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Introduction

In this paper, for solving a singularly perturbed parabolic problem with a convection-dominated
term, we present a finite difference domain decomposition algorithm based on a classical up-
wind difference approximation in a spatial variable and on the piecewise equidistant mesh of
Shishkin-type [MOS96]. These meshes allow us to decompose a computational domain into
subdomains outside boundary layers and inside them as well, and possess load balancing. This
property is very important for implementation of iterative algorithms on parallel computers,
since it avoids loss of efficiency due to one processor being idle. Our purpose is to construct
and analyse a domain decomposition algorithm based on decomposition of boundary layers.
We use a modification of the Schwarz alternating method proposed in [DDD91], in which
the computational domain is partitioned into many nonoverlapping subdomains with interface�

. Small interfacial subdomains are introduced near the interface
�

, and approximate bound-
ary values computed on

�
are used for solving problems on the nonoverlapping subdomains.

Thus, this approach may be considered as a variant of a block Gauss-Seidel iteration (or in the
parallel context as a multicoloured algorithm) for the subdomains with a Dirichlet-Dirichlet
coupling through the interface variables. This modification of the Schwarz method has been
applied in [Bog98] for solving singularly perturbed reaction-diffusion problems.

In [Mat98], for singularly perturbed parabolic problems with convection-dominated terms,
uniform convergent properties of some Schwarz-type methods based on continuous multido-
main decomposition (i.e. without resort to discretization in the subdomains) have been stud-
ied. Here, we construct more accurate estimations of a contraction factor for the multidomain
decomposition algorithm in a discrete form and additionally investigate this algorithm when
the subdomains located inside the boundary layer.

We consider the following singularly perturbed parabolic problem:

�������	��
������������������������� �����!���"�!�#���������%$'&(�*),+-��./��0%12� (1)

)3�(45�'67.983�'8;:=<>�?����./�����@�A���B:>�����C�,.D�E��� ���F.>�C�A�HG7� ���I���'$')J�

where � is a positive parameter, functions 
� �K�����I�"���������!���"� and � G � ��� are sufficiently smooth.
We assume that


=� �������ML3N�OP� const Q .D��R��TS=R��UL3.D�V� �����!���"�M$'&W+-�B�YX,�Z�[X\�!]

Under suitable continuity and compatibility conditions on the data a unique solution ��� ������� of
(1) exists. For �[^_: problem (1) is singularly perturbed and characterized by an exponential
layer at �U��. .
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Undecomposed Algorithm

Consider an implicit two-level time difference scheme which possesses an uniform in the
perturbation parameter � convergence.

On set
�& introduce a rectangular mesh

�) � + �)�� , where

�) � �(4����������,.D�5: � ]5] ]"�	�'��� G �,./����
;� :>�	����� ������%�����B<7�

�) � �;4����[�����D��� �,./� : �5] ]5]��	� � �	� � � �,0[<>]

For a mesh function � ��������� we use the following classical implicit difference scheme

� � ��������� ����� ��� � � �K������� � � �K�������/�21"�*��� �K���!� � �!�M� �K�����M$') � +') � � (2)

� � .D������� � ��: �����C�,.D� � $ �) � � � �����F.>� �A�HG7� ���I���'$ �) � �

where
� � ��������� is defined by

� � ���������C� ��� �!� � � � �K�������\
� �K�������"� � � �K�����!�

� �!� � � � �K����� and � � � � �K����� are the central and forward difference approximations to the
second and first derivatives in the � -direction, respectively.

The piecewise equidistant mesh of Shishkin-type from [MOS96] is formed by dividing
interval

�) into two parts
� .D�$#�12� � #�� : 1 � and in each part we use a uniform grid with � S�%	�*:

mesh points. The step sizes of the mesh are defined by

�&���'�)(P�'%�#*� � � �����,./� : �5] ]5]��	� S�%Y�\:>� (3)

� � �+� ��%D��:%��#T��� � � ������� S�%D� ]5] ]��$� �3: ]

The transition point # from [MOS96] is determined by # �-, ./"40% � � �	%��N � �O21 /3�-<>] If # �
:�S�% , then � � � is very small relative to � . This is unlikely in practice, and in this case the
difference scheme (2) can be analyzed using standard techniques. We therefore assume that

# �'%��N � �O 1 /3� �4�)(P��5=�N � �O � � � 1 /3�'�6� � � 87�'88%�� � � ] (4)

We note here that the size of the boundary layer is of order 9 � �): 1 /P�): � . Thus, for �";8� � � ,
the transition from the layer to the outside region is determined by the transition point # which
is located inside the boundary layer.

