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31 Domain decomposition methods for solving scattering
problems by a boundary element method

Y. Boubendir!, A. Bendali?

I ntroduction

Integral equation methods are widely used for the numerical solution of scattering problems.
Among their advantages, we mention direct and simple dealing with the radiation condition,
accuracy and reduction of the mesh only to the boundary. As a counterpart, this method
generates large dense complex matrices and in the case of dielectric layers may need some
extra auxiliary unknowns, namely the equivalent magnetic currents. Also, the repetition of
some geometrical patterns can drastically increase the size of the final system to be solved in
an artificial way. The aim of this paper is to show how these difficulties can be overcome by
a suitable use of a nonoverlapping domain decomposition method while however keeping the
advantages of the boundary integral equations solutions.

The main technique used to decompose the solution domain into smaller domains consists
in expressing the usual matching of the Cauchy data of the problem (the equivalent currents as
they are generally refered to in computational electromagnetics) in terms of some equivalent
boundary conditions of impedance (also called Robin) type.

The method also applies to a conductor covered by a dielectric layer with now two advan-
tages. First, at each step, the problem to be solved has for unknown the electric current only
whereas the direct solution also involves the magnetic current as a supplemental unknown.
Moreover, at each step, unknown interior and exterior currents are completely uncoupled.

Another interesting aspect of this method is to couple a finite element and a boundary ele-
ment method. This approach has been investigated by several authors (e.g., [JN80], [Cos87],
[dLB95], [Lan94], [HW92]). However, the resulting final system is generally large and diffi-
cult to solve because it involves equations coming both from the FEM and BEM formulations.
On the contrary, the method proposed in this paper uncouples completely the two solution
procedures.

1UMR MIP INSA-CNRS-UPS, Cerfacs, France, boubendi@cerfacs.fr
2UMR MIP INSA-CNRS-UPS, Cerfacs, France, bendali@gmm.insa-tlse.fr



320 BOUBENDIR, BENDALI

Figure 1: A typical geometry

Nonover lapping domain decomposition method

To be specific, we consider the following problem related to the scattering of an TE wave by
a coated perfectly conducting cylinder

( find a sufficiently smooth u such that
1 2 .
V- (V) +k2n?u =0 inQy,
Au+ku=0 inQg, 1
On,u=0 onT, (1)
U1 = ug, 5*16n1u1 = 8n1u0 on E,
lim ||/ (V(u — uinc) . L ik(u— ui“0)> =0,
\ |z|—>+o0 |.’L'|
where n; and ng are respectively the unit normal to 3. outwardly directed to ©; and to Qg
(fig. 1), k& is the wave number, n and ¢, respectively the index and the relative permittivity
of the dielectric medium filling €2,. Superscript 1 and 0 indicate respective limits on X from
within 7 and Qq.
To uncouple the exterior problem solution in ¢ and the interior one in £, we use the
methods initiated by P.-L. Lions [Lio90] and later developed for wave propagation problems

by B. Després [Dep91] to write the transmission conditions on X in the following equivalent
form

{ €100, u1 +nLluy = —Opyuo + nLug 0N, @
Onouo + nLug = —e_lanlul +nLuy on3X.
where L is positive self-adjoint inversible operator, n = —ik(R + iX) with R > 0 and

X > 0. Therefore, the computation of the solution consists in solving the following two
problems separately at each step n

1 n "2 (n .
{v-(—w§ +1’)+k2"?u§ =0 inQ, (3a)

B u™™ =0 onT,

1 n n n n
Eamug 4oL = g ul™ + nLu{” onx, (3b)
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Figure 2: A circular geometry

Aud™™ + Bu{™™ =0 inQ,

. ) 4a
lim  [z['/? (V(ug"“) —u™) - ik (uf™ — umC)) =0, )
|z| =400 |.CL'|
1
8n0u(()n+1) + nLu(()"+1) = —g6mu§") + nLu(()n) onX. (4b)

It is well-known (e.g., [CZ92]) that both problems (1), (3) and (4) are well-posed in an appro-
priate functional setting. Observe that the direct solution of problem (1) requires the determi-
nation of the following coupled Cauchy data Ay = up = u; ON X, py. = € 10, u1 = On, Uo
on ¥ and Ar = w; on T (e.g., [BS94]), whereas, the solution of problem (3) requires the
determination of A{"*") and A"*") and that of problem (4), the determination of A{™*)
only.

