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29 Efficient Schwarz Methods for Elliptic Mortar Finite
Element Problems
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Introduction

In this paper we investigate an additive and a hybrid Schwarz method for solving systems of
algebraic equations resulting from the approximation of second order elliptic boundary value
problems with (highly) discontinuous coefficients. The discretization is obtained by using the
mortar finite element method on nonmatching meshes, a technique which was first introduced
by Bernardi-Maday-Patera [BMP94]. Several efficient iterative methods have thereafter been
developed for the mortar element, see for example [CW96, Dry96, Dry97, AMW99, CDS99,
BDRO00, BDW99, GP00, WKO01], and the references therein. The work of this paper is a con-
tinuation of the work done in [BDRO00], where two variants of the additive Schwarz methods
were proposed, the average method and the coarse reformulated average method. The refor-
mulated variant is obtained from the average variant by simply replacing its coarse space by
the sum of two special coarse spaces, one associated with the subdomains and the other one
defined on the skeleton of the partition of the domain. This results in an algorithm which is
very well suited for parallel computation and at the same time retains the necessary conver-
gence behavior of a good scalable additive type Schwarz method. In this paper we improve
its parallel feature a step further by splitting the skeleton coarse space into two subspaces, as-
sociated with the set of vertices and the set of mortar nodes, respectively. Experiments show
that this modification does not change the convergence behavior. In this connection, we also
introduce a hybrid version of the method for the problem. Both methods are insensitive to
jumps in the coefficients.

The remainder of this paper is organized as follows. In the next section we recall the
mortar finite element method for the elliptic problem. Then, in the following two sections, we
present our Schwarz methods, and in the last section, we show some preliminary numerical
examples.

The Discrete Problem
Let @ = UY,Q; be the partition of the computational domain in two dimensions, where
each €; is a polygonal subregion (subdomain), and the subregions are nonoverlapping. We

consider the following differential problem: Find u* € H} () such that

a(u®,v) = f(v), v € Hy(Q), 1)
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where

N N
a(u,v) = Y ai(u,v) = Y pi(Vu, Vo) raay),
i=1

i=1

and

f(v):‘/gfvda::i/Q fvdz,
i/

with p; being positive and constant in each subregion. We remark that the proposed methods
can be used as preconditioners for the problem when the coefficients p; depend on x and are
discontinuous only across the boundary of €2;. In which case, the constant p; can be taken as
an average of p;(z) over ;.

We consider only the geometrically conforming case, i.e., the intersection between the
closure of two different subdomains is either empty, a vertex, or a whole edge. The subdo-
mains together form a coarse triangulation of the whole domain Q with the mesh parameter
H = max; H;, where H; is the diameter of €2;. In each subdomain €;, we use triangular ele-
ments. We assume that the triangles touching the subdomain boundary 92; are quasi-uniform,
having a mesh size of order h;. We do not put such restriction on the interior triangles. We
also assume that the coarse triangulation of  and the fine triangulation in each Q; are shape
regular in the sense of [Cia78]. The resulting triangulation can be nonmatching across subdo-
main interfaces.

Let X;(©;) be the finite element space of piecewise linear continuous functions defined
on the triangulation of Q; and vanishing on 9Q; N 91, and let

X"(Q) = X1() x X2(Q) -+ x Xn (D).

In order to describe the discrete problem, we need the following auxiliary notations and finite
element spaces. Let I';; be an open edge common to ; and €, i.e., T;; = Q; N Q;, and
let Whi(T;;) and Whi (T;;) be the restrictions of X;(£2;) and X;(€2;) onto T';;, respectively.
Note that each interface I';; inherits two different discretizations from its two sides. We select
one side of I';; as the master side, called the mortar, and the other side as the slave side, called
the nonmortar. Define the skeleton S = (U9Q;) \ 9N as follows:

S = U, and Y Ny = Bif m # n,

where each +y,,, denotes an open mortar edge. \We write -y, as v, (s if it is an edge of Q;,
1.8, Ym(i) C 0. Letdy = &y,(5) C OS2 be the corresponding open nonmortar edge of €2
that occupies the same geometrical SPace as vy, ;) 1-€., Ym(i) = L'ij = dm(;)- See Fig. 1 for
illustration, where a thick line is drawn on the mortar side of an interface. The thick dots are
used to represent the end points of a mortar or a nonmortar. We say that a function on a mortar
is nonzero if the corresponding thick line is black and zero if the edge is light gray. The same
applies to the end points.

