Thirteenth International Conference on Domain Decomposition Methods
Editors: N. Debit, M.Garbey, R. Hoppe, J. Périaux, D. Keyes, Y. Kuznetsov (©?2001 DDM.org

28 Ahpik: A Parallel Multithreaded Framework Using
Adaptivity and Domain Decomposition Methods for Solving
PDE Problems

A. Ben-Abdallah?, A.S. Chardo?, I. Charpentier®, B. Plateau*

I ntroduction

Domain decomposition methods are a valuable approach when solving partial differential
equation (PDE) problems on parallel computers. In this paper, we focus our attention onto
parallelization strategies for these numerical methods when dealing with irregular applica-
tions, more specifically when adaptive refinement techniques [\Ver96] are applied to PDE
problems involving unstructured meshes. A parallel object-oriented framework called AH-
PIK [CCPOQO0] has been developed to cope with such irregular behaviors of simulations relying
on domain decomposition. It provides general abstractions that are suitable for solving PDE
problems on distributed memory machines using finite difference or adaptive finite element
discretizations, along with overlapping or nonoverlapping, synchronous or asynchronous do-
main decomposition methods. One of the main features of AHPIK is the use of multithreading
techniques on distributed memory machines (thus scalable) together with a message passing
library (MPI). This offers a degree of freedom for traditional parallel solvers, where subdo-
main computations are scheduled in the context of heavyweight processes which are assigned
to a given processor once for all. The use of multiple threads leads to programs that are flexible
in terms of data exchange, facilitating a task scheduling with potential for masking commu-
nication overhead. Moreover the object-oriented techniques used in AHPIK make reusability,
flexibility and expressiveness of source code easy.

Our goal in this paper is to show the efficiency of AHPIK concepts by comparing an AHPIK
implementation with an original MPI code which solves an unsteady incompressible Navier-
Stokes problem. The impact of our parallel strategy is investigated in two situations : we first
consider a well-balanced distribution of the subdomains, then we induce an irregular parallel
behavior by adding adaptive mesh refinement to the original code. This paper is organized
in three sections: in the first one, domain decomposition methods and adaptivity techniques
are discussed from a parallelism point of view. The second section presents the multithreaded
framework AHPIK, while the third one provides performance results and analysis after a brief
introduction to our trial application.

1L aboratoire de Modélisation et Calcul, IMAG, Grenoble, Adnene.Ben-Abdallah@imag.fr
2|_aboratoire Informatique et Distribution, IMAG, Grenoble, Andrea.Charao@imag.fr
SLaboratoire de Modélisation et Calcul, IMAG, Grenoble, Isabelle.Charpentier@imag.fr
4Laboratoire Informatique et Distribution, IMAG, Grenable, Brigitte.Plateau@imag.fr

296 BEN-ABDALLAH, CHARAO, CHARPENTIER, PLATEAU

M athematical M ethods

Domain decomposition methods (DD)

AHPIK can be used for a large variety of domain decomposition methods. In this paper, we
describe its basic design ideas for the resolution of the Laplace equation by a dual Schur
complement method.
In a bounded two-dimensional polygonal domain §2, we consider the Laplace problem (1):
Findu € H}(Q) such that
-Au = f inQ,
{ v = 0 onT. (1)

We denote by T' the boundary of the domain and f is assumed to be square integrable. In
the sequel, functions are supposed to belong to well chosen spaces, that is, the PDE problems
have a unique solution.

Let choose a nonoverlapping domain decomposition {Q}x=1,..,x 0of such that

0= Uk:l,..,KQ_k: (2)
QN =0, V(k,l) (S {1,..,K}2, k#IL,

We denote by T'y, and ~x; the boundaries of €2 that are respectively included in T" and inter-
faces with other subdomains (I = 1, .., K, [# k) such that

9 Yel = 6Qk N 601,
Y(k,l) € {1,..,K}?, k#l,{ Tk = 80, N 99. @

A PDE problem is then defined on each subdomain and boundary conditions are prescribed
on v ((k,1) € {1,..,K}2, k # 1) to satisfy continuity constraints. A Lagrange multiplier
(4) allows to write the variational formulation of the local PDE problem as:

Find u in the appropriate space such that

K
Z /Vuk.Vvkda: = /kadx, Yoy, in the appropriate space,
k=1"Y 2% Qg (4)
/,u(uk —w)ds =0 YpeHY?(y), Yk, 1) e{l,. K} k#1

Ykl

Problem (4) may be solved using Uzawa’s method. Let f; be the restrictions of function f to
domains Qy, v be the outer normals to , and A}, ((k,1) € {1, .., K}?) be initial data. The
knowledge of A}, at iterate n allows to compute »} and)\Zl“ as solutions of (5) and (6):

—Auz = fr ian,
6 n
Vke{l,., K}, 8—1;: = A, onyy ViE{l, . K} 1#Ek, 5)
up = 0 onTk,

A = N = N+ p(u = u) s ¥ (k) € {1, KPR k<
(parameter p has to be determined).

