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3 The Mortar element method revisited – What are the
right norms?

D. Braess1, W. Dahmen2

Introduction

A number of investigations have recently been devoted to the mortar method as a domain
decomposition method with non-overlapping subdomains. Its attraction comes from its great
flexibility due to the fact that different types of discretization are possible on different sub-
domains. The best experience is with ��� -elliptic problems. In contrast to standard conform-
ing elements, there may be jumps across the interfaces between adjacent subdomains, and
the continuity conditions are replaced by weak matching conditions the so called mortaring
conditions. Our guiding question here will be to what extent there still remain “interdomain-
constraints” on the discretizations which are possibly imposed by stability and accuracy re-
quirements, in particular, when dealing with highly non-quasi-uniform meshes.

There is by now almost a standard way to treat mortar elements in the framework of
nonconforming elements, where it was originally analyzed, see e.g. [BMP94]. However,
since it may be technically cumbersome to eliminate the constraints imposed by the matching
conditions and since fast solvers are by now available for mixed formulations, the analysis
as a saddle point problem has recently attracted interest, see e.g. [BB99, BDW99, Woh99b].
Moreover, on a principal level the inf-sup condition is also often hidden in the analysis of
mortar elements based on the nonconforming theory. If the inf-sup condition holds, the error
of approximation by functions with and without the mortaring conditions are of the same order
[Bra01, Remark III.4.10]. This tool is frequently used for estimating the term that represents
the approximation error in the lemma of Berger, Scott, and Strang. Therefore we believe that
the understanding of the saddle point formulation is at the heart of the matter which will be
the point of view taken in this paper.

The fact that the framework for the saddle point formulation is still less well established
in comparison with the nonconforming method is due to the subtle difference between (at
least) two trace spaces in the scale of Sobolev spaces with index 1/2. To be specific, let�����

denote the (typical) interface between the subdomains 	 � and 	�
 . When the variational
problem is considered in the Sobolev space ����
�	�� or ���� 
�	�� , then the trace space � �������� 
 ����� �
endowed with the norm �������! �"$#%�%'&)(+*-,/.�021 ��3 (+*-, �4� �-���65 798 * (where 3 (+*-, is the standard indicator

function) turns out to be an appropriate function space for the jumps over the interior boundary�����
. In the 2D case this can be realized by forcing the trial functions to be continuous at the

cross points, which is a mild constraint. However, for 3D problems the jumps would have to
vanish along the boundaries of the interfaces, and this would entail severe restrictions on the
discretizations for neighboring subdomains. Thus jumps living in the larger space �:�����+
 � ��� � ,
are usually admitted in actual computations with mortar elements.
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This discrepancy (gap) prohibits the use of Brezzi’s theory with the standard Sobolev
spaces and their norms. For a rigorous treatment one had to resort to nonstandard methods.
One possibility is to introduce mesh-dependent norms as done, e.g. in [BDW99, DFG

�

01,
Woh99b]. Continuity, ellipticity, and the inf-sup condition as required by Brezzi’s theory
are then available. Another concept can be found in [BB99, Woh99a] where the analysis is
performed in a two-stage process. In a first step merely the direct variables are estimated by
the nonconforming theory. In the second step only the inf-sup condition and no ellipticity is
required for achieving an error estimate of the Lagrange multipliers.

A principal objective of this paper is to narrow this gap somewhat. Specifically, we will
explore to what extent and under what circumstances one can dispense with mesh-dependent
norms. Some mesh-dependence still turns out to remain but only for one variable and in a
weaker form no longer involving an explicit mesh size parameter. Moreover, the new norms
can be bounded by ��� � �  �"$#%�% &)(+*-,/. if applied to a function in the space � �������� 
 ����� � . It models a

function space in which � �-������ 
 ����� � has a finite codimension, while it differs from ������� 
 ����� �
by an infinite dimensional space. It is now easily understandable why all the different concepts
have one point in common. They all make use of the fact — in an open or hidden way — that
the subset of finite element functions whose jumps belong to � �-������ 
 � ��� � , is sufficiently thick.

Aside from these theoretical considerations there is the following practical reason for
addressing the above issue. Nonoverlapping domain decomposition appears to be particularly
suitable for problems with complicated domains or jumping coefficients so that one expects
solutions with singular behavior. Therefore the use of highly non-quasi-uniform or adaptively
refined meshes in different subdomains should be covered by the theory. However, the mesh-
dependent norms from [BDW99, BD98, Woh99b] only work well when using quasi-uniform
meshes. In fact, in connection with error estimates the mesh sizes should not even differ
too much from one subdomain to the other one, see [DFG

�

01] for an extension to mesh-
dependent norms with suitable local mesh size functions.