As a general rule for choosing the mortars and the nonmortars, we let ~y,, ;) be the mortar
and 4,,,(;) the corresponding nonmortar if p; > p;. This is necessary for our Schwarz methods
to have a rate of convergence which is independent of the jump of the coefficients. We define
by v; and y; respectively the set of vertices and the set of mortar nodes (nodes on open mortar
edges) of ;.
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Since the triangulations on ; and €2; may not match on their interface I';;, the func-
tions in X () can be discontinuous across the interface I';;. A weak continuity is therefore
imposed across the interface using a condition called the mortar condition. Let uj, € X",

where up, = {u;}¥ ;. A function u;, € X" satisfies the mortar condition on Om(j), if, for all
functions ’(p € Mhi (5m(])) (’Ym(z) = 5711(]) = Fij)v
/5 (ui\'ym(i) - uj‘(sm(j))d} ds = 0. (2)

m(j)

Here the space M"i (8,,;) is a subspace of Wi (8,,,(;)), with functions being constants on
elements touching 94y, ;- V" is a subspace of X" of functions which satisfy the mortar
condition for all §,,, C S. The discrete problem has the form: Find u} = {u;}X, € V" such
that

a(up,,vn) = f(vn), Vop € V" ®3)
where
N N
a(un,vn) = Y ai(ui,vi) = Y pi(Vui, Voi) 120,
i=1 i=1

and v, = {v;}}¥, € Vh. V" is a Hilbert space with an inner product defined by a(up,vp).
This problem has a unique solution and its error bound is known, see [BMP94].

Let {¢r} be the set of basis functions of V" so that V* = span{¢y}. These basis
functions are associated with the subdomain interior nodes (€2;3), the vertices (v;) and the
mortar nodes (Y (iyn, Ym(@:) C 0€2;), Which are not on the boundary 6€2. The values on the
nonmortar nodes are determined by the mortar condition. We use II,, (u;,u;) to denote the
values on the nonmortar side &,y (;), where the values of u; on the corresponding mortar side
and the values of 5|95, 5 are given.

For the rest of the paper we use the following notations. wg) is the local representation
of the node zy, indicating that the node belongs to Q;. cpsc') denotes the standard nodal basis
function associated with the node mS).

The Additive Schwarz Method

In this section we introduce the additive Schwarz method for the problem (3). The method is
defined using the general framework for the additive Schwarz methods, see [SBG96], i.e., in
terms of a decomposition of the global space V'* into subspaces and the bilinear forms defined
on these subspaces.

The decomposition of the finite element space V" takes the form

N
vh = v 4yl 4y 4 Ny, (4)
=1
where V() j=1,... N, isasubspace of V" restricted to the subdomain Q; with zero values

on 99; and the remaining subdomains. The subspaces V' (~2), associated with the vertices,
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and V(=1 associated with the mortar nodes, are defined as follows.
V(il) = {1) evh: ’U(.Z') =0,z¢€ Uz'(’)/i U th)} s
V(iz) = {1) evh: ’U(.Z') =0,z¢€ Uz'(l/i @] th)} .

The sum V(=2 4+ V(=1 equals the skeleton coarse space of the reformulated variant (cf.
[BDRO00]). Note that the basis functions on an interface have nonlocal supports on the non-
mortar side, which results in a very dense coupling between the vertices and the mortar nodes
in the skeleton coarse stiffness matrix. The idea of the above splitting of the skeleton coarse
space is to eliminate the effect of such coupling in the algorithm, and, thereby, improving the
computational complexity and the parallel property of the algorithm. The space V(9 is the
same as the space V(© of the reformulated variant. We restate its definition here, but first,
some definitions and notations.

