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16 Substructuring techniques and Wavelets for Domain
Decomposition

Silvia Bertoluzza 1

Introduction

We consider in this paper a substructuring approach for preconditioning the linear system
arising from the reduction to the interface unknown of the discrete three fields formulation of
domain decomposition. In particular we concentrate on choosing the stabilization technique,
needed to circumvent the otherwise very restrictive inf-sup conditions required for stability
and convergence, in such a way that the stabilized method falls in the range for which the
estimate on the preconditioner holds. For such preconditioner to work, it is in fact necessary
that the stabilized bilinear form verifies continuity and coercivity with respect to the same
norm. This leads us to choose a stabilization technique based on adding a residual term
on the subdomain boundaries, measured in the natural norm of type ������� . The ���	��� type
scalar product can be cheaply realized in terms of a wavelet decomposition. Remark that
wavelets are employed here as a tool for implementing stabilization and they do not need to
be employed as discretization space.

A substructuring preconditioner for the three fields domain
decomposition method

Let 
��� � be a convex polygonal domain. We will consider the following simple model
problem: given ����� ��� 
�� , find � satisfying

��� ����� in 
 � ���"! on #$
 % (1)

In this paper we consider the three fields domain decomposition formulation of such a
problem [BM94]. More precisely, considering for simplicity a geometrically conforming
decomposition 
&�('*)�
�) , with 
�) quadrangles regular in shape, +,)-�.#$
�) , and letting/ �"'*)0+1) , we introduce the following functional spaces

2 �43 ) � � � 
 ) �5� 67�43 ) �-8 �	��� � + ) �5�9 �;:=<>�?� � � / �A@ there exists ����� �B � 
��5�,���C< on
/�D �C� �B � 
��FE GH�

respectively equipped with the norms:

I � I � J �4K )
I � ) I �L�MONQPSR5T � IVU1I �W �"K )

IVU ) I �L�X MZY\[ N^]_R5T �
1Istituto di Analisi Numerica del C.N.R. di Pavia, aivlis@ian.pv.cnr.it



198 BERTOLUZZA

and (see [Ber00a])

I < I �� � �������� L M	 NQP T�
 ���� on G
I � I �L M NQP T�� K ) E <�E �L MZY\[ N^] R T %

We remark that here and in the following we will use the notation � and � to indicate
several positive constants independent of any relevant parameter, like the mesh size or the
size of the subdomains. The expression � ��� will stand for ����� � ����� .

Let � ) @_� � � 
�) ���?� �0� 
�) � �  denote the bilinear form corresponding to the Laplace
operator: � ) �"! �$# �H� % P R'& ! & #S%

The continuous three fields formulation of equation (1) is the following ([BM94]): find� �1� U ��<*�A� 2 ��6(� 9 such that)*********+ *********,
-/. � - # ) ��� �0� 
 ) � � -10 ) ��� 8 ������� + ) �A@� ) � � ) �2# ) � �43 ] R # ) U ) � 3 PSR �1# ) �
� 3 ] R � ) 0 ) 5 3 ] R 0 ) <;� ! �
and

-76 � 9 @ 8
) 3 ] R U ) 6 � ! %

(2)

It is known that this problem admits a unique solution � � � U ��<,� , where � is indeed the
solution of (1) and such that

U ) � # � ):9 #<; ) on + ) , and <��(� on
/

, where ; ) denotes
the outer normal derivative to the subdomain 
�) . After choosing discretization spaces

2<= �> ) 2 )= � > ) � � � 
�) � , 6 = � > ) 6 )= � > ) � 8 ������� + ) � and
9?= � 9 , equation (2) can be

discretized by a Galerkin scheme. The linear system stemming from such an approximation
takes the form @A � �CB !� ! � B! � !

DEGF @A � =U =
< =

DE
�

@A �
!!