So the core question is how independently from each other can the discretizations on
different subdomains be chosen so as to retain stability and overall accuracy even when the
individual meshes are highly non-quasi-uniform.

Recently, an error analysis has been performed in [KLPV01] for the mortar method on
meshes that are only locally quasi-uniform. The price that has been paid there is that the
meshes on adjacent subdomains have to match along the boundary of the interface which in
the three dimensional case severly imposes on the mesh generator. Our approach allows us
to abundon this constraint to restore full mortar flexibility. We still obtain error estimates of
the same type as in [KLPV01], where the constants now depend only on one sided mesh size
ratios. Cleary, local refinements on or near an interface would result from a singular behavior
of the approximated solution on or near that interface affecting both adjacent subdomains.
Thus conditions of this type (even two sided versions) tend to be satisfied automatically by
reasonable mesh adaptation strategies.

The paper is organized as follows. In Section 3 we describe the continuous problem.
Section 3 is concerned with the discrete counterparts. Specifically, we formulate several re-
quirements to be met by the discretizations. These are similar in spirit (and in fact closely
related) to those in [KLPV01] and have been recognized to play a pivotal role in many pre-
ceding investigations [BB99, BMP94, BDW99, BD98, Woh99b]. Section 3 is devoted to the
stability analysis for this setting. In contrast to [KLPV01] we work here in a saddle point
context for a choice of norms that is different from prior investigations. In Section 3 we dis-
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cuss error estimates from different point of views. The concepts are then applied in Section
3 to the so called dual basis mortar method from [BP99, KLPV01, Woh99a]. In particular,
we establish standard types of error estimates for locally quasi-uniform meshes without the
above mentioned interface boundary matching condition from [KLPV01].

The continuous problem

Consider the second order elliptic boundary value problem� ������� 
	� ��

��� ��� 
�� � 1 � 
	� � in 	��� 
�� � 7��7�� 1 �4
�� � on
������� 	��� 1 � on
�� 0 1 � 	"! �#� � (1)

where
� 
�� � is a piecewise sufficiently smooth and uniformly positive definite matrix defined

for � in the bounded domain 	 �%$'&
,
�  

is a subset of the boundary
�

of 	 (with positive
measure relative to

�
), and

� � 0 1 � ! �  . � �� 5
 
�	�� denotes the closure in ����
�	�� of all(*)

-functions vanishing on
�+ 

.
Suppose that 	 is decomposed into non-overlapping subdomains 	 � ��, 1.- �0/1/0/2�3,547698 ,

i.e., :	 1
�3;=<	>?
�A@
�
:	 � � 	 ��B 	 � 1DC for ,FE1HG / (2)

For simplicity we will assume throughout the rest of the paper that the domain 	 �%$�&
and

that the subdomains 	 � in (2) are polyhedral. If the closures of 	 � and 	 � have a 
JI � - � -
dimensional intersection, we set

:����� 0 1 :	 � B :	 � . However, we do not insist on the partition
to be geometrically conforming, i.e.,

� ���
need not be a full common face of both subdomains.

The
�����

form the skeleton K
0 1

?
�
5
�
����� /

�����
,
���

, and
�� 

will always be assumed to be the union of polyhedral subsets of the bound-
aries of the 	 � .

The mortar method is based on a variational formulation of (1) with respect to the product
space L M 0 1%N�OQPSR � 
�	�� 05OUT 8 * P � � 
�	 � �A�=, 1�- �0/0/1/2��,V476W8�� OUT (
X 1D�ZY �
endowed with the norm

� O � ��5 M 0 1\[=] �3;^<J>
�_@
� � O � ��  & 8 * .a` �-��� /

The space ���� 5
 
�	�� is characterized as a subspace of

L M determined by appropriate con-
straints on jumps across interfaces.
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This suggests the following weak formulation of (1): For a suitable pair of spaces

L � � �
find 
 � ��� � P L � �

such that� 
 � � O ������
 O ��� � 1 
 � � O � � 5 8 � 
 �U� O � � 5 (
	 for all O P L �
� 
 � ��� � 1 � for all � P � � (3)

where 
 � � O � � 5 8 and 
 � � O � � 5 (
	 denote the R � inner products on 	 and
�+�

, respectively.� 
 � � O � 0 1 � ���
8 * 


� 
	� ��� � 
�� �-� ��� O 
	� � I
�#�
��
 O ��� � 0 1 � (+*-,���� 
��7��� O�� � � 5 (+*�, /

The jump � O�� of a function O P L is defined on

K
by � O
� 021 O2T 8 * � O2T 8 , on

� ���
(see [BDW99]

for further background information). We note that each interface
� ���

appears only once in the
sum over

K
.