Let x;, associated with the subdomain €;, be the piecewise linear continuous function on
the triangulation of £2;, defined by its nodal values at 2 € ;5. For each such node z,

1
Xi(r) = m;

where the sum is taken over the subdomains that « is connected to. We say that a node x4 is
connected to the subdomain €; if z, € Q;,. If the node z;, € Fm(iyn (Tk € O m(iyn) then
is said to be connected to both ©; and Q; if v, 5y = Iy (Omi)y = Ym(;)). Note that for
pi =p; = 1, x: islatz € Q;p, % atx € (6Qih\Vi) and % atx € v;.

We associate with each subdomain €2; the sets GG; and @; containing the indices of its
neighboring subdomains defined as follows. G; contains the index of a neighbor €; if it
shares an edge T';; (Ti; = Q; N Q;) with Q;. Q; contains the index of a neighbor Q; if
Q; N Q; is a crosspoint, there is a subdomain 2, such that T'x; (Tx; = Q4 N ;) and Ty,
Tjx = Q; N Q) are the two edges of Q2 which intersect at that crosspoint, and T'y; is a
mortar in Qy, cf. Fig. 1(c).

We are now ready to define the coarse space V(%) which is given as the span of its basis
functions, ®;,i =1,--- ,N, i.e,,

V(O):span{i)i:izl,---,N}. (5)

Each function ®;, associated with the subdomain €2;, is a function in the finite element space
Vi
For an interior subdomain §2; (952; N 0N = (), the function ®; is constructed in three
steps. We define ®; first (i) on €2;, then (i) on ©2; for i € G5, and then (iii) on 2; for i € Q;.
(i) ®; on €; is given as
17 T € Qih)
®;(z) = pixi(x), T € Ym(i)h U Vi, (6)
Pillm (X, Xi) (%), T € Sm(iyh, Om(s) = Vm(j)-

(i) ®; on Q;, where i € G, we have two cases to consider. For the first case, let T';; =
dm(j) = Ym(i), S€€ Fig. 1(a). Then, on Q;,

Pill (Xis X3) (%) € Sm@yny> Om(G) = Ym(i)s
®;i(z) = ®(2), T € On(j)hy, On(j) N Oom(z) # 0, )
0, at all other 2 in ;.
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Figure 1: Illustrating ®; on ©;, where i € G, ((3) and (b)) and i € Q; ((c)). Here ®; is the
basis function associated with the interior subdomain €2;.

For the second case, let T';; = vy, (j) = Om(s), Se€ Fig. 1(b). ®; on €; is then given as

pin(x)a T e jm(j)ha TYm(5) = 6m(i)a
®;(z) = ®(z), T € dn(j)n, Ong) N OYm(j) # 0, (8)
0, at all other 2 in Q.

For the function ®(x) in (7) and (8), we assume there is no vertex which is a cross point of
exactly three subdomains. ®(z) is then given as

B(z) = pix; (@) (0, 01), 9)

where z5) € v; (cf. figures 1a-1b).
(iii) ®; on Q;, where ¢ € @;, is given as follows. Let I'y; and T';;, be the two edges such

that T'jx = dp(j) = Yn(x) and mgk) = Ol'; N 0L € vy, (cf. Fig. 1(c)). We have then
(k) (k) <
3, — pixe(®a )n(pa’,0), x€ 6n(j)ha . 10
(@) { 0, at all other z in Q. (10)

On the remaining subdomains, ®; = 0. This completes the definition of ®; for an interior
subdomain Q;.

If ©; is a boundary subdomain (0Q; N 0Q # 0) then the function ®; is defined as above
but by imposing x;(z) = 0 at z € 0Q;, N 0Qy, for all Q; € Ng. The values of &; on some
nonmortar edges touching 9 will be different, for details see [BDROO].

A somewhat similar but simpler coarse space defined in terms of discrete harmonic func-
tions in the context of substructuring algorithms for mortar finite element problems can be
found in [Dry97].