(6)

AHPIK: A PARALLEL PROGRAMMING TOOL FOR DD METHODS 297

The trace operator appearing in (6) is defined with respect to the domain decomposition
method. The previous description then applies to both the dual Schur method when the global
mesh is conform and the mortar method [BMP94] when meshes differ from one side of the
interface to the other.

This iterative process may be seen as a composition of computational tasks T, (k €
{1, .., K'}) that solve local PDE problems (5) in domains €2, and computational tasks T’,,,
((k,1) € {1,.., K}, k # 1) that update the Lagrange multiplier (6) corresponding to interfaces
~r1- The decomposition of DD algorithms into separate tasks is generic. It is already coded in
AHPIK for the Schwarz overlapping method [Sch90][Lio88] (note that interface computations
T.,,, are empty in this case), the Schur and dual Schur complement methods and the mortar
method. This approach is clearly extensible to the Dirichlet-Neumann method [MQ89]. This
also applies when coding asynchronous algorithm (see for example [BT89]).

Adaptation of the discrete space

Standard a priori error estimates are sufficient to choose a discrete space convenient with
respect to a desired accuracy. Nevertheless, in some cases, solutions may contain singularities,
for which a priori estimates induce the refinement of all the domain for computing accurate
solutions. Adaptivity is an alternate solution. It basically consists in an iterative method that
computes local a posteriori estimates [Ver96] related to the solution at an iteration. They
indicate the part of the mesh that need to be refined, thus allowing to compute a more accurate
solution at a lower cost than if global refinement was used.

When solving a PDE problem in parallel via domain decomposition methods, the use of
adaptive mesh refinement techniques leads to load imbalances among cooperating proces-
sors. The result is an important loss of efficiency since processors solving local PDE problem
on coarse meshes may be idle, waiting for processors working on refined meshes. This is
all the more true as soon as the chosen domain decomposition method is implemented with
synchronous process. An interesting way to cope with this problem consists in assigning sev-
eral subdomains to each processor, and let the computations be scheduled upon availability
of the data they depend on. Doing so, idle times due to communications may be masked
with computations. This approach can be coupled with load balancing strategies which al-
low to perform a new repartition of the subdomains over the processors. One can eventually
“move” subdomains from one processor to another during the simulation if needed. As the
management of such dynamic parallel behavior is usually cheaper with lightweight processes
(threads) than with classical operating system processes, we propose to use the first ones. For
a thorough discussion on the advantages of using threads for parallel irregular applications
see, for example, [Chr96] and [BT98].

Overview of AHPIK

The AHPIK framework is basically composed of C++ classes that provide abstractions for
developing PDE solvers based on domain decomposition methods. Two key abstractions in
AHPIK are internal tasks and interface tasks. Internal tasks perform local computations, i.e.,
computations that require only local data within a subdomain. Tasks T, identified in the
previous section are examples of internal tasks: they solve local PDE problems, what usually
needs solving the sparse linear equation system associated to each subdomain. Interface tasks,

298 BEN-ABDALLAH, CHARAO, CHARPENTIER, PLATEAU

on the other hand, carry out computations or updates over interface degrees of freedom. They
require data from neighboring subdomains, as well as results of local computations performed
by internal tasks. Tasks T.,,, identified in the previous section are examples of interface tasks.
Most domain decomposition methods can be described as an iterative process composed by
interactions between these two types of tasks. The methods differ in terms of actual operations
performed by internal and interface tasks and in the manner these tasks communicate and
synchronize their execution.

Based on these ideas, AHPIK programming interface offers C++ classes which encap-
sulate various communication and synchronization patterns for internal and interface tasks.
This includes synchronous and asynchronous algorithms, combined with different conver-
gence control mechanisms. Writing a new domain decomposition solver then involves “fill-
ing in” the internal and interface tasks with computations, as well as specifying interface data
objects that must be exchanged between processors solving neighboring subdomains. Actual
communications are thus hidden from the user. Such high-level approach is achieved through
object-oriented programming, which is employed in AHPIK as a means of providing strong
separation between programming interface and parallel, multithreaded implementation.