Discretization

In order to describe next the mortar method as a discrete version of (3), we choose for each
subdomain 	 � a (conforming) triangulation � � subject to the following assumptions:
(a) Each triangulation is completely independent of those on neighboring subdomains. This
means that the nodes in � � which belong to

�����
need not match with any of the nodes of � � .

(b) The � � will always be shape regular but only locally quasi-uniform, i.e., the ratios of
maximal and minimal diameters of the elements in � � need not remain bounded.

With each � � we associate a finite element space

K

�� � � � � � 
�	 � � B � �� 5

 
�	�� . In
principle, this could have any fixed polynomial order, but for simplicity we will refer in most
cases to spaces of piecewise linear finite elements on � � . We setL

� 0 1
� ;^<J>
�
�_@
�

K
� 
��

� � � L M � (4)

where the index � indicates the dependence on the discretization.
The next crucial step is to fix the Lagrange multipliers for each

� ���
(i.e. the space

�
in (3)). In this context, we stress the following implicit notational convention to be used
throughout the rest. The indexing of the interface

� ���
(as opposed to

���)�
) always expresses

that 	 � has been chosen as the non-mortar side. This distinction is important because the
Lagrange multipliers will only depend on the non-mortar side in a way that will be specified
later in more detail. Whenever

� ���
is a full common face of both adjacent subdomains, the

choice of the mortar side is completely arbitrary. If
� ���

is strictly contained in at least one of
the faces, the following provision has to be taken. We will always assume that

� � ���
is covered

by the faces of the cells in
�����

induced by at least one of the triangulations � � or � � . If only
one of these triangulations has this property, the corresponding subdomain has to be chosen
as the non-mortar side and hence will be denoted by 	 � .

Meanwhile several types of Lagrange multiplier spaces have been considered in the liter-
ature, see e.g. [BMP94, BD98, KLPV01, Woh99a]. Instead of considering any specification
we formulate first some requirements on the multiplier spaces that can be extracted from the
above mentioned studies. To this end, let � ��� denote the restriction of the mesh � � to

�����
and

set  ���� 021

K

�� ��� � B � �� 
 ����� �"! � �������� 
 ����� � . Given  ���� , we will employ finite dimensional

spaces
� ��� � R � 
 ����� � with the following properties:
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P.1 The spaces  ���� and
�:���

have the same dimension��� �  ���� 1 �Z� � �:��� / (5)

P.2 Whenever

K

�� � � has approximation order � , then

� ���
should have approximation or-

der at least � � - , i.e., �����
���
	 *�, � O ��� � � 5 (+*-,�
�� :� ���4� T O2T ���4��5 (+*-, � (6)

where
:� is the maximal mesh size of � ��� . More precisely, defining for every vertex � of

� � the local mesh size ��� 021 � ��� N ��� � ��� 0 � P � ��� ��� P � Y , we set:� 021 � ���� �
� *-, � � � � 021 � ���
� �
� *�, � � /

Thus for piecewise linear finite elements on 	 � one has � 1�� and (6) requires first
order convergence.

P.3 The pair 
� ���� � �:��� � is R � -stable, i.e.,�����
���
	 *-,��! #"$%�
& %*-,


 O � � � � 5 ( *�,� O � � 5 (+*-, � � � � 5 (+*�, ' � � (7)

for some fixed constant � � (depending on
� ���

).

P.4 It is well-known that (7) implies that


)( ��� � � O � � 5 (+*-, 1 
 � � O � � 5 (+*�, �+* O P  ���� � (8)

uniquely defines a projector ( ��� 0VR � 
 ����� ��, �:���
such that

�-( ��� � � � 5 (+*-, 
.� ���� � � � � 5 (+*-, � � P R � 
 � ��� �A/ (9)

Here we require in addition that the adjoint (0/��� 0VR � 
 ����� ��,  ���� of ( ��� is also bounded

on � �������� 
 ����� �
�1( /��� O � �� �"$#%�% & ( *�, . 
2� � � O �6�! �"$#%�% & ( *�, . / (10)

The pair 
� ���� � � ��� � is called admissible if P.1 – P.4 hold.

Remark 1 When � ��� is quasi-uniform, P.4 is a consequence of (9) and the approximation
property (6) in P.2 provided that the spaces

� ���
also satisfy a standard inverse property.

Only if the meshes are merely locally quasi-uniform, requirement P.4 requires attention.

