thus, for a

given � R � , the above exterior problem is well-posed.

The computation of
� W and

$ W can be carried out in the same way.

Computation of ��W (
� W ,

$ W ): second method
Instead of partitioning � into � � and � � , one can split ��W the basis of � into

��W�� �
� ���W � � ) �/� 	��S

where � ) ��� 	��S � � R�6 *��  � B"�S is the dual singular function (see Section 3.1) for the Neumann
problem, and �

� ���W the regular part of the solution (that belongs here in 5 � � �  ). To compute
� W , we have only to solve the problem in �

� ���W
��� �

� ���W � � � ) � � �  in � 	
� �
� ���W
� � � �

on �� � 	 � �
� ���W
�!� � � �!�

)
�!� on �� � �
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Remark 5 This second one only requires the knowledge of the dual singular function, which
is easier to get than the complete local solution, and should carry out to 3d problems. More-
over its implementation is simpler in the case of several reentrant corners.

3.2.3 Solution to the time-dependent problem

We consider here the case of � � reentrant corners. One proceeds first a semi-discretization in
space, by using the ��� Lagrange FEM. Let ��� 
  
 = ��= ����� = � � be a basis of

� �N , the FE approx-
imation space of

� N . The formulation (34) can be written equivalently as a linear system,
where � stands for the derivative in time:

� � �� � �N � @ � �� N � � � � �! � � �
��
 � 
U( �

� � �� ���  �� � 	 (37)

where
� � is the mass matrix, @ � is the curl matrix, and

�� � (for a fixed
"
) the vector whose

components are � � �  
 � � $ � W 	 � 
  I , . 0�� 0�� � .
We denote by

�� ���  the vector of @ ( � whose components are � � ���  . Starting from (35), we
obtain

� �� O  � � ��� O �� � � ��� O �� � � � �	 O  �
where

�� O and
�	�O

are vectors of @ ( � , with components

� O� � �&% N 	 $ � W =I1� � �� N K �� �  and
	 O� � � ( 	 $ � W =I1� � �! K �� � ��

� O and � O are � � � � � matrices, defined by � � O �+ � � � $ +W 	 $ � W  I and � � O �+ � � � � + W 	 � � W  I . By
plugging this expression in (37), one obtains

� � �� � �N � @ � �� N � � � � �! � � �
��
 � 
�(��

�
� O R � ��� �	 O  � �
� O �� � � �� O  � �  � � �� � 	

which is implicit in
�� � �N . After a time discretization involving a second-order explicit (leap-

frog) scheme, the scheme reads

� � �� < D �N � �
��
 � 
�( �

�
� O R � � �� O  < D � � � �� � � �� < �

Here the superscript < (resp. < D � ) stands for a variable at time � <Q� � � � (resp. � < D � ), and�� < is a set of quantities known at time � < . After a few elementary algebraic manipulations,
this expression can be written as

� � � � �
��
 � 
�( �

�� � �� &�  �� < D �N �
�� < 	 (38)

where
�� � is a linear combination of the �

�� �  ��
 � 
�( � : �� � � �
�/
 � 
U( � � � O R �  � � �� � . It can

be solved (for instance) with the help of the following formula (see [Hag89] for a review),
�

� � � ,  and � � � � �

� � � �� &  R � � � R � � � R �  ��� � � & � R �   R � � & � R �
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that only requires (compared to the unmodified system, that is
� � �� < D �N �

�� < ) the additional
computation of the small � � � � � matrix ��� � � & � R � "�R � . This formula is applied here
for
� � � � . Recall that the mass matrix

� � is diagonalized thanks to a quadrature formula
(see [ADH D 93]), which preserves the accuracy. In this way, the linear system to solve (38)
appears as a slight modification compared to the one obtained without the SCM.