Theorem 1 Let u(x,t) be the solution to problem (1). Then the solution of the difference
scheme (2) on the mesh (3), (4) converges � -uniformly to ��� �K����� :

,=<�>? ��@ �BADC�EF�G�H EF&I : ��� �K������� � � �K�����J:K;ML �N� � � 1 /3� �O�/�!�

where � is the number of mesh points in the space direction, � is the time step-size and
constant L is independent of � �$� and � .
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Domain Decomposition Algorithm

We consider decomposition of domain
�) into

�
nonoverlapping (adjoining) subdomains�)��9��� � : �5] ] ]�� � :

) � � ��� � � � ��� � �I� �) ��� �) � � � �A� � �E� G �,./����� � :>]

Additionally, we consider
� �\: interfacial subdomains 	 � �
� � : � ]5] ]"� � �3: :

	 �*� � ���� ����� �!� 	 � � � � 	 ����� �E���� 8\��� 8\��� ]

On
�) � �
� � :>� ] ]5]"� � and

�	 � ��� �W: � ]5] ]"� � � : we introduce meshes
�) �� , and

�	 �� ,
respectively, where
�) �� � 45� � � ���@�,./� : �5] ]5]��	� � ��� � G �,� � � � ��� 
�� � � � �	� � � �,� � @ ���� � � ��� <>� (5)

�	 �� � 4�� ��� ���@�,./� : �5] ]5]��	� ��� ��� � G �,� �� �
� 
���� �A� � �
� ��� ��� � @ � � � ��� ��� <7�

and suppose that
�) � ��� �) �� , and the mesh points in

�	 �� ��� � : �5] ] ]"� � �\: coincide with
the mesh points in

�) � .
On each time-level �$� , we shall implement � G iterative steps of a domain decomposition

algorithm. On each iterative step, firstly, we solve problems on the nonoverlapping sub-
domains

�) �� �
� � : �5] ] ]"� � with Dirichlet boundary conditions passed from the previous
iterate. Then Dirichlet data are passed from these subdomains to the interfacial subdomains�	 �� ��� � : �5] ]5]"� � � : , and problems on the interfacial subdomains are computed. Finally,
we impose continuity for piecing the solutions on the subdomains together.

On subdomains
�) �� �
� � : � ]5] ]"� � , introduce mesh functions � ?! A� � �K��� � �!��� �(: �5] ]5]"� �

(here the index � stands for a number of iterative steps, and � � : �5] ] ]"� � G ) satisfying the fol-
lowing implicit difference schemes

� � ?! A� ������� � � �3��:�S �/� � � ?! A� � �K��� � � �#" ������� � � � �21"����������� � � � ?! A� � �K��� � ���!���'$') �� � (6)

� ?! A� � �������=�C��" ?! � � A ��������� �!�K�U�,�$� � ����$� � � ?! A� � .D������ �A.D� � ?! A� ��: ������ �A./]

On the interfacial subdomains
�	 �� ��� � : �5] ] ]"� � �3: , we solve the difference problems

�&% ?! A� ��������� ���3��:�S �/� � % ?! A� � �������=���#" ��������� � �5�21"����� �K����� � % ?! A� � �������=���I�K� $ 	 �� � (7)

% ?! A� � � �� ����� �C� � ?! A� ��� �� �����=�I� % ?' A� � � � �����=�C� � ?! A����� � � � �����=�!]

The mesh function " ?! A ��������� � is determined in the form

" ?' A � �K��� � � �
( � ?! A� � ����� � �!� �'$ ) ��*) � 	 �� � �,+ 	 �� �!��� � :>� ] ]5]"� �.-% ?! A� ������� � �!� �'$ 	 �� ��� � :>� ] ]5]"� � �\:>� (8)

where we introduce the following notations" ��������� � �/" ?! 10 A � �������=�!�2" ? G A � ������� �C��" ��������� � �5�!�!� L;: �

" �����F.>� �,� G � ���I���'$ �) � ]
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Algorithm (6)-(8) can be carried out by parallel processing, since on each iterative step� the
�

problems (6) for � ?! A� � ������� �I��� �E: � ]5] ]"� � and the
� � : problems (7) for% ?! A� � �K����� �I��� � : �5] ]5]"� � �3: can be implemented concurrently.