The space of discrete multipliers is now defined as

� � 0 1
�
( *-, � &

�:���
(11)
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where, again, the index � indicates the dependence on � ��� and should not be viewed as mesh
size parameter when used as a subscript. Moreover, the finite element functions that satisfy
the mortaring conditions, form the space

� � 0 1 N1O � P L � � ��
 O � ��� � 1H� *�� � P � � Y / (12)

The discrete counterpart to (3) now reads� 
 � � � O � ������
 O � ��� � � 1 
 � � O � � � 5 8 � 
 �U� O � � � 5 ( 	 � O � P L � �
��
 � � ��� � � 1 � � � � P � � / (13)

We will show that, (13) is a stable and accurate discretization of (3), if the pairs 
� ���� � �:��� � ,����� P K are (uniformly) admissible in the above sense.

Stability

First we address the stability of (13). In contrast to [KLPV01] we treat (13) as a saddle point
problem. Thus, one has to show that the operators

� � 0 1.[ � ������
� � � ` 0

L
� � � � ,

L
�� � � �� (14)

induced by (13) are uniformly bounded and have uniformly bounded inverses with respect to
the underlying meshes. Of course, this depends on the norms for

L
� and

� � which have
yet to be specified. As explained in [BDW99], due to the subtle differences between the
trace spaces �������+
 ����� � and � �������� 
 ����� � , standard (broken Sobolev norms) turn out to be in-
appropriate. While for quasi-uniform grids appropriate mesh-dependent norms offer a cure
[BDW99, BD98, Woh99b, Woh99a] we wish to reduce the mesh-dependence of norms in
favor of mesh flexibility.

Our main deviation from previous studies therefore lies in the choice of the norms. Recall
that the jumps � O � � are not required to lie in the spaces � �������� 
 � ��� � which naturally arise in the
analysis of the continuous problem. However, it will be seen that it suffices to measure their
projection into the trace spaces  ���� � � �������� 
 ����� � in the norm � � � �! �"$#%�% & (+*-,/. . In fact, for anyO � P L � we define

� O � � � ��5 � 0 1 � O � � � ��5 M � ](+*�, � � �1( /��� � O � � � ��  �" #%�% & ( *-,/. � (15)

while for � P � � � � 0 1 � (+*�,�� � 
 � �������� 
 ����� ��� � we take the natural dual norm

� � � � ���-��� 021 ](+*�, ��� � � � � & �  �"$#%�%'&)(+*-,/. .
	 / (16)

Note that any mesh-dependence of ��� � ��5 � enters only implicitly through the projectors ( /��� .
First we address the continuity of the bilinear forms

� 
 ��� �2�_� ��
 ��� �2� with respect to these
norms. Since for O � P L � and � � P � �T 
 O � ��� � � � 5 (+*-, T+1 T 
)( /��� O � ��� � � � 5 (+*�, T 
 �-( /��� O � �6�! �"$#%�% & ( *�, . � � � � & �� �"$#%�% & ( *�, . .
	 �
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one has, in view of (15), thatT � 
 � � � O � � T �� � � � � ��5 � � O � � ��5 � � T ��
 O � ��� � � T �� � O � � ��5 � � � � � �4����� � (17)

holds for any O � � � � P L � , � � P � � , where the constants depend on the constant � � in P.3.
The first step towards confirming stability of the discretization is to confirm the ellipticity

of the bilinear form
� 
 ��� �2� on the kernel
� � 021%N1O P L � 0 ��
 O ��� � 1D� for � P � � Y

of the constraints.

Proposition 1 The bilinear form
� 
 � � � � is elliptic on

� � , i.e.,� 
 O � O ��� O � � ��5 � for all O P � � / (18)

Proof The inequality
� 
 O � O ��� O �6� ��5 M for O P � � , can be inferred by the analysis in [BMP94].

So the desired ellipticity estimate stated in the theorem follows as soon as we have proved
that also

� ( *�, � & ��� O
� � � �����65 � 5 (+*-, �� � O �6� ��5 M for O P � � . But this is obviously true since
by definition of ( ��� one has for O � P � � and any � P�R � 
 ����� � that 
 ( /��� � O � � � � � � 5 (+*-, 1
�� O � � � ( ��� � � � 5 ( *-, 1 � / Thus ( /��� � O � �41 � which completes the proof.

Since the continuity (17) and ellipticity (18) have already been established, it remains to
verify the validity of the LBB-condition to ensure the stability of the discretization (13), i.e.,
the uniform bounded invertibility of the mappings

� � from (14); see, e.g. [BF91].