Convergence of the domain decomposition method

For ®(n) = 0, i.e. X = 0, the theoretical convergence of the algorithm (3) and (4) is well
known [Dep91], [CGJ00]. However, plots of the residual in figure 3 clearly indicates that the
discrete version of the algorithm converges for X > 0 only. It seems that only variational
schemes like finite element methods can keep the convergence properties of the algorithm at
the discrete level (e.g., [Dep91], [ALBFMT98]). Boundary element method is not based on
such a principle and thus results in a non convergent scheme for X = 0.

For X > 0, the proof of convergence seems to be out of reach for the general case.
This is probably due to a lack of a suitable way to handle propagative and evanescent parts
of the solution separately. However, for all cases when a decomposition of the solution in
propagative and evanescent modes can be done, we are able to prove that the algorithm with
X > 0 has a better behaviour than with X = 0. The following example rather strikingly
illustrates this claim.

For a circular geometry (fig. 2) with Qo = {z € R%; |z|] > R}, & = {z €
R?; R; < |z| < R}, we can decompose the error in modes from a Fourier-Hankel series
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Figure 3: Behaviour of the residuals

expansion and analyze separately the convergence of the propagative and evanescent parts of
the wave. Setting

+oo

uo(r,0) = Z u(()m)(r)eim‘g,

m=—0o0

+o0

u(r,0) = Z ul™ (r)ei™?,

problems (3), (4) are reduced to the following one-dimensional problems

®)
1 (m)y _ T2 (m) | 12 (m)
;a,,(raruo )= —zuy  +kuy =0, r>R, (6a)
; 1/2 (m) _ o (m)) _
TEIJPOOT ((')Tuo ikuy )—0,
~0rug™ +nLmuf™ = g, r =R, (6b)

1 m 2 m m
;Br(rﬁrug )) - T:—2u§ )+ kzug )=0, R <r<R,
—8,u{™ =0, r=Ry,

(72)
6_18Tu5m) + anugm) = ggm), r = R. (7b)
We have assumed that the operator L is diagonal relatively to the Fourier series expansion
Solutions to problems (6), (7) are respectively obtained by u(()m) = amH,(,})(kr) and ug”” =

(

BmNp (knr) where 268 represents the Hankel function of the first kind and N,,, (knr) is a
solution of the Bessel equation of order m which can be expressed by a linear combination
of the Bessel .J,,, and Neumann Y,,, functions of order m such that N,'n(kan) = 0. The
iteration operator is characterized by the matrices

0o SO
s:<$$) )

(8)
0
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where S,(,?) et ST(,P are defined by
SWg™ = =1+ 2Lyuf™(R),  SVg™ = 1+ 2Lyu{™ (R). ©)
First, we give a criterion characterizing the convergence of the algorithm.

Theorem 1 The domain decomposition algorithm converges if and only if for all m p(S,,) <
1, p(Sy,) being the spectral radius of matrix S,.

Proof Letg = (go,91)T. One possible definition of the norm in H—*(X) x H—*(X) is
givenby [|g]”, = 72 (1 +m?)—* [g(™) |2 , where g(™) is defined by g = 3>+ g(m)eim?
and g™ = (g{™, ¢{™)T . The convergence of the method will be established if we can show
that lim,, 4+ ||S™g||—s = 0 with

+oo

ISmgllZ, =D (1 +m*)~*

—0Q

(Sn)"g ™. (10)

If it exists mg such that p(S,,,) > 1, clearly the method does not converge. So, we can
restrict the discussion to the case where p(S,,,) < 1 for all m. The matrix S, has two distinct

eigenvalues A\,,, = i\/S,(r?)S,(,}). So, it can be put in a diagonal form by S,,, = P,,,D,,,P;.1,
D,,, being a diagonal matrix. Therefore, we obtain

The most important point in the proof is that the condition number || P,,|| || P,;"|| of matrix
Sm remains uniformly bounded. Elementary arguments then permit to end the proof. |
The previous characterization establishes that the method converges if |S,(,?)ST(,1)| < 1foreach
m to obtain the convergence of the method. Solving problems (6), (7), we get

Sag™ || < 1Pl 111 g1l (p(Sm)"

™ Ze+i(R+iX) T ™ Z+i(R+4X)

(11)

where 2o = HY (kR) /L HY (kR), 21 = —N!, (knR)/ Ly No (knR), which are well
defined because both the two problems are well posed.