On a mesh
�) � O � 45� � �$�[� .D�5: �5] ] ]"�	� O - � G � � � ��� 
 � � � � <7� consider the difference

problems

����� � ������� � � ��� � ��� �A./�K�'$ ) � O ���Y� : ��% � (9)

� � ��� G �C� :>� � � ����
 � � �A./� �	� � � G �C��.D� �	� ����
 � � �(: ]

Introduce the notations


 �� � � �� � � �� ��� � �� � � �� �I� 
 � � � ������ � � � ��� � ������ ��� � �!��� � : � ]5] ]"� � �3: �


 �*� 
1�� � �� @ � � ���[��� 
1� �	�� @ � � �����I��� � : �5] ]5]"� � �\:>�

where
� � @ �� � ��� and

� � @ �� @ � � ��� are the solutions to (9) on
�) �� and

�	 �� , respectively.

Theorem 2 Algorithm (6)- (8) on mesh (3), (4) converges to the solution of (1) with the
following rate:

,=< >? ��@ �BA C*EF G H EF I : � ����������� " � �K����� :);7L ���N� �/� � � 1 /3� � 0Y�I� � � � 1 /3� � � � 
  0 �I�

 � ,=<�>������ � � � 
 �9� (10)

where the contraction coefficient 
 $-��./� :�� and constant L is independent of � , � , � and 
 .

Theorem 2 guarantees that the domain decomposition algorithm (6)- (8) converges for any
initial guesses. From Theorem 2, it follows that asymptotically one would expect to choose
the number of mesh points � in the space direction such that ���+� � . If ���'� � , then we
conclude the following estimate

,=< >? ��@ �BADC�EF G H EF I : ��� �K�������#" ���������J:K;ML �N� � � 1 /3� �O� � 
  0 �!�
where constant L is independent of � , � , � and 
 .

Estimates on Rate of Convergence

The interfacial subdomains outside the boundary layer. Consider algorithm (6)- (8) with
the interfacial subdomains 	 �� � � � : �5] ] ]"� � � : , located outside the boundary layer.
Suppose for simplicity that the centre of the discrete interval

�	 �� is located at � � , i.e. in (5)�$�(��� ��� ����� ���U�'%�� �&� . For sufficiently small values of � , we can approximate 
 in (10)
uniformly in � by


 ��� >�� � ��� � 1 /���: � �K� N OZO �/� � � �212�KN OZO � ,=< >? ��@ �BA C E� 
=� �������!]
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We compare this estimate with the convergence rate of the Schwarz alternating method ob-
tained in [Mat98]:

,=<�>? ��@ �BA : �
?! ��� A � � :�; �
 ,=< >? ��@ �BA : �

?! A ���!: � �
 ��� >���������� � � ��� � �I� (11)

where � ?! A is the Schwarz iterate, � Q . measures the overlap between two subdomains and� Q . is independent of � . Outside the boundary layer � � 9 � � � ��� , the contraction factor
�


is approximated by �
 � � > �K�B� �� � � �)��� ��� � �!�
where

�� Q . . From Theorem 2, one would expect to choose � � � , and asymptotically we
get


 ��� >�� � ��� � 1 / �B: � N � �OZO �212� �
 ��� >����B� �� � ��� ��� � �	�_:>���
� .D� � � ;7� � % � � � � ]
It follows that the estimate of the convergence rate from [Mat98] is impractical.

The interfacial subdomains inside the boundary layer. Suppose that � is divisible by % �
and

�
is even, we decompose the boundary layer

� ./�$#�1 and the region outside the layer
� #�� : 1

into
� S�% equal subdomains, respectively, where # from (4). We note that each subdomain�) �� contains the same number of mesh points %��Y�,: � � ��� SD� % � � . From (5), we have�) �� �(45��� ���������K� ��� � �C�O�D�&(���@�,./� :>� ] ]5]��	%��/<>� (12)

� � � � �+%/� � �3:�� � � ( ��� � :>� ]5] ]"� � S�% �
�) �� � 45� � � ��� ��� � � � � � �O�D�������,./� : �5] ]5]���%��/<>�

�$� � �P�M# � %D� � � � S�%J�\:�� ���T�
� � � S�%M�,: �5] ]5]"� � �
where � , �&( are the uniform step sizes outside and inside the boundary layer. We choose the
interfacial subdomains in the following forms:

�	 �� � 4�� ��� ��� ��� � ���� �O� � ( �$���A./� :>� ] ]5]"�	% � � <7�
���� � � � � � � � ( ��� � : � ]5] ]"� � S�%J�3: �

�	 �� � � � 4�� � � � @ � ��� � � � @ � �A���� � � � � �&(��� ��.D�5: �5] ] ]�� � � -� � � � @ � �+# �O� �T�$� � � � �,: �5] ] ]"��%�� � <>�
� �� � � �M#U� � � � ( �

�	 �� �;4�� ��� �
� � � �,� �� � � ����� ��.D�5: �5] ] ]���%�� � <>�
� �� �,� � � � � ����� � � S�%P�,: �5] ]5]"� � �\:>]