Internally in AHPIK, each task is performed by a specialized thread. Additional sender/receiver
threads are employed to carry out communication of boundary data needed for solving each
interface problem. Threads are scheduled by the operating system upon availability of data.
When a subdomain has more than one interface, interface computations can be performed in
parallel by different threads as soon as their input data are available. Several subdomains can
be assigned to each processor by multiplexing the set of threads performing internal and inter-
face tasks. One can also solve uncoupled problems in parallel over the same subdomain. This
is particularly interesting to efficiently exploit symmetric multiprocessor (SMP) architectures
that are widely available nowadays. On such platforms, the different threads composing a par-
allel program can run simultaneously on different processors. Without multithreading, solving
different problems at the same time over the same subdomain usually implies replicating some
data. Multithreading techniques are currently used by other frameworks addressing the de-
velopment of parallel PDE solvers, for example in [RHC*96] and [BBD*98]. Among these,
AHPIK is distinguishable by combining multithreading with message-passing on distributed
memory machines, and by being specially targeted to domain decomposition methods. The
reader will find in [Cha01] a detailed description of the AHPIK framework as well as the basic
ideas that have oriented its design and implementation.

Numerical Experiments

Our trial simulation model is a nonstationary incompressible flow around a cylinder with a
circular cross section at Reynolds number Re = 100. This case corresponds to the 2D case
of Schéfer and Turek’s benchmark [ST96]. The flow is governed by the Navier—Stokes equa-
tions. The problem is solved using a parallel projection scheme based on mortar decomposi-
tion method, and a conjugate gradient method is used to solve the interface problem. Details
are given in [Abd98].

The domain is divided into X = 92 nonoverlapping subdomains. A regular P, -iso-P,/ P,
mixed finite element triangulation is defined on each subdomain. One notices that we do not
require the grids of each subdomain to match; the weak continuity through the subdomain
interfaces is enforced by mortar functions. One of the particular points of this application

AHPIK: A PARALLEL PROGRAMMING TOOL FOR DD METHODS 299

is that viscosity and incompressibility of the fluid are treated within two separate steps, and
components of the velocity field can be computed in parallel.

Our first experiment consists in comparing the original implementation with AHPIK im-
plementation in a case where the workload is well distributed over the subdomains. Such
comparison is carried out over two different platforms : a PC cluster composed of unipro-
cessor nodes, and a SMP PC cluster comprising 2-processor nodes. Both clusters are homo-
geneous, but we notice that processors in the SMP PC cluster have higher clock speeds than
the cluster of uniprocessor PCs. We use 22 nodes for each parallel execution and most nodes
have 4 subdomains to solve. Figure 1 shows the duration of one iteration for both MPI-based
original code and AHPIK implementation.

Original implementation,
SMP PC cluster

8 AHPIK implementation,
SMP PC cluster

2 Original implementation,
;_S = PC cluster

g % £ AHPIK implementation,
.g g PC cluster

g 2

i

= P R -

Figure 1: Results for a well-balanced distribution of the subdomains.

We see that the AHPIK version slightly decrease the performance as compared to the
original implementation on uniprocessor. This can be explained by the good workload dis-
tribution that characterize this experiment. Indeed, when processor utilisation rate is high,
using threads introduce overhead. In a multi-processor node, the AHPIK version produces
better performance than the original implementation for identical execution parameters. We
see that AHPIK implementation mixing threads and message passing automatically adapts to
the multi-processor machine, while the original code keeps using only one processor.

Our second experiment consists in adding adaptive mesh refinement to either MPI-based
original application and the AHPIK application. This introduces load imbalances as the num-
ber of degrees of freedom vary from one processor to another during the time iterative exe-
cution. To simplify implementation, we always refine a whole subdomain, thus we achieve
the final mesh configuration within few adaptations. Figure 2 show results obtained when
running the adaptive codes on each PC cluster platform. While results on the SMP cluster re-
produce the behavior observed in the first experiment, results on the PC cluster composed of
uniprocessor nodes show that, as long as the workload is unbalanced, the AHPIK implemen-
tation can reach or slightly surpass the performance of the MPI-based adaptive code. One can
notice that this experiment reproduces a worst case situation as subdomain computations are
coarse-grain and the interface solution scheme requires frequent global synchronizations. We
expect better performance of the multithreaded version if synchronisation could be relaxed.

300 BEN-ABDALLAH, CHARAO, CHARPENTIER, PLATEAU

- MPIL,
PC cluster

e AHPIK,
PC cluster
wekizio WP,
SMP PC cluster

—r— AHPIK,
SMP PC cluster

Duration of one iteration (g)

1 2 3 4 5 6 7
Number of mesh adaptations

Figure 2: Results for the adaptive case.

1 Conclusion

In this paper we have introduced an object-oriented framework which uses multithreading
combined with message-passing as a parallel implementation strategy for domain decompo-
sition methods. The object-oriented approach provides general abstractions that are suitable
for a variety of domain decomposition methods, including overlapping and nonoverlapping,
synchronous and asynchronous methods. Such abstractions compose a programming inter-
face where communication and synchronization details do not need to be hand-coded as in
MPI-based applications.