DE
� (3)

( � = , U = , and < = being the vectors of the coefficients of � = , U = and < = in the bases chosen
for
21=

, 6 = and
9?=

respectively). By a Schur complement argument the solution of (3) can be
reduced to a system in the unknown < = , which takes the formHCI 8 � H B < = � � HCI 8 �KJ � !�L � H �NM !O�QP � I � J � �CB� ! L % (4)

The matrix R�� HSI 8 � H B does not need to be assembled. The system (4) can rather be
solved by an iterative technique (like for instance a conjugate gradient method) and therefore
only the action of R on a given vector needs to be implemented. Multiplying by R implies the
need for solving a linear system with matrix

I
. This reduces, by a proper reordering of the
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unknowns, to independently solving a discrete Dirichlet problem with Lagrange multipliers
in each subdomain.

Existence, uniqueness and stability of the solution of the discretized problem rely on the
validity of two inf-sup conditions,� ������ � W � ������ � � J �

8
) 3 ] R U )= � )=I � = I J IFU = I W �
	 ��� ! � � ���� � � � � ������ � � W �

8
) 3 ] R U )= < =I < = I � IVU = I W �	 ��� ! (5)

respectively coupling
2 =

with 6 = , and 6 = with
9 =

. Provided (5) holds, it is possible to prove
that the bilinear form ��@ 9 = � 9 = �  corresponding to the Schur complement matrix R
and defined by

� � � = �2# = �H��# B= R,� = �
is continuous and coercive with respect to the

9
norm:

� � < = � 6 = �?��� B I < = I � I 6 = I � � � � < = ��< = � � � B I < = I �� � (6)

( � B and
� B positive constants).

The problem arises then to precondition the Schur complement matrix R . This can be done
by a substructuring approach ([BPS86, Ber00b]). To this end we introduce a decomposition
of the skeleton

/�� #$
 � '������ as the disjoint union of � macro-edges ��� , (each being the
edge of two adjacent subdomains), and we split the discrete space

9 =
as the direct sum of a

coarse space � L of functions linear on each macro-edge of
/

,

� L �4: <>� � B � / �A@ -�� �����V%F%V%$���4� <�E  "!A�$# � � ���\� �,<��"! on #$
 D �
( # � denoting the space of polynomials of degree at most one) plus some local spaces (one per
macro-edge)

9 B&% �= ,
9 B&% �= � :=< = � 9 = @7< = E G�'  ! �C! D �

consisting in those functions in
9 =

vanishing outside the macro-edge ��� . Corresponding to
such a decomposition we will consider a block-Jacobi type preconditioner. More precisely, it
is possible to prove the following theorem.

Theorem 1 Let (� L @)� L �$� L �  and (�*� @ 9 B&% �= � 9 B&% �= �  be symmetric bilinear forms
satisfying

(� L � < L ��< L � � I < L I �� - < L �+� L � and (� � � < = ��< = � � I < = I �� � - < = � 9 B&% �= �
and let (� @ 9?= � 9?= �  be the bilinear form which, for < = � < L 5 8-,

� � � < B&% �= and6 = � 6 L 5 8 ,� � � 6 B&% �= , is defined by

(� � < = � 6 = � �.(� L � < L � 6 L � 5 ,
K � � � (�*� � < B/% �= � 6 B/% �= � %

Then for all < = � 9?= it holds� I < = I �� �0(� � < = ��< = �214365�7) J � 598;:=< � )> ) L � I < = I �� �
where

> ) and � ) are respectively the smallest mesh size of
9 = E ] R and the diameter of the

subdomain 
 ) .
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Thanks to (6), by a well known argument, Theorem 1 implies that we can derive the fol-
lowing corollary, where we denote by (R the matrix corresponding to the Galerkin discretiza-
tion of the bilinear forms (� , which has a block diagonal structure.

Corollary 1 If (5) holds, then� ����� � (R 8 � R � 1�365)7) J � 5 8;:=< � )> ) L � %
Wavelet stabilization

The need for the two inf-sup conditions (5) to hold, leads to discard several otherwise de-
sirable choices for the three discretization spaces

2 =
, 6 = and

9 =
. A possible remedy in

this direction is to advocate a suitable stabilization technique, allowing to circumvent one or
both inf-sup conditions. Several proposals have been made in this respect (see for instance
[BFMR97]). In this particular context, we want however to choose the stabilization technique
in such a way that the substructuring preconditioner briefly described in the previous section
still applies. Therefore, the bilinear form corresponding to the Schur complement matrix de-
riving from the stabilized method needs to satisfy (6). A choice that fulfills such requirement
is the wavelet stabilization proposed in [BK00]. This consists in introducing symmetric bi-
linear forms M F � F P �	��� % ) @ � ������� +1) � � � ����� � +1) � �  satisfying the following bounds for all< = � 6 = � 9?= E ] R and for two suitable positive constants � � and � � :M < = � 6 = P ����� % ) � � � E < = E L M Y [ N^]_R T E 6 = E L MZY\[ N^] R T � M < = ��< = P �	��� % ) � � � E < = E �L MZY\[ NQ] R T % (7)

The stabilized three fields formulation of problem (1) reads: find � = , U = and < = such that)*********+ *********,
-<. � - # )= � 2 )= � -10 )= ��6 )= @� ) � � )= �$# )= � 5�� M � )= �$# )= P �	��� % ) � 3 ] R # )= U )= � � M < = �2# )= P ����� % ) � 3 PSR �1# )= �
� 3 ] R � )= 0 )= 5 3 ] R 0 )= < = ��! �

and
-16 = � 9?= @

�
8
) � M � )= � 6 = P ����� % ) 5 8 ) 3 ] R U )= 6 = 5 8 ) � M < = � 6 = P ����� % ) �C! �

(8)

where � � ! is a parameter independent of the choice of the discretization spaces. Such
formulation is consistent with the original continuous problem, that is by substituting in (8)
the solution � � � U ��<,� of (2) at the place of � � = � U = ��< = � we obtain an identity. The linear
system stemming from such a problem takes this time the following form:@A �� �CB � �	� B� ! � B� �
� � �	�

DE F @A � =U =
< =

DE
�

@A �
!!

DE
� (9)

with
�� ��� 5��
 , the matrices � , � and  deriving from the stabilizing terms. Again, the

solution of (9) can be reduced to a system in the unknown < = , this time taking the form

�R*< = @ ����� �I 8 � � B 5��
��� < = � � � �I 8 � J � ! L
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with

�I � J �� �SB� ! L � � �NM � �
� � P %
Once again we let

���@ 9 = � 9 = �  be the bilinear form corresponding to the Schur
complement matrix

�R
�� � < = � 6 = � � 6 = B �R*< = �

and, if the space
21=

and 6 = satisfy the first of the two inf-sup conditions (5), also the bilinear
form

�� is continuous and coercive with respect to the
9

norm:

�� � < = � 6 = �?�� � I < = I � I 6 = I � � �� � < = ��< = � �
� � I < = I �� %
Also for the bilinear form

�� , Theorem 1 yields then the corollary

Corollary 2 It holds � ����� � (R 8 � �R*�21�365)7) J � 5 8;:=< � )> ) L � %
We need at this point to provide bilinear forms M F � F P ����� % ) with the required characteristics.

Following the proposal of [BK00], these are designed by means of a wavelet decomposition.
For simplicity, let us assume that the subdomains are squares (otherwise we would need to
map them onto a square). Since the � �	����� + ) � seminorm is invariant under changes of scale,
we can rescale the subdomain in such a way that E +*) E_�0� (that is � �0� 9 � ). For simplicity,
let us concentrate on the case in which the skeleton

/
is discretized by means of P1 finite

elements, and let us assume that on each macro-edge � � the grid is uniform, with � � elements,� � being a power of two:

�2� ���
� !

for some �*� � ���
so that for all

.
,
9 = E ] R � 2 � R�� � , with � ) ��365�7 � 
��  !
	 ] R�� � B �&� , where, for � � ! , 2 � denotes

the space of 1-periodic P1 finite elements on the uniform grid with mesh size � 9 � � .
The sequence : 2 � D �� B forms a so called multiresolution analysis of � ��� + ) � and it is

well known (see for example [CDF92]) that there exists several wavelet bases associated with
such a multiresolution analysis. More precisely there exist several P1 compactly supported
functions � � � B �  � defined on the uniform grid of mesh size � and integer nodes, such that,
if we define wavelets ��� % � by ��� % � �

8
���
��� 8 ��� � ��� � � � � ��� � � � ��� � � all functions ��� 2 �

can be written as

� ��� B 5 � 8 �K
� � B ���K � � � � � % � � � % � � � B constant �

and such that

� � 2 � � � E � E �L MZY\[ N^] R T � � 8 �K
� � B ���K � � � � � E �!� % � E � %
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If, for
� ���4� � ��� +1) � , we express in terms of the wavelet basis :��!� % � D the respective� � � +1) � projections � ) � � � and � ) � ��� onto

2 � R�� � ,
� ) � � � � � B 5 � R � �K

� � B � �K � � � � � % � � � % � � � ) � ���H��� B 5 � R � �K
� � B ���K � � � � � % � ��� % � �

we can define the bilinear form M F � F P ����� % ) asM � ��� P ����� % ) � � R � �K
� � B ���K � � � � � � � % � � � % � %

It is possible to prove ([BK00]) that the bilinear forms thus defined satisfies (7).
With this definition, the computation of M � )= � < = �$# )= � 6 = P ����� % ) essentially reduces to

first computing the nodal values of � � R � � )= � , � � R � # )= � , � � R � < = � and � � R � 6 = � respectively
and then applying a Fast Wavelet Transform.

Numerical results

We will consider problem (1) with � � � and 
 � P ! �&� M � . We consider an uniform decom-
position of 
 in � � � � �

equal square subdomains of size � �-� , � � � 9 � . In each
subdomain 
�) we take an uniform mesh composed by � ) ��� ) equal square elements of
size 	=) �
	=) , 	F) � � 9 � ) � � 9 � � � ) � . We then define

2 )= to be the corresponding space of
Q1 finite elements. The value of � ) is randomly assigned in such a way that for about one
third of the subdomains � ) ��� , for about another third � ) � �=! , and for the remaining
subdomains � )�� �� . The multiplier space 6 )= is then defined as the trace on +,) of

2 )= .
With such a choice it is possible to prove that the spaces 6 = and

21=
satisfy the first of the two

inf-sup conditions needed for stability. The space
9�=

is chosen to be a P1 finite element space
corresponding to a uniform grid on

/
with mesh size � 9 � � F ��� � . As � increases, the second

inf-sup condition – coupling
9 =

and 6 = – fails. The consequent instability clearly appears
in Figure 1, where on top we plot the solution < = obtained by the unstabilized formulation
(2) for �4��� (on the left) and �4��� (on the right). On the bottom, we plot the solution< = obtained by the stabilized formulation (8) for the same values of � and for � ��% !�� . The
stabilizing effect of the correction is evident. We next show, for different values of the sta-
bilization parameter � , the performance of the block Jacobi type preconditioner introduced
in Section ??, where the bilinear forms (� L and (� � are chosen according to [BPS86, Ber00b].
While the stabilized system is better preconditioned then the unstabilized one (first column
in the table), apparently the stabilization parameter influences its performance, so its correct
choice is important.
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Figure 1: Effect of the stabilization: on top we display the results of the plain formulation and
at the bottom the ones obtained by adding the stabilization term

� � � �"! � � % ! !�� � � � � % ! � � � % � �
4 11 11 11 11
8 40 44 15 16
16 — 57 17 25
32 — 59 21 41

Table 1: Number of CG iterations needed to reduce the residual of a factor �F! 8 �

. For � �;!
and � � �

the conjugate gradient procedure did not converge in the maximum number of
iteration (which was set to �=!�! ).
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