Theorem 1 Assume that the pairs 
� ���� � �:��� � are admissible (i.e., that P.1 – P.4 hold) and
that the meshes � � are shape regular and locally quasi-uniform. Then there exists a constant��� � depending only on the mesh parameters and on the constants � � � � � in P.3 and P.4,
respectively, such that the pairs of spaces

L
� � � � defined above satisfy the LBB-condition� ���� �
	�� �! "$%�	�
� � 
 O ��� �

� O � ��5 � � � � �4����� ' � / (19)

The main ingredient in the proof of Theorem 1 is the following observation.

Lemma 1 Under the hypotheses of Theorem 1 there exists for every � P � ���
an elementO / P  ���� such that


 O / ��� � � 5 (+*�, ' � � � O / � ��  �" #%�% & ( *-,/. � � � � � & �  �"$#%�% & (+*�, . .
	
� (20)

holds for some constant � � � independent of O / and � .

Proof Given any � P � ���
, one can find, by definition, a O P � �-������ 
 � ��� � such that

� � � & �! �"$#%�% &)(+*-,/. . 	 
 �

 O ��� � � 5 (+*-,� O � �� �"$#%�% &)(+*-,/. 1 �


 O � ( ��� � � � 5 ( *-,� O � �! �"$#%�%'&)(+*-,/. 1 �

)( /��� O ��� � � 5 (+*�,� O � �� �"$#%�%'& ( *-,/. /

Thus, setting O / 021 ( /��� O P  ���� , we conclude, in view of (10),

� ���� � O / � �� �" #%�% & ( *�, . � � � & �! �"$#%�% & ( *-, . . 	 
 � O � �� �"$#%�% & ( *-, . � � � & �� �"$#%�% & ( *�, . .
	 
 � 
 O / ��� � � 5 (+*-, �
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which completes the proof.

We are now ready to complete the
Proof of Theorem 1. Given � P � � let � ��� denote its component corresponding to

� ���7� K
.

We define a suitable O P L � as follows. For each
�����

let O ��� P  ���� be the function constructed
in Lemma 1 satisfying (20). Bearing in mind, that, by our notational convention, 	 � denotes
the non-mortar side of

� ���
, we define

�O ��� to be the harmonic extension of the boundary data�O ��� 
�� � 1 � O ��� 
�� � if � P ����� �� if � P � 	 � ! � �)� �
and define O2T 8 * 0 1 � (+*�, � 798 *

�O ��� as the superposition of these extensions. In particular, O
vanishes identically on any subdomain 	 � that is never a non-mortar side. Hence


�� O�� ��� � � 5 ( *-, 1 
 O ��� ��� � � 5 ( *-, �� � O ��� � ��  �" #%�% & ( *-,/. � � � � � & �  �" #%�% & (+*�,/. . 	 / (21)

This therefore implies also](+*-,�� 798 *

�� O
� ��� � � 5 (+*-, �� ](+*�, � 798 *

� �O ��� � ��  & 8 * . � � � � � & �! �"$#%�%'&)(+*-,/. . 	�� � O � ��  & 8 * . � ] � � � � � & �  �"$#%�% & ( *-, . . 	 / (22)

Since clearly �-( /��� O � �  �" #%�% & ( *-,/. 1 � O ��� � �  �" #%�% & (+*�, . it follows that� ](+*-,���� � O � ��  & 8 * .�� ����� � � ]( *-,�� � � O ��� � ��  �" #%�% & (+*�, . � �-��� ' � O � ��5 � /
Combining (21) and (22), we have� ](+*-,�� � � � � � & �� �" #%�%'& (+*�,/. .
	 � �������� � � ](+*�, ��� � O � ��  & 8 * . � ����� �

� ]( *-,�� � � O ��� � ��� �" #%�% & ( *-,/. � �����
	 ���� ](+*�,�� � 
�� O
� ��� � � 5 (+*-, �
and conclude that ��
 O ��� � �� � O � ��5 � � � � �4����� . This establishes the validity of the LBB-condition.