3.2.4 Numerical results

Results of the computation of a basis of
� W are similar to those shown in � 3.1.4 and will not

be presented here. We refer the reader to [ACS00] for more detailed numerical examples.

k(t)=0
k(t)≠0
E  (t)≠0R

E(t)=0

t

t

ER(x0,t)

E(x0,t)

Figure 5: At a given point � I , comparison of % N �	� IS	 �  (top) and %*�	� I 	 �  (bottom) with �
varying.

For the first case, one computes the electromagnetic field generated by a current, the space
and time characteristics of which are similar to those of a bunched beam of particles. An L-
shaped domain � is considered where perfectly conducting boundary condition is imposed.
The initial conditions are set to zero. The electromagnetic wave is generated by a current
( � � 	 �  � � � � 	 �   & , the support of which is bounded, with � � � �

, �  �� . �  � � � 
 �  , for

 associated to a frequency of ��	 � � . � � Hertz. This current generates a wave which prop-
agates both on the left and on the right. Physically, as long as the wave has not reached
the reentrant corner, the field is smooth. Let � O be the impact time, then, if one writes% � � 	 �  � % N �	� 	 � �� �,���  $ W � �  , �M� �  is equal to zero for all � lower than � O , and so % N �	� 	 � 
and % � � 	 �  coincide. Now, on the one hand, for � greater than � O , �M� �  �� �

, and the support of$ W being non local (in fact, the support of
$ W spans the whole of � ), one has �M� �  $ W � �  �� �

,
for all � � � and � � � O . On the other hand, however, one wishes to reproduce the obvious
physical behavior, which is that for any point � and time � , % � � 	 �  � �

if � J �
� , where � �

denotes the time at which the electromagnetic wave reaches � . One can check (see Figure 5)
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that % N �	� 	 �  takes non-zero values, and therefore that it ’compensates’ for �,���  $ W �	�  , i.e.% N �	� 	 � �� � �,���  $ W � �  . Thus, % � � 	 �  remains equal to zero while � O J � J � � .
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Figure 6: Computed electric field: with and without the SCM.

The second example is a guided wave which propagates in a standard singular geometry, as
commonly studied devices such as hyperfrequency systems often include waveguides. This
case illustrates of the possibilities of the method, when it is used on a more ’complete’ formu-
lation, that is with different types of boundary conditions and several reentrant corners. An
incident wave enters in a step waveguide through the left boundary, and exits through the right
boundary. At the initial time, the electromagnetic field is equal to zero all over the guide.

The Figure 6 depicts the isovalues of the first component of the electric field after 1000
time-steps. the SCM provides a numerical solution which is precise especially in the neigh-
borhood of the corners. The result obtained via the classical nodal FE code (without the SCM)
shows a most unlikely approximation of the true solution (no singular behavior).

Conclusion

We proposed a method, called the Singular Complement Method, to solve PDEs in a non-
smooth and a non-convex domain. It is based on a splitting of the space of solutions � with
respect to regularity (cf. (4)), in a subspace � N made of regular elements, which is equal to
� when the domain is smooth or convex, and a subspace of singular elements � W . Regular
elements are approximated by the ��� Lagrange FEM, and test-functions are added to capture
numerically the singular part of the solution.

In 3d domains, for the Laplace problem as well as for Maxwell’s equations, the theoretical
aspects are under control, but there still remains to provide an effective approximation of the
singular part of the solution. Basically, two problems have to be overcome:

- The dimension of � W is infinite.
- The edge and vertex singularities are linked (cf. [Gri85]).
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These difficulties are not really equivalent. Indeed, on the one hand, one usually deals
with infinite dimensional vector spaces: for instance, the space � N is efficiently approximated
with the help of the ��� Lagrange FEM. On the other hand, finding an approximation, which
takes into account the links between the two types of geometrical singularities, is much more
challenging.

In 2d (or in axisymmetric domains), the situation is well understood theoretically, and
numerical experiments are well under way and partial results are satisfactory. Moreover, the
SCM is easy to implement, as it can be included in already existing codes, without having to
rewrite them in their entirety; also, it generates a reasonable overhead (low additional memory
requirements, small cpu costs). So, all’s well that ends well, cf. [Sha98].
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