We have investigated the performance of AHPIK compared to MPI-only domain decompo-
sition implementation for an unsteady incompressible Navier-Stokes problem. Results show
that multithreading associated to message-passing introduces more flexibility in parallel PDE
solvers relying on domain decomposition, as subdomain computations are dynamically sched-
uled upon availability of data, and the resulting codes automatically adapt to different parallel
architectures. This approach offers a potential for overlapping communication with com-
putations when dealing with irregular applications, however the benefits of such technique
are limited by the globally synchronous behavior of some numerical methods. In this sense,
one of the important contributions of AHPIK rely on its support to multiple synchronization
schemes that can be easily manipulated in the parallel code. This allows for an easy experi-
mental evaluation of different numerical algorithms with different synchronization behaviors
for solving a given problem.

These considerations lead us to conclude that the AHPIK approach offers a good com-
promise between performance and flexibility for implementing parallel PDE solvers based
on domain decomposition. In a near future, we plan to use multithreading combined with
message-passing to implement and evaluate dynamic load balancing strategies for adaptive
PDE computations.

AHPIK: A PARALLEL PROGRAMMING TOOL FOR DD METHODS 301

References

[Abd98]Adnene Ben Abdallah. Méthode de projection pour la simulation de grandes struc-
tures turbulentes sur calculateurs paralléles. PhD thesis, Université Pierre et Marie Curie,
Paris, 1998.

[BBD*98]Federico Bassetti, David Brown, Kei Davis, William Henshaw, and Dan Quinlan.
OVERTURE: An object-oriented framework for high-performance scientific computing. In
Proceedings of Supercomputing’98 (CD-ROM). ACM SIGARCH and IEEE, nov 1998.

[BMP94]Christine Bernardi, Yvon Maday, and Anthony T. Patera. A new non conforming
approach to domain decomposition: The mortar element method. In Haim Brezis and
Jacques-Louis Lions, editors, Collége de France Seminar. Pitman, 1994. This paper ap-
peared as a technical report about five years earlier.

[BT89]Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation.
Prentice-Hall Inc., 1989.

[BT98]Pierre Eric Bernard and Denis Trystram. Report on a parallel molecular dynamics
implementation. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, and U. Trottenberg,
editors, Advances in Parallel Computing, pages 217-220. North Holland, 1998.

[CCPOO0]JANdréa S. Chardo, Isabelle Charpentier, and Brigitte Plateau. A framework for paral-
lel multithreaded implementation of domain decomposition methods. In E. H. D’Hollander,
G. R. Joubert, F. J. Peters, and H. J. Sips, editors, Parallel Computing: Fundamentals and
Applications, pages 95-102. Imperial College Press, 2000.

[Cha01]Andréa S. Chardo. Multiprogrammation paralléle générique des méthodes de
décomposition de domaine. PhD thesis, Institut National Polytechnique de Grenoble, 2001.

[Chr96]Nikos Chrisochoides. Multithreaded model for dynamic load balancing parallel adap-
tive PDE computations. Applied Numerical Mathematics Journal, 6:1-17, 1996.

[Lio88]Pierre-Louis Lions. On the Schwarz alternating method. I. In Roland Glowinski,
Gene H. Golub, Gérard A. Meurant, and Jacques Périaux, editors, First International Sym-
posium on Domain Decomposition Methods for Partial Differential Equations, pages 1-42,
Philadelphia, PA, 1988. SIAM.

[MQ89]Luisa D. Marini and Alfio Quarteroni. A relaxation procedure for domain decompo-
sition methods using finite elements. Numer. Math, (5):575-598, 1989.

[RHC*96]John V. W. Reynders, Paul J. Hinker, Julian C. Cummings, Susan R. Atlas, Sub-
hankar Banerjee, William F. Humphrey, Steve R. Karmesin, Katarzyna Keahey, Marikani
Srikant, and Mary Dell Tholburn. POOMA: A Framework for Scientific Simulations of
Paralllel Architectures. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
in C++, chapter 14, pages 547-588. MIT Press, 1996.

[Sch90JH. A. Schwarz. Gesammelte Mathematische Abhandlungen, volume 2, pages 133—
143. Springer, Berlin, 1890. First published in Vierteljahrsschrift der Naturforschenden
Gesellschaft in Zirich, volume 15, 1870, pp. 272-286.

[ST96]Michael Shafer and Stefan Turek. Benchmark computations of laminar flow around
cylinder. In Flow Simulation with High-Performance Computers Il. Vieweg, 1996.

[Ver96]Rudiger Verfirth. A Review of A Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Wiley and Teubner, 1996.