Error Estimates

We wish to discuss next the accuracy of the above discretizations. For simplicity we confine
the discussion to piecewise linear trial spaces on the subdomains so that the approximation
order is � 1 � . Accordingly the approximation order of the multipliers is assumed to be
� � - 1 - . The higher order case can be treated analogously provided the solution

�
of the

continuous problem (3) has enough regularity on each 	 � . Moreover, we will always assume
that the pairs 
� ���� � �:��� � are admissible and that the meshes � � are shape regular and locally
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quasi-uniform. Let us denote by
:� � the maximal mesh size in 	 � . If

� T 8 * P � �+
�	 � � , then
one hopes that the discrete solution

� � of (13) satisfies an estimate of the type

� � � � � � � ��5 � 
2�
� �����]�_@

�
:� � � � � � ��65 8 * / (23)

We want to identify the essential obstructions encountered when going about an estimate
of the type (24). The usual point of departure is Strang’s second lemma, see e.g. [Bra01],
p. 107 or [BDW99], which says that

� � � � � � ��5 � 
.� � � �#�
$ � ��� � � � � O � � ��5 � � �  #"$ ����� �

� � � 71�7�� � O � � I��� O � � ��5 � � / (24)

Since O � P � � , due to the orthogonality relation (12) we may subtract an arbitrary element
� � P � � from the conormal derivative of

�
in the consistency error so that]( *-, � � 
 � � �� � ��� O � � � � 5 ( *�, 1 ]( *-, � � 
 � � �� � � � � ��� O � � � � 5 ( *�,


 ]( *-, � � � � � �� � � � � � & �  �"$# & (+*�,). . 	 ��� O � � � �-���65 (+*-, / (25)

We know from the trace theorem that � � O � � � �-���65 (+*-, 
 � 
�� O � � ��5 8 * � � O � � ��5 8 , � . Moreover,
when the

� ���
have approximation order � � - 1 - , a standard duality argument ensures that

we can find a � � P �:���
such that

				 � � �� � � � �
				 & �  �" # & ( *-,/. .
	 
.�

:� � 				 � � �� � 				 ����� 5 (+*�,

.� :� � � � � � ��5 8 * 
2� :� � � � � �65 8 * �

where we have used the trace theorem again. Therefore, by using the Cauchy–Schwarz in-
equality, one obtains

]( *-, � � 
 � � �� � ��� O � � � � 5 (+*�, 
 �
� ](+*-, � � :� � � � � � �� 5 8 * � �-��� � O � � ��5 M


 �
� ](+*-, � � :� � � � � � �� 5 8 * � �-��� � O � � ��5 � �

so that the quotient in (24) is bounded by � 
 � ( *�, � � :� � � � � � ��65 8 *�� �-��� .
It remains to establish an analogous bound for the approximation error

� �#� $ � ��� � � � �O � � ��5 � in (24). To this end, note first that � � � O � � 1 � � O � � and for O � P � � one has
( /��� � � � O � � 1D� . Hence, � ���

$ ����� � � � � O � � ��5 � 1 � ���
$ � ��� � � � � O � � ��5 M / (26)

The right hand side of (26) has indeed been shown in [KLPV01] to be bounded by the right
hand side of (23) under a certain assumption M1. This condition requires that the meshes
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induced by � � and � � match along the boundary
� �����

of the interface
�����

. Condition M1
allows one to employ local extensions from � �������� 
 ����� � to deal with the constraints.

In order to avoid this constraint we prefer an alternative and start with an unconstrained
approximation of

�
on each subdomain 	 � . In fact, from the inf-sup condition in Theorem 1

above and Fortin’s general argument [Bra01, Remark III.4.10] we conclude that the estimate
in

L
� yields an upper bound for the approximation in the kernel

� � ,�����
$ ����� � � � � O � � ��5 � 
.� � �#�

$ ���	�
� � � � O � � ��5 � / (27)

In this case, however, the full norm has to be used, i.e., the terms �1( /��� � � � O � � �6�! �"$#%�% & (+*-,/. have

to be estimated as well (in particular, when � � � O � � EP � �������� 
 � ��� � ). Since
� P � � 
�	�� , there

are many ways to construct an approximation O � in

L
� such that

� � � O � � � ��5 M 
2�
� �����]�_@

�
:� � � � � � �� 5 8 * � (28)

e.g. Lagrange interpolants or Clément’s quasi-interpolants would do. Thus, it remains to
estimate the terms �-( /��� � � � O � � � �! �"$#%�% & (+*-,/. which are actually more problematic. Of course,

the problem is that under the above assumptions � � � O � � is not necessarily in � �-������ 
 ����� � so
that one cannot directly bound �1(0/��� � � � O � � � �  �"$#%�% & (+*-, . by ��� � � O � � � �  �"$#%�% & (+*-, . (see (10) in

P.4) and use then the trace theorem in order to ensure ultimately that

�-( /��� � � � O � � � �! �"$#%�% & (+*�,). 
2� 
�� � � O � � ��5 8 * � � � � O � � ��5 8 , �U� (29)

thereby obtaining again the same bound as in (28) and thus confirming (23). Therefore we
will discuss next some instances where (29) is indeed true which incidentally will shed some
light on the type of obstructions arising in the general case.