Proposition 1
- For both evanescent and propagative modes, |ST(,?)| <1

- If m corresponds to an evanescent mode, that is, m > my, for mq large enough, then
IS < 1.

Proof Let Zy = —x,,, + iy.,. Clearly, it is enough to show that z,,, and y,,, are both > 0
to prove that |S,(,2)| < 1. Signs of z,,, and y,,, are respectively that of %(H,(,})' (kR)HT(nl) (kR))
and —R(HY (kR)HY (kR)). From [CK92], it is well-known that (S (kR)HY (kR))
is equal to the Wronskian W (J,, (kR), Y, (kR)) = 2/mkR. Since kR > 0, from [CK92] we
get that y,,, > 0. The property z,, > 0 uses a more difficult argument. First, we remark that
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1 1 2
RS () Hi (0)i=kr = L(H (0)]
2 7
that function |H,§11) (kR)| isastrictly decreasing function, so the quantity §R(H,(,}) (kR)H,%) (kR))
is negative and then z,,, > 0. We conclude that for all R > 0 and X > 0, |S,S2)| <1
For the problem in the bounded domain, the previous sign determination can be more eas-

ily obtained from coerciveness estimates. Let Z; = —x,,, + iy,,. The variational formulation
of problem (7) gives

)i—rr- Using Nicholson’s formula [Wat22], we get

- R 2
m)’ m m)’ m m
R (Ru§ ) (R)U§ )(R)) :/R {7’|U§ ) I+ (7‘_2 - k2n2)|u§ )|27'} dr,

and then if m is large enough, using coerciveness property, we get that
R(Ru{™ (R)u{™ (R)) > 0. (12)

Definition of u§m> and Z; yields z,,, > 0. Since we have considered that the material filling
Q; is without losses (3(n) = 0) and perfectly reflecting boundary condition on T", we are led
the most severe case y,,, = 0. Indeed, in this case

s = X —am) +iR
™ (X +xy) +iR

For X = 0 (Despré’s algorithm [Dep91]) |ST(,P| = 1andso |ST(3)ST(,P| < 1. The algorithm
converges as expected from the study for the general case [Dep91]. Observe however that
parameter S,SP has no influence upon the convergence of the algorithm and S,(,?) gives a less
effective damping of the evanescent modes. The interesting point is that taking X > 0 also

gives |ST(,})| < 1 for all m except a finite number generally corresponding to propagative

modes. But since for X = 0 |S,(7?)8$11)| < 1, it is sufficient to tune X’ for each of these
exceptional mode to obtain a maximal value for X" insuring the convergence of the algorithm.
|

Numerical results

At each step, problem (4) in the unbounded domain Q4 has been solved by a boundary element
method [BBCO0O0] and problem (3) in the bounded domain €2 by an usual nodal finite element
method. The exterior problem in Qg is solved by a BEM following the approach introduced
in [Ver99]. The solution is represented as a superposition of a single- and a double-layer
potentials

o () = ™ + / Gz, )p(y)dS(y) — / O, G, W) A (W) A (1), (13)

where the unknown densities p and A are linked by the following relation induced by the
impedance condition

p+nL=0. (14)
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Figure 4: Coupling FEM and BEM

The boundary condition can then be expressed variationnally as

/E (Ongtio — ugp!) dS = /E oNdS, (15)

with p’ and X’ are linked by the same relation that p and A. Formulating these constrains
through a Lagrange multiplier, both the latter and the magnetic currents p and p’ can be
eliminated at the element level when all the unknowns are approximated by a P, -continuous
BEM, (see [\Ver99] for more details).

Plots in figure 4 give the residual and comparison between exact and computed electric
current on X. The incident wave is a plane wave propagating along the x-axis.

The interesting point is that now, with X > 0, the discrete algorithm converges using
either a nodal finite element or a boundary element method.
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