Here the interfacial subdomains
�	 �� ��� � :>� ] ]5]"� � ��: contain the same number of mesh

points % � ��� : , and the centre of the discrete interval
�	 �� is located at ��� . We suppose: ; � � ; � , such that 	 �� � � � 	 �� �/�D��� �+% � ]5] ]"� � �\: . On this domain decomposition,

we can approximate the contraction factor 
 in (10) by

 �A�0�&� � � � � � %P��� % ��S�%�1 ����� � � >�� � ��� � 1 / �B: � N � �OZO �212� � � ;7� � % � � � � ]

If in (11) � � 9 � � � �&( � , then
�
 is approximated by

�
 � � >����B� �� � � �&( � � ��� � �I] In the case
of the maximal size of the interfacial subdomains � � �+� � % � � � � , we get

�
 ��� >��T�B� ��K� 1 / � � � � �H� � � �!]
Again, we conclude that the estimate of the convergence rate from (11) is impractical for the
proposed domain decomposition.
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Numerical Results

As a test problem, consider the following problem

������P� ����� �H�@�,./� � �K�����M$-��./� :��V+ � .D��0P1 �

����./�����C� : � � ��: �����@��.D�K� ������.7�C�,./]

with 
� �K����� � : . Note that in the new variable
���� �K����� � � ��������� � ��� �;:�� , this problem

becomes (1) with ��� �����!���"�C� : and � G � ���V� � �3: .
On each time-level, we implement � G iterates of algorithm (6)-(8) to satisfy the stopping

criterion ,=< >��C�EF G : " ?! 10 A � �K�����=��� � ��������� � :K; � � � �M, <�>T�N� � � 1 /3� ���/�!�

where � � �������=� is the solution of the undecomposed algorithm (2) at time-level ��� .
Consider the domain decomposition (12) with the interfacial subdomains inside the bound-

ary layer. In Table 1, for � � :5. � � ����� :5. ��� �5:5. ��� and various values of � � � , we give the
average (over ten time-levels) number of iterations � G with � �	��5 and the maximal size of
the interfacial subdomains � � �'� � % � � � � . From the data, it follows that for

�
fixed, � G is

a monotone increasing function with respect to the time mesh spacing � , and for � ; :�. ��� ,� G is independent of the perturbation parameter. We notice that the number of iterations
approaches : as � � . . These results substantiate the theoretical convergent estimates.� � G

2 2; 2; 2 1.4; 1.4; 1 1; 1; 1
4 2; 2; 2 1.4; 1.4; 1 1; 1; 1
8 2; 2; 2 1.4; 1.4; 1 1; 1; 1
16 2.4; 2; 2 1.4; 1.4; 1 1; 1; 1
32 8.2; 5; 2 1.4; 1.4; 1 1; 1; 1� 0.1 0.01 0.001

Table 1: Average number of iterations � G for � �
��5 , � � :5. � � ����� :�. ��� � :5. ��� .

� � G
2 2 2 2 2 2
4 2 2 2 2 2
8 7.2 3.7 2.5 2 2

16 11.2 5.6 3.8 3 3
� � 1 2 3 4 � � % � � � �

Table 2: Average numbers of iterations � G for � � :0%�/��� � :5. � � �B��� :5. � � .
In Table 2, for various numbers

�
and sizes � � of the interfacial subdomains, we repre-

sent the average number of iterations with � � : %�D��� �W:5. � � �B� � :5. � � . Note that the last
column in the table corresponds to the interfacial subdomains with the maximal size. The av-
erage number of iterations as a function of the size of the interfacial subdomains is a monotone
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decreasing function, and this is in agreement with our theoretical estimates. Another notable
feature is that this function varies very quickly for small values of ��� , and relatively small
sizes of the interfacial subdomains are needed to essentially reduce the number of iterations.

Conclusion

We summarise our discussion concerning the theoretical results and numerical experiments.
1. We emphasise here the domain decomposition algorithm (6)-(8) on the piecewise uni-

form mesh (3), (4) possesses uniform in the perturbation parameter convergence. Thus, the
proposed algorithm keeps the main property of the most effective undecomposed algorithms
for singular perturbation problems.

2. In the context of parallel computing, the proposed uniform decomposition (12) guaran-
tees us load balancing of a multiprocessor computer.

3. The numerical experiments confirm effectiveness of the proposed domain decomposi-
tion algorithm. Algorithm (6)-(8) requires few iterations on each time-level and sufficiently
small sizes of the interfacial subdomains and still maintains stable approximation.
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