First of all, since � � �41D� we have � � � O � �#P � �������� 
 � ��� � if and only if � O � �#P � �������� 
 � ��� � .
For I 1 � this can always be arranged by choosing O � to interpolate

�
at the cross points

(without requiring the whole mortar discretization to enforce continuity at cross points!) In
the case I 1 �

this is not possible. This is exactly where condition M1 in [KLPV01] comes
into play which requires that the meshes in 	 � and 	 � match along

� �����
so that � O � � can

indeed be arranged to be in � �������� 
 � ��� � , e.g., by choosing O � as the nodal interpolant. In this
case (10) in P.4 can be invoked to estimate

�1( /��� � � � O � � � �  �"$#%�%'& ( *-, . 
�� ��� � � O � � �6�  �"$#%�% & (+*-,/.
which indeed leads to (29) and thus is an instance where (23) can be confirmed. Hence in
summary, one way to ensure an estimate of the type (23) is to sacrifice some of the mortar
flexibility by enforcing interface boundary matching condition M1.

On the other hand, one could hope that � � � O � � fails to be in � �������� 
 � ��� � by such a small
deviation so that the smoothing caused by the application of ( /��� keeps �1( /��� � � � O � � � �� �"$#%�% & (+*�,/.
comparable to � � � � O � � � �����65 ( *�, which would again lead to (29). One way to pursue this line
is to apply an inverse inequality

��� � � �  �"$#%�% & (+*-, . 
�� � � �4����� � � � � 5 ( *-, � � � P  ���� � (30)
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which is to be understood as follows. Following [DFG
�

01] we denote by � a mesh function,
namely the unique piecewise linear function that interpolates the maximal diameter of all tri-
angles sharing the corresponding nodal point. Then estimates of the form (30) are established
in [DFG

�

01]. Now denoting by � � ��� � the mesh size functions induced on
� ���

by the mesh
on 	 � and 	 � , respectively, we have

�-( /��� � � � O � � � �! �"$#%�% & (+*�,). 
2� � � �4������ ( /��� � � � O � � � � 5 (+*�, / (31)

Now if ( /��� were sufficiently local in the sense that the following condition
P.5:

� � � �� ( /��� O � � 5 (+*�, 
.� � � � �� O � � 5 (+*-, � (32)

holds, this combined with (32) would allow us to infer from (31) that

�-( /��� � � � O � � �6�  �"$#%�% &)(+*-, . 
�� ��� ���-���� � � � O � � � � 5 ( *�, / (33)

We recall that 	 � is the non-mortar side. Arranging now for O � 0 1 O � T 8 * , O � 0 1 O � T 8 ,
that the restrictions O � T (+*-, , O � T (+*-, to

�����
are suitable local Clément approximations, standard

arguments yield

��� ���-���� � � � O � � � �� 5 (+*�, 
 � ]� �
� *-, � 
�� �4������
5 � ��� ���� 5 � � � T � T �� ���65��� �

� ]� 	 �
� ,�� 	 *-, 5 � 	�
 �
�@�� 
�� �4������
5 � ��� ���� 5 � 	 � � T � T �� ��� 5��� 	�� � (34)

where
�� is the union of supports of basis functions overlapping � . Thus introducing

� ��� 0 1 � ������ (+*�,�� � � 
�� ��� � � 
�� �A� (35)

we obtain from (34) by summing over �

� � �4������ � � � O � � � �� 5 (+*-, 
 � � ��� 
9:� � � � :� �� � � � � �� ��� 5 ( *�, /
This estimate combined with the trace theorem

�-( /��� � � � O � � � �� �"$#%�% & (+*�,). 
.� � ��� 
 :� � � � � �65 8 * � :� � � � � � 5 8 , � � (36)

also yields the estimate (23) upon summing over , .

Theorem 2 Suppose that all the meshes � � are shape regular and locally (not globally) quasi-
uniform. If P.5 holds, then the matching condition M1 from [KLPV01] can indeed be abun-
doned to obtain still an estimate of the form (23), provided that there exist a uniform bound� ��� 
2� / (37)

Of course, if the meshes are quasi-uniform, the above argument simplifies and one arrives
at the situation considered in [BDW99, BD98]. Note also that (37) is a weak constraint
that tends to be satisfied automatically when the meshes are determined by reasonable error
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estimators since a possible singularity on or near an interface will affect a neighborhood on
both sides.