We use the exact bilinear form for all subproblems, i.e., fori = —2,--- /N and u,v €
V@, we define b (.,.) : VO x VO - R as b (u,v) = a(u,v). The projection like
operators T7() : Vb — V(@ are defined in the standard way, i.e., fori = —2,---, N and

ue V" Ty e V@ js the solution of

b¥(TDu,v) = a(u,v), ve VIO,
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The additive Schwarz operator is then given as T' = 2;‘;_2 T®  which can be written im-
plicitly as BA, where B is the additive preconditioner. If we define B() as T() = B(i) 4,
then the action of B on a function r can be calculated as v <« Ef\;_z B@r. We have the
following estimate for T' = B A, the proof follows from [BDROOQ].

Theorem1 Foru € V",

h
Co Ea(u,u) < a(Tu,u) < cralu,u), (11)
where both ¢g and ¢, are positive constants independent of the mesh parameters h = inf; h;
and H = max; H; and the jumps of the coefficients p;.

The Hybrid Schwarz Method

We introduce the hybrid method by replacing the additive preconditioner by the following
hybrid preconditioner B. The action of B on r is now calculated in three steps as

v « (BU?4+BUY 4 BO)y
v « v+BO@r—Av),i=1,---,N
v « v+ (BT +BEY £ BOY(r — Av).

The last step is necessary for symmetrizing the preconditioner. Note that the subdomain solves
in the second line can be done completely in parallel since we only have nonoverlapping
subdomains. Basically, for this method, in each iteration, we need two extra calculations
of the residual, and one extra solving of each coarse problem as compared to the additive
method. The residual updates are, however, not expensive since we only need nearest neighbor
communication among the subdomains (processors or virtual processors). Due to the special
coarse spaces, it is very cheap to calculate the first residual update, and also, in this case, it is
possible to avoid communication among the subdomains as only the values at the subdomain
interior nodes are needed in the subdomain solves. The analysis of this method can be done
using the general theory for Schwarz methods, see [SBG96], resulting in Theorem 1 for T' =
B A where B is now the hybrid preconditioner.

Numerical Examples

We now present some numerical results using the Schwarz methods of this paper, as pre-
conditioners for the conjugate gradient method. We compare the results with those of the
reformulated average method introduced in [BDROOQ].

For simplicity, we let our model elliptic problem have zero boundary values. The force
function £ has the form f(z) = 2n?sin(nz1) sin(wx2), and the domain is the unit square.
The coefficients p; are picked uniformly from the interval [10~1,10%] and then distributed
randomly among the subdomains.

The test results are presented in Table 1. Each column of the table corresponds to a
method, showing the iteration counts and the condition number estimates (in parentheses) for
different partitions of the domain. The ratio % remains fixed in all tests.
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Subdomains Additive method Hybrid method
Reform. variant  Modified reform.
4x4 28 (13.36) 31 (16.07) 15 (4.18)
8 x8 32 (13.75) 35 (16.19) 17 (4.21)

Table 1: The number of iterations required to reduce the residual norm by 10~% and a condi-
tion number estimate for each test.

The additive Schwarz method of this paper (“Modified reform.”) shows condition number
estimates (iteration counts) which are close to those of the original reformulated variant (“Re-
form. variant”). The former method, however, needs less computation per iteration than the
latter one. This is due to the splitting of the skeleton coarse space, which, in addition, makes
the modified variant simpler and more suitable for parallel computation.

In the third column, we see a very substantial reduction in the condition number for the
hybrid method. Thus, the hybrid method needs approximately half the number of iterations
compared with the additive methods, but this is partially offset by more computation per
iteration. So far, we have not made any comparison between these two methods considering a
more detailed model of their computational complexity and parallel performance, this remains
to be checked. The results show that the methods are all insensitive to jumps of the coefficient
p; across the subdomain boundaries.

We believe that this work extends and complements the work in [BDROO] and that a
detailed computational study as well as experiments with realistic applications should follow
in the future.
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