Finally, it should be noted that estimates of the form (23) are ultimately of limited value
when dealing with highly non-quasi-uniform meshes. In fact, they would be only useful when
the solution

�
has deficient regularity so that the local � � norms (or even � �

-norms for
� � � ) are not appropriate. This issue is beyond the scope of the present discussion and will
be addressed elsewhere.

Dual Bases

We wish to apply our approach to the so called dual bases mortar method that has been pro-
posed in [KLPV01] for I 1 �

and in [Woh99a] for I 1 � , see also [BP99] for a similar
approach in the wavelet context. Note that the assumptions in [KLPV01] are phrased in a
somewhat different way but Lemma 3.2 in [KLPV01] relates the requirements there closely
to the present formulation P.4. Specifically, in [KLPV01] two types of Lagrange multiplier
spaces

� � are discussed for piecewise linear trial functions in

L
� . Finite volume discretiza-

tions on dual meshes are shown to satisfy P.1 – P.4 where, however, P.4 can only be ensured
to hold under certain restrictions on local mesh size ratios.

In contrast, the so called dual bases mortar method realizes P.1 – P.4 for any locally quasi-
uniform shape regular meshes without any quantitative mesh constraints. Let us briefly recall
the main ingredients.

The multiplier space
� ���

is most conveniently defined with the aid of the following map-
ping

� ���
. Let � be any triangle in � ��� and let for any O P  ���� the values of O at the nodes � �

of � be denoted by O � . Then
� ��� O 1 � is defined as the unique piecewise linear function on

� ��� whose restriction to � is determined by its nodal values � � , for I 1 �
as follows:

(i) � � 021 � O � � O�� � O � for all vertices � E1�� E1 � of � when none of these vertices belongs
to
� � ���

;

(ii) If exactly one vertex, say � � lies on
� �����

set � � 0 1 
 O � � O � � � � , � � 021 
�� O � � � O � ��� � ,� � 0 1 
�� O � � � O�� ��� � ;
(iii) If exactly two vertices � � �W� � belong to

� �����
let � � 1 � � 1 � � 0 1DO � ;

(iv) If all vertices of � belong to
� �����

set � � 1 � � 1 � � 1 O	� where � � is the nearest
interior node to � .

Now let us denote by 
 � , ��� P�� ���
, the standard piecewise linear basis functions for  ����

normalized by 
���
�� � � 1
� � 5 � , where � ���
is the set of interior nodes of � ��� . Let

� � 0 1 ����� 
 �9� � � P�� ���

and define
� ��� 0 1 � " � � N � � 0 � � P�� ��� Y . This yields


�
 �9� ��� � � 5 (+*�, 1D� � � E1�� � 
�
��W� � �$� � 5 � 1 T � T
� � � � P � � (38)

so that ��� � �:��� 1 ��� � K
���� � (39)
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which is P.1. More precisely, one concludes from the above relations


�
���� ��� � � 5 (+*-, 1 � � � � 5 � � � � 0 1 -
� ]��� ���)� � T � T � � & �4�� / (40)

Thus one has the explicit representations

( ��� � 1 ]� � ��� *�, 
 � � 
 � � � 5 ( *�, � ���� � � � ( /��� O 1 ]� � ��� *-, 
 O � � � � � 5 ( *�, � ���� 
 � / (41)

Since constants are easily seen to be locally reproduced in
� ���

, it is now easy to verify
the approximation property P.2. Likewise biorthogonality (40) easily leads to P.3, see also
[KLPV01] while P.4 has also been established already in Lemma 3.2 of [KLPV01]. Hence all
the requirements P.1 – P.4 hold in this case. Thus to apply the above reasoning we only have
to discuss (32). For any � P � ��� one has for � � 021 �! "#" 
�� 1 �  #"#"

� � , �� 021 � N � � 0 � � P � Y
� � �4����� ( /��� �4� � 5 � 
 � � ���-���� ]� � � � � �4�� ����� � 5 � � �

� � � � 5 � � � 
 � � � 5 � � 
�� � �4������ ����� � 5��� �
where we have used that, in view of the R ) normalization of the basis functions 
 �W� � � , the
local quasi-uniformity of � ��� and (40),

� �4�� � � ��� � 5 � � � 
 ��� � 5 � � � - . Hence (32) follows from
summing over � P � ��� . This confirms that P.5 holds as well.

Corollary 1 The error estimate (23) holds for the dual basis mortar method provided the
meshes satisfy (37).

If the Lagrange multiplier spaces did not have local dual bases either 
 � or
� � in (40)

would have global support but would, by Demko’s theorem, exhibit a certain exponential
decay. This would still entail the validity of condition P5 but under certain constraints on the
local mesh size ratios, as